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Barrier functions
Same idea as in penalty methods: turn constrained optimisation
unconstrained and solve them iteratively.

Main difference: barrier functions prevent the search from leaving
the feasible region. Consider the primal problem P

(P ) : min. f(x)

subject to: g(x) ≤ 0

x ∈ X.

We define the barrier problem BP as

(BP ) : inf
µ

θ(µ)

subject to: µ > 0,

where θ(µ) = infx {f(x) + µB(x) : g(x) < 0, x ∈ X} and B(x) is a
barrier function.
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Barrier functions

The barrier function B : Rm → R is such that

B(x) =

m∑
i=1

ϕ(gi(x)), where

{
ϕ(y) ≥ 0, if y < 0;

ϕ(y) = ∞, when y → 0−.
(1)

Some common alternatives include

▶ B(x) = −
∑m

i=1
1

gi(x)

▶ B(x) = −
∑m

i=1 ln(min {1,−gi(x)}).

Perhaps the most important is Frisch’s log barrier function

B(x) = −
m∑
i=1

ln(−gi(x)).
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Barrier functions
Ideally, B(x) would serve as an indicator function

B(x) =

{
∞, if g(x) ≥ 0

0, if g(x) < 0.

To avoid numerical issues, the shape of B(x) is controlled by µ.
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▶ As µ → 0, B(x)
becomes closer to an
indicator function.

▶ Notice that B(x) > 0
is not required for all
feasible points, but
must be so for those
near g(x) ≤ 0.
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Barrier functions
We will proceed by repeatedly solving θ(µ) and iteratively reducing
the value of µ. For that to work, we need the following result.

Theorem 1 (Convergence of barrier methods)

Let f :Rn→R and g :Rn→R be continuous functions and X ∈Rn

a nonempty closed set in problem P . Suppose {x : g(x)< 0, x∈X}
is not empty. Let x be the optimal solution of P such that, for any
neighbourhood Nϵ(x) = {x : ||x− x|| ≤ ϵ}, there exists x ∈ X ∩Nϵ

for which g(x) < 0. Then

min {f(x) : g(x) ≤ 0, x ∈ X} = lim
µ→0+

θ(µ) = inf
µ>0

θ(µ).

Letting θ(µ) = f(xµ) + µB(xµ), where B(x) is a barrier function
observing (1), xµ ∈ X, and g(xµ) < 0, the limit of {xµ} is optimal
to P and µB(xµ) → 0 as µ → 0+.
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Barrier method

Algorithm Barrier method

1: initialise. ϵ > 0, x0 ∈ X with g(xk) < 0, µk, β ∈ (0, 1), k = 0.
2: while µkB(xk) > ϵ do
3: xk+1 = argmin

{
f(x) + µkB(x) : x ∈ X

}
4: µk+1 = βµk, k = k + 1
5: end while
6: return xk.

Remarks:

1. Notice that, starting with x0 ∈ X with g(x0) < 0, xk for all
k > 1 satisfies g(xk) < 0 due to the barrier function.

2. However, applying the barrier method using a fixed step size
may cause infeasibility issues.

3. Due to 1., these methods are called interior point methods.
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Barrier method
Example 1: P = min.

{
(x+ 1)2 : x ≥ 0

}
with B(x) = − ln(x)
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Barrier method
Example 2: P = min.

{
(x1 − 2)4 + (x1 − 2x2)

2 : x21 − x2 ≤ 0
}

with B(x) = − 1
x2
1−x2

.
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Interior point methods for LP/QP

Consider the following LP and its dual

(P ) : min. c⊤x

subject to: Ax = b : v

x ≥ 0 : u

(D) : max. b⊤v

subject to: A⊤v + u = c

u ≥ 0, v ∈ Rm.

The optimal solution (x, v, u) = w satisfies KKT conditions of P :

Ax = b, x ≥ 0

A⊤v + u = c, u ≥ 0, v ∈ Rm

u⊤x = 0.

Let us consider the barrier problem for P by using the logarithmic
barrier function.
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Interior point methods for LP/QP

The barrier problem is given by:

(BP ) : min. c⊤x− µ

n∑
i=1

ln(xj)

subject to: Ax = b.

The KKT conditions of BP are

Ax = b, x > 0

A⊤v = c− µ

(
1

x1
, . . . ,

1

xn

)
.

Notice that since µ > 0 and x > 0, u = µ
(

1
x1
, . . . , 1

xn

)
serve as an

estimate for the Lagrangian dual variables.

Fernando Dias Interior point method for LP/ QP 13/28



Interior point methods for LP/QP

The barrier problem is given by:

(BP ) : min. c⊤x− µ

n∑
i=1

ln(xj)

subject to: Ax = b.

The KKT conditions of BP are

Ax = b, x > 0

A⊤v = c− µ

(
1

x1
, . . . ,

1

xn

)
.

Notice that since µ > 0 and x > 0, u = µ
(

1
x1
, . . . , 1

xn

)
serve as an

estimate for the Lagrangian dual variables.

Fernando Dias Interior point method for LP/ QP 13/28



Interior point methods (IPM) for LP/QP
Let X ∈ Rn×n and U ∈ Rn×n be defined as

X = diag(x) =


. . .

xi
. . .

 and U = diag(u) =


. . .

ui
. . .


and let e = [1, . . . , 1]⊤ be a vector of ones of suitable dimension.

We can rewrite the KKT conditions of BP as

Ax = b, x > 0 (2)

A⊤v + u = c (3)

u = µX−1e ⇒ XUe = µe (4)

Remark: condition (3) is called relaxed complementarity condition
with 0 replaced by µ. This is known as the perturbed KKT system.
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Interior point methods (IPM) for LP/QP

According to Theorem 1, wµ = (xµ, vµ, uµ) approaches the optimal
primal-dual solution of P as µ → 0+.

Remarks:

1. The trajectory formed by successive solutions {wµ} is called a
central path due to its interiority forced by the barrier function.

2. Notice that XUe = µe ⇒ uixi = µ for all i = 1, . . . , n.

3. c⊤x− b⊤v = u⊤x measures the duality gap for the current µ.

4. Also,u⊤x=
∑n

i=1uixi = nµ is equal to the total slack violation
and can be used as a stopping condition.
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The notion of interiority
For large enough µ, the solution of the barrier problem is close to
the analytic centre of the feasibility set.

The analytic centre of a polyhedral set S = {x ∈ Rn : Ax ≤ b} is
given by the solution of

max.
x

m∏
i=1

(bi − a⊤i x)

subject to: x ∈ X,

i.e., finding x ∈ S of maximum distance to each of the hyperplanes
a⊤i x = bi. This is equivalent to

min.
x

m∑
i=1

− ln(bi − a⊤i x)

subject to: x ∈ X.
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IPM for LP/QP: primal/dual method
Primal/dual path following method is a specialisation of IPM to
linear and quadratic problems.

It combines BP with one “additional trick”: instead of solving BP
to optimality, perform a single Newton step for each µ.

Suppose we start with a µ > 0 and a wk = (xk, vk, uk) sufficiently
close to wµ. Then, for a sufficiently small β ∈ (0, 1), βµ will lead to
a wk+1 sufficiently close to wβµ.

Remark: β is typically related to convergence results. Values like
µ0 = (x⊤u)/n and β ∈ [0.1, 0.5] are often used in practice.

For example, let Nµ(θ) = ||Xµ Uµe− µe|| ≤ θµ. Then, by selecting
β = 1− σ√

n
, σ = θ = 0.1, and µ0= (x⊤u)/n, successive Newton

steps are guaranteed to remain within Nµ(θ).

Further reading: see this reference (link) for more details.
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IPM for LP/QP: primal/dual method

x+∞

xµ1

xµ2

xk

xk+1 c

Nµ1(θ)

Nµ2(θ)
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IPM for LP/QP: primal/dual method
Let the perturbed KKT system (2) – (4) for each µ̂ be denoted as
H(w) = 0. Let J(w) be the Jacobian of H(w) at w.

Applying Newton’s method to solve H(w) = 0 for w, we obtain

J(w)dw = −H(w) (5)

where dw = (w − w).

By rewriting dw = (dx, dv, du), (5) can be
equivalently stated as

Adx = 0

A⊤dv + du = 0

Udx +Xdu = µ̂e−X Ue.

The algorithm proceeds by iteratively solving the above system with
µk+1 = βµk with β ∈ (0, 1) until nµk is small enough.
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IPM for LP/QP: primal/dual method
Remark: Notice that primal feasibility conditions are included in the
system H(w) = 0. This is typically referred to as the equality
constrained Newton’s method with “Newton system”A 0⊤ 0

0 A⊤ I

U 0⊤ X

dxdv
du

 =

 0
0

µ̂e−X Ue

 . (6)

In practice, updates incorporate primal and dual infeasibility, which
can be shown to vanish as the algorithm progress. Updates become A 0⊤ 0

0 A⊤ I
Uk 0⊤ Xk

dk+1
x

dk+1
v

dk+1
u

 = −

 Axk − b
A⊤vk + uk − c
XkUke− µk+1e

 , (7)

where µk+1 = βµk.
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IPM for LP/QP: primal/dual method
Let the residuals (i.e., the amount of infeasibility) be

rp(x, u, v) = Ax− b (primal); rd(x, u, v) = A⊤v + u− c (dual).

Let r(w) = r(x, u, v) = (rp(x, u, v), rd(x, u, v)). The optimality
conditions (6) require the residuals to vanish, that is r(w) = 0.

Consider the first-order approximation for r at w for a step dw

r(w + dw) ≈ r(w) +Dr(w)dw,

where Dr(w) is the derivative of r evaluated at w. The step dw for
which the residue vanishes is Dr(w)dw = −r(w) (cf. (7)).

The directional derivative of ||r(w + tdw)||22 in the direction dw is

d

dt
||r(w + tdw)||22

∣∣∣∣
t→0+

= 2r(w)⊤Dr(w)dw = −2r(w)⊤r(w),

which is strictly decreasing.

Fernando Dias Interior point method for LP/ QP 21/28



IPM for LP/QP: primal/dual method
Let the residuals (i.e., the amount of infeasibility) be

rp(x, u, v) = Ax− b (primal); rd(x, u, v) = A⊤v + u− c (dual).

Let r(w) = r(x, u, v) = (rp(x, u, v), rd(x, u, v)). The optimality
conditions (6) require the residuals to vanish, that is r(w) = 0.

Consider the first-order approximation for r at w for a step dw

r(w + dw) ≈ r(w) +Dr(w)dw,

where Dr(w) is the derivative of r evaluated at w. The step dw for
which the residue vanishes is Dr(w)dw = −r(w) (cf. (7)).

The directional derivative of ||r(w + tdw)||22 in the direction dw is

d

dt
||r(w + tdw)||22

∣∣∣∣
t→0+

= 2r(w)⊤Dr(w)dw = −2r(w)⊤r(w),

which is strictly decreasing.

Fernando Dias Interior point method for LP/ QP 21/28



IPM for LP/QP: primal/dual method
Let the residuals (i.e., the amount of infeasibility) be

rp(x, u, v) = Ax− b (primal); rd(x, u, v) = A⊤v + u− c (dual).

Let r(w) = r(x, u, v) = (rp(x, u, v), rd(x, u, v)). The optimality
conditions (6) require the residuals to vanish, that is r(w) = 0.

Consider the first-order approximation for r at w for a step dw

r(w + dw) ≈ r(w) +Dr(w)dw,

where Dr(w) is the derivative of r evaluated at w. The step dw for
which the residue vanishes is Dr(w)dw = −r(w) (cf. (7)).

The directional derivative of ||r(w + tdw)||22 in the direction dw is

d

dt
||r(w + tdw)||22

∣∣∣∣
t→0+

= 2r(w)⊤Dr(w)dw = −2r(w)⊤r(w),

which is strictly decreasing.
Fernando Dias Interior point method for LP/ QP 21/28



IPM for LP/QP: primal/dual method

Algorithm Interior point method for LP

1: initialise. primal-dual feasible wk, ϵ > 0, µk, β ∈ (0, 1), k = 0.
2: while nµ = c⊤xk − b⊤vk > ϵ do
3: compute dwk+1 = (dxk+1 , dvk+1 , duk+1) using (7) and wk.
4: wk+1 = wk + dwk+1

5: µk+1 = βµk, k = k + 1
6: end while
7: return wk.

Remarks:

1. Notice that the step size is set to one. A line search could be
performed between Lines 3 and 4.

2. This method has polynomial complexity which, under specific
conditions, can be shown to be O(

√
n ln(1/ϵ)).
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The primal-dual interior point (IP) method
Example:
min. z = x1 + x2 : 2x1 + x2 ≥ 8, x1 + 2x2 ≥ 10, x1, x2 ≥ 0.

0 2 4 6 8 10
x

0

2

4

6

8

x x0

2x1 + x2 8
x1 + 2x2 10
z *  level curve

 = 10.0,  = 0.5
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Outline of this lecture

Barrier functions

Barrier method

Interior point method for LP/ QP

The end... ?
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Shameless plug

My research: developing optimisation methods and models (mainly
MILP) in different areas such as: air traffic control, bioinformatics
and transport.

Find more about my research

Current interests:

▶ Conflict avoidance and recovery (ACRP);

▶ Urban air mobility (UAM);

▶ Flow Decomposition (MFD);

▶ Transport.

Fernando Dias The end... ? 26/28



The end... ?

Fernando Dias The end... ? 27/28



Fernando Dias The end... ? 28/28


	Barrier functions
	Barrier method
	Interior point method for LP/ QP
	The end... ?

