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Abstract
In this lecture, we are focusing on interest rate derivates, which are are derivative securities whose payoff depends

on interest rates because almost. These securities can be used to control interest rate risk.
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1 Modelling the term structure
Interest rate derivatives are derivative securities whose payoff depends on interest rates. As examples, in this

course some interest rate derivatives have been addressed:

1. Interest rate swaps (see Lecture VIII);

2. Interest rate caps and floors;

• Refers to upper (cap) and lower (floor) bounds on the interest rate;

3. Bond options;

4. Interest rate swaptions (i.e., option on a swap);

5. Bond futures;

6. Bond options;

• E.g., the option to buy 10-y treasury bonds at a fixed strike price at a given time;

7. Embedded bond options;

• E.g., callable bonds whose issuer has the right to repurchase the bond in accordance with prespecified terms.

However, those differs from some common concepts such as bonds are fixed income securities, not interest rate
derivatives and Mortgages are fixed income instruments (loans), not securities or derivatives. For example, mortgage-
backed securities are structured credit instruments (fixed income securities) that pool together many mortgages.

They are issued by a special-purpose company whose only purpose is to own a portfolio of mortgages and distribute
the returns and the principal from the mortgages to the security holders in an order of priority of payments. These
securities were among the causes of the financial crisis that began in 2007; see article in Investopedia.

The pricing of interest rate derivatives is based on models of the term structure of interest rates. Changes in spot
rates are not independent and some simple parallel shift models of the term structure may offer arbitrage opportunities.
It is possible to construct an arbitrage-free model for the term structure with a binomial lattice.

The binomial lattice for the short rates is constructed as follows:

1. Select the period length (e.g., week, month, year);

2. Associate a short rate with each lattice node;

3. Assign a risk-neutral probability q with each arc;

The usual choice of q = 1/2 can be assigned for convenience. Normally, the matching of the term structure is done
by adjusting the short rates at each node of the lattice, not the risk-neutral probability. The choice of q also influences
the bond prices and therefore the term structure.

Still, we can typically find appropriate lattice parameters for q = 1/2 so there is no need to use also q to match the
term structure. Note that earlier on, we knew the initial stock price S, fixed the u and d parameters and derived the
corresponding q (see Lecture IX).

Now we fix q and choose the other lattice parameters to match observed spot rates, which allows us to compute
corresponding bond prices. We use the risk-neutral pricing formula the other way around, so to speak.

Index the binomial lattice as (t, i) where t is the period and i is the number of up movements in the lattice:
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Let rti be the short rate in node (t, i). Then the value Vti of the interest rate derivative at (t, i) is:

Vti = 1
1 + rti

(qVt+1,i+1 + (1 − q)Vt+1,i) +Dti,

where Dti is the dividend paid at node (t, i) and q = 1/2 is the risk-neutral probability of the upward movement. Im-
portantly, this formula is arbitrage-free. It is implicitly assumed that it is possible to construct an elementary security
(a state-price security) for each state in the lattice using available securities (see Lecture X).

If Vti − Dti < 0 ⇒ Vt+1,i < 0 or Vt+1,i+1 < 0 : No type A arbitrages (i.e., an initial positive payoff cannot lead to
non-negative future payoffs only).

Vt+1,i, Vt+1,i+1 ≥ 0 with strict inequality in one ⇒ Vti > 0. No type B arbitrages (i.e., an initial non-positive payoff
cannot lead only to non-negative payoffs with a positive expection).

Consider a bond which yields 1 € at the end of period two. Denote the price of the bond at note (t, i) with Pti(2):

• In node (1, 0) the value of the bond is

P10(2) = 1
1 + r10

(
1
2 · 1 + 1

2 · 1
)

• In node (1, 1) the value of the bond is

P11(2) = 1
1 + r11

(
1
2 · 1 + 1

2 · 1
)

• In node (0, 0) the value of the bond is

P00(2) = 1
1 + r00

(
1
2P10(2) + 1

2P11(2)
)

= 1
1 + r00

(
1
2

1
1 + r10

+ 1
2

1
1 + r11

)

Thus the two period spot rate s2 can be solved from:

P00(2) = 1
(1 + s2)2

This process can be applied to evaluate the price P00(k) for any period k. Thus, risk neutral pricing when the short
rates vary according to the binomial lattice generates the entire term structure as in the deterministic case (Lecture III).
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Consider a binomial lattice with six periods such that r00 = 0.070. Assume that the short rate dynamics is constructed
using an up factor of u = 1.3 and a down factor of d = 0.9. Then, the short rates are given by:

0 1 2 3 4 5

0.260

0.200 0.180

0.154 0.138 0.125

0.118 0.106 0.096 0.086

0.091 0.082 0.074 0.066 0.060

0.070 0.063 0.057 0.051 0.046 0.041

The four year spot rate is the price of a zero coupon bond which pays its face value in 4 years:

0 1 2 3 4

1

0.867 1

0.792 0.904 1

0.751 0.848 0.931 1

0.733 0.818 0.891 0.951 1

Values are computed so that, e.g., P33(4) = (0.5 · 1 + 0.5 · 1)/(1 + 0.154) = 0.867. Thus the 4 year spot rate is:

P00(4) = 1
(1 + s4)4 = 0.733 ⇒ s4 = 0.0806

All other spot rates can be computed similarly.

2 Pricing applications: Bond option
Bond option, e.g. assume that the term structure is captured by the binomial lattice of the previous example. The

price of a 4 year zero coupon bound with face value 100 € is 73.34 €.

Consider a European call to buy this bond in 3 years with a strike price of K = 90 €. What is the value of this call
option?

Construct a 3 year binomial lattice for the option value Vti such that the last node has value of the option at expiration:

V3i = max {0, P3i(4) −K} ,

where P3i(4) is the value of the bond in year 3 after i up movements.
The option value is computed recursively. Value of the option is 1.602 €.

0 1 2 3

0.000

0.169 0.378

0.821 1.623 3.135

1.602 2.606 3.918 5.145
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Bond forward, e.g., consider a forward contract for buying after 4 years a bond which has, upon purchase, 2 years
to maturity and whose face value is 100 € with 10% coupon rate.

What is the forward price of this contract? At the time of writing the contract, the price is chosen to make contract
of value 0. Use first binomial lattice to price the bond today. Value of the 6-year bond at time 0 is 72.90 €.

0 1 2 3 4 5 6

110

97.308 110

83.561 103.226 110

76.379 92.691 107.815 110

73.074 87.058 99.962 111.267 110

72.196 84.459 95.694 105.534 113.802 110

72.901 83.811 93.724 102.383 109.681 115.634 110

Forward price of any asset with a present value of 72.90 must be the present value accrued by the spot rate.

The 4 year discount factor d0,4 = 0.733. Forward price (= price paid on delivery):

72.90 · (1 + s4)4 = 72.90
d0,4

= 72.90
0.733 ≈ 99.40

For bond future, we consider a futures contract analogous to the previous example. What is the futures price of
this contract?

The price of the bond in 4 years was determined in the previous example. Value of futures contract at the third year
depends on the value of the bond in the fourth year.

Just after node (3, 3), the value of the bond is either 83.56 € or 92.69 €. If the futures price is F , the contract yields
profit either 83.56 − F or 92.69 − F , which yields the expected value.

0.5 · (83.56 − F ) + 0.5 · (92.69 − F )

The price of the futures contract is set so that the expected value is zero
⇒ F = 0.5 · (83.56 + 92.69) = 88.13

Hence futures price in a binomial lattice is determined as the expected value without discounting:

0 1 2 3 4

83.561

88.126 92.691

92.226 96.327 99.962

95.882 99.537 102.748 105.534

99.120 102.357 105.178 107.607 109.681

Price is 99.12 €< 99.40 €. The futures-forward equivalence does not hold with fluctuating interest rates (in contrast
to the situation when the expectations hypothesis holds).
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3 Forward equation
The binomial lattice determines the term structure completely. The k year spot rate can be computed using the value

of a k year zero coupon bond. With backward recursion, every maturity needs to be computed separately:

• Computing spot rates for the k-th year requires 1 + 2 + · · · + k = k(k + 1)/2 single node evaluations
• Computing the spot rates for n years requires n recursions and

∑n
k=1 k(k + 1)/2 ≈ n3/6 single node evaluations

The entire term structure can be determined with a single recursion by utilizing elementary prices. Elementary
price ψk,s is the price of a security that yields 1 unit of cash flow at time k in state s and zero otherwise (i.e., an
elementary security, also called a state-price security or Arrow-Debreu security).

The same as a state price mentioned in Lecture X. Any asset governed by a binomial lattice can be priced using
elementary prices.

In theory, all elementary prices can be derived using normal backward recursion, but this requires plenty of compu-
tations. It turns out that there is a mathematically equivalent but computationally more efficient way of computing all
elementary prices.

Forward equation is a shortcut for computing the present values given by the risk-neutral pricing formula in a bi-
nomial lattice for an elementary security, utilizing the values of elementary securities in earlier states (these are available
as results of earlier computations).

The forward equation is a mechanism for pricing elementary securities in the lattice. These securities pay 1 only in
one node and 0 in all the other nodes. However: lattice is mainly full of zeros and there are only one (bottom and top
nodes) or two (middle nodes) immediate predecessor nodes for the node with the payoff of 1 (i.e., the node for which the
elementary price is being calculated).

• Under the risk-neutral pricing formula, only these immediate predecessor nodes have a positive value in the previous
time period

• All other nodes for the previous time period have zero value
• Sum of the time-0 present values of those immediate predecessors in the previous time period must be the time-0

present value of the node in its actual time period
Time-0 present value of a node in time period t is:

(i) the value of the node (as given by the risk-neutral pricing formula) + the cash flow at this node,
multiplied by

(ii) the time-0 present value of 1 in that node (i.e., the elementary price of the node)
If we derive elementary prices by starting from the beginning and continuing towards the end, we always know the

elementary prices of the previous nodes. The elementary price ψt,s of a node (t, s) (= the time-0 present value of 1 at node
in time period t and state s) can be computed as the sum over the time-0 present values of the immediate predecessor
nodes of this node in time period t− 1.

Calculate the value that the predecessor node would have (in time t− 1) using the risk-neutral pricing formula:

• q · 1/(1 + r(t−1)(s−1)), or
• (1 − q) · 1/(1 + r(t−1)s)
Time-0 present value of the predecessor node (t− 1, s) is the value given by the risk-neutral valuation formula above,

multiplied by and the elementary price ψt−1,s of this predecessor node (the time-0 present value of 1 in this node).

If there are two immediate predecessor nodes, we have:

ψt,s = q · 1
1 + r(t−1)(s−1)

ψt−1,s−1

+ (1 − q) · 1
1 + r(t−1)s

ψt−1,s

By rearranging the terms and denoting dt,s = 1/(1 + rts), we get:

ψt,s = q · dt−1,s−1ψt−1,s−1

+ (1 − q) · dt−1,sψt−1,s
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With q = 1/2 we further have:

ψt,s = 1
2 (dt−1,s−1ψt−1,s−1 + dt−1,sψt−1,s)

Consider state (k + 1, s), where s ̸= 0 and k ̸= 1:

• Elementary price in the node is ψk+1,s

• Node has two predecessors (k, s) and (k, s− 1)
• Predecessors have elementary prices ψk,s−1 and ψk,s

• The only way to arrive at (k+ 1, s) is via either (k, s) or (k, s− 1) and thus the value of state (k+ 1, s) at time zero
is

ψk+1,s = 1
2(dk,s−1ψk,s−1 + dk,sψk,s),

where dk,s is discount factor from time k to k + 1 in state s
Node (k + 1, k + 1) only has a single predecessor:

• Single unit cash flow in (k + 1, k + 1) is equivalent to getting in node (k, k) a cash flow of 0.5dk,k units, and hence

ψk+1,k+1 = 1
2dk,kψk,k

Node (k + 1, 0) also only has a single predecessor (k, 0) such a single unit cash flow in node (k + 1, 0) equivalent to
getting in node (k, 0) a cash flow of 0.5dk,0, and hence:

ψk+1,0 = 1
2dk,0ψk,0

(𝑘, 𝑠)

(𝑘, 𝑠 − 1)
.5𝑑𝑘,𝑠−1

.5𝑑𝑘,𝑠 1
𝑘 + 1, 𝑠

Node (k+ 1, k+ 1) only has a single predecessor and such single unit cash flow in (k+ 1, k+ 1) is equivalent to getting
in node (k, k) a cash flow of 0.5dk,k units, and hence:

ψk+1,k+1 = 1
2dk,kψk,k

Node (k + 1, 0) also only has a single predecessor (k, 0) such that a single unit cash flow in node (k + 1, 0) equivalent
to getting in node (k, 0) a cash flow of 0.5dk,0, and hence:

ψk+1,0 = 1
2dk,0ψk,0

Parts A, B and C define the three forms of the forward equation, which yields the elementary prices of a state using
the elementary prices of its predecessor states:

ψk+1,s = 1
2(dk,s−1ψk,s−1 + dk,sψk,s), 0 < s < k + 1

ψk+1,k+1 = 1
2dk,kψk,k, s = k + 1

ψk+1,0 = 1
2dk,0ψk,0, s = 0
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After a single recursion for defining all elementary prices, the prices of zero-coupon bonds (and hence spot rates) can
be computed from the elementary prices as:

P00(k) =
k∑

s=0
ψk,s

For the short rates in the previous example, the elementary prices are:

0 1 2 3 4 5 6

0.007

0.017 0.047

0.041 0.094 0.130

0.096 0.175 0.203 0.189

0.214 0.296 0.276 0.216 0.153

0.467 0.434 0.305 0.191 0.113 0.065

1 0.467 0.220 0.104 0.049 0.024 0.011

Sum 1 0.935 0.868 0.801 0.733 0.667 0.602

Sum = bond values

The spot rates can then be computed in a straightforward manner, e.g.,

1
(1 + s3)3 = 0.8006 ⇒ s3 = 0.0769

4 Matching the term structure
The short rate lattice needs to be matched with the observed term structure. We first select an appropriate model of

interest rate dynamics to describe the movements of interest rates in the binomial lattice.

Then the parameters of this model are chosen to match the observed term structure. Often accomplished with the
help of elementary prices. An analytic solution for the parameters typically does not exist. Often one minimizes an error
measure (e.g., sum of squared errors over relevant time periods). Solving the right parameters is an optimization problem.

In Ho-Lee model, short rates are calculated with the linear model:

rks = ak + bks,

where ak and bk are parameters to be estimated and s = 0, 1, . . . , k is the number of up movements, such that:

• ak is an aggregate drift parameter
• bk is a volatility parameter

– Usually bk = b is the same for all time periods
– It can be shown that b/2 is the standard deviation of the one period rate

Black-Derman-Toy model, such that short rates are calculated with the log-linear model:

rk,s = ake
bks

Consider the 6-year term structure presented below ("observed spot rates"):
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Year k 1 2 3 4 5 6

Observed spot-rates 0.077 0.083 0.088 0.093 0.098 0.102

We want to match the Ho-Lee model with this term structure. That is, we want to find the parameters for the Ho-Lee
model that yield exactly the observed spot rates.

We simplify the analysis by assuming that bk = b = 0.025. In general, the term bk can set used to control interest
rate volatility implied by the Ho-Lee model.

The desired parameters are found by calculating the following items in the following order (each item implies the
next):

1. Short rate lattice
2. Elementary prices for each node
3. Prices of zero-coupon bonds for each maturity
4. Spot rates for each maturity
5. Sum of squared differences of the observed spot rates and the spot rates in item 4
In practice, optimization is employed update parameter values for the Ho-Lee model so that the sum of squared

differences is minimized, with repeated calculations until the minimum has been found. The spreadsheet calculation is
presented in the following two slides with the decision variables and objective cells of the optimization problem highlighted
with blue cell color.

Year k 0 1 2 3 4 5 6

Observed spot-rates 0.077 0.083 0.088 0.093 0.098 0.102

a k 0.076 0.074 0.072 0.067 0.062

b 0.025

Short rate lattice

s\k 0 1 2 3 4 5

5 0.187

4 0.167 0.162

3 0.147 0.142 0.137

2 0.124 0.122 0.117 0.112

1 0.101 0.099 0.097 0.092 0.087

0 0.077 0.076 0.074 0.072 0.067 0.062
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Elementary prices

s\k 0 1 2 3 4 5 6

6 0.007

5 0.018 0.047

4 0.041 0.092 0.124

3 0.094 0.169 0.192 0.174

2 0.211 0.288 0.262 0.200 0.138

1 0.464 0.427 0.294 0.181 0.105 0.059

0 1.000 0.464 0.216 0.100 0.047 0.022 0.010

Bond price P 00 (k ) 1.000 0.929 0.853 0.776 0.700 0.628 0.560

Implied spot-rate 0.077 0.083 0.088 0.093 0.097 0.102

Squared difference 0.000 0.000 0.000 0.000 0.000 0.000

Sum of sq.-diffs. 0.000
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