MS-E2114 Investment Science Lecture II: Fixed income securities

Fernando Dias (based on previous version by Prof. Ahti Salo)
Department of Mathematics and System Analysis
Aalto University, School of Science
12 September 2022

Overview

Introduction

Annuities

Bonds

Duration

Immunization

Links

This lecture

- Fixed income securities are debt instruments which provide (i) returns in the form of regular, or fixed, interest payments and (ii) repayments of the principal when the security reaches maturity
- Refers especially to bonds that pay a periodic, fixed, non-random coupon and other similar instruments
- E.g., bonds issued by corporations, sovereign states, municipalities, etc.
- The term also encompasses instruments whose interest depends on a reference rate such as EURIBOR
- In this lecture, we derive valuation formulas for several types of fixed income securities

Overview

Introduction

Bonds

Duration

Immunization

Aalto University

Terminology

- Financial instruments are monetary contracts between parties
- Cash, evidence of ownership, contract to receive cash or other financial instruments
- Security $=$ A readily transferable financial instrument which is traded in a well-developed market
- Governed by laws on public market securities (e.g. regarding insider information)
- Fixed income instrument $=\mathrm{A}$ financial instrument which provides a preagreed stream of cash flows
- Interest rate may be fixed or depend on a possibly changing reference rate such as EURIBOR
- Yet the issuer may default (e.g., bankruptcy)
- Fixed income security = A fixed income instrument which is a security, too

Examples of fixed income instruments

- Money market instruments (securities)
- Tradeable instruments that offer a guaranteed interest (possibly floating-rate) for a short period of time
- Certificates of deposit offered by banks
- Short term notes (1 yr or less) by corporations (= commercial paper)
- U.S. government securities
- Treasury bills ("T-bills") < 1 year
- Treasury notes $2-10$ years
- Treasury bonds >10 years
- Other bonds (securities)
- Municipal bonds (issued by e.g. by cities)
- Corporate bonds

Further examples (these are not usually securities)

- Mortgages are used by purchasers of real property to raise funds to buy real estate, or alternatively by existing property owners to raise funds for any purpose, while putting a lien on the property being mortgaged
- Reverse mortgages allow owners of home equity to borrow against the value of their home
- Annuities provide a series of payments at equal intervals (e.g., regular deposits to a savings account, monthly insurance payments, and pension payment)

Credit ratings

- Bonds offer a fixed cash flow unless the issuer defaults
- Ratings provided by credit rating agencies
- The 'Big Three': Moody's, Standard \& Poor's, Fitch
- U.S. Treasury securities have been considered the least risky historically
- Ratings are traditionally grouped into grades of Investment Grade (IG) and High Yield (HY)
\rightarrow Investment grade $=\mathrm{Baa} 3$ or better (Moody's), BBB - or better (S\&P, Fitch)
$>$ High yield $=\mathrm{Ba} 1$ or worse (Moody's), BB+ or worse (S\&P, Fitch)
- High yield bonds are also known as junk bonds
- https://en.wikipedia.org/wiki/Credit_rating

Market for future cash

- Fixed income securities define the time value of money
- Markets for many types of these securities are extremely well-developed
- Market prices for these securities reflect

1. Time value of money
2. Fundamental risk premium (= compensation for the risk that the issuer defaults)
3. Market price risk premium (= compensation for the risk that the value of the security goes down)
4. Supply and demand

Overview

Introduction

Annuities

Bonds

Duration

Immunization

Aalto University

Perpetual annuity

- Receive $A €$ annually forever starting in a year's time
- $r=$ interest rate
- The net present value of this cash flow stream is $(r>0)$

$$
\begin{aligned}
P & =\sum_{k=1}^{\infty} \frac{A}{(1+r)^{k}}=\frac{A}{1+r}+\frac{1}{1+r} \sum_{k=1}^{\infty} \frac{A}{(1+r)^{k}} \\
& =\frac{A}{1+r}+\frac{P}{1+r} \\
\Rightarrow P & =\frac{A}{r}
\end{aligned}
$$

- If $A=25000 €$ and $r=0.1=10 \%$, then
$P=25000 € / 0.1=250000 €$

Cash flows of finite length

- Get $A €$ annually for the next n years
- Future cash flows discounted with interest rate r
- Present value can be computed from the perpetual annuity by substracting the cash flows that occur after the n-th year

$$
\begin{aligned}
P & =\sum_{k=1}^{n} \frac{A}{(1+r)^{k}} \\
& =\underbrace{\sum_{k=1}^{\infty} \frac{A}{(1+r)^{k}}}_{\frac{A}{r}}-\underbrace{\sum_{k=n+1}^{\infty} \frac{A}{(1+r)^{k}}}_{\frac{1}{(1+r)^{n}} \sum_{k=1}^{\infty} \frac{A}{(1+r)^{k}}=\frac{1}{(1+r)^{n}} \frac{A}{r}} \\
\Rightarrow P & =\frac{A}{r}\left(1-\frac{1}{(1+r)^{n}}\right)
\end{aligned}
$$

Examples of streams with finite life

- Get $A=25000 €$ annually for 20 years
- Interest rate $r=0.1=10 \%$

$$
P=\frac{25000 €}{0.1}\left(1-\frac{1}{(1+0.1)^{20}}\right)=213000 €
$$

- PV "only" $37000 €$ less than that of the corresponding perpetual annuity on slide 11
- For high interest rates, the cash flows that occur in the more distant future do not matter that much

Example: Consumer credit

- Loan $P=10000 €$
- Interest is paid monthly at the nominal rate of 12% p.a.

$$
\Rightarrow r=0.12 / 12=0.01
$$

- Amortize (=pay back) in 3 years in equal monthly payments

$$
(n=36)
$$

- What are the monthly payments A ?
- Finite life stream with unknown A
- Solving the pricing equation on slide 11 for A gives

$$
A=\frac{r(1+r)^{n} P}{(1+r)^{n}-1}=\frac{0.01(1+0.01)^{36} 10000 €}{(1+0.01)^{36}-1} \approx 332.14 €
$$

- Sum of payments $36 \times 332.14 €=11957.04 €$
- Amortization table
- $($ Loan at $n+1)=($ Loan at $n)-($ Amortization at $n)$

Example: Consumer credit

n	Loan capital	Interest	Amort.	Payment	n	Loan ca.	Inter.	Amort.	Paym.
0	10000.0	$\rightarrow \quad 100.0$	$\rightarrow 232.1$	$\leftarrow \quad 332.1$					
1	9767.9	$\leftarrow 97.7$	234.5	332.1	19	5169.0	51.7	280.5	332.1
2	9533.4	95.3	236.8	332.1	20	4888.5	48.9	283.3	332.1
3	9296.6	93.0	239.2	332.1	21	4605.3	46.1	286.1	332.1
4	9057.4	90.6	241.6	332.1	22	4319.2	43.2	289.0	332.1
5	8815.9	88.2	244.0	332.1	23	4030.2	40.3	291.8	332.1
6	8571.9	85.7	246.4	332.1	24	3738.4	37.4	294.8	332.1
7	8325.5	83.3	248.9	332.1	25	3443.6	34.4	297.7	332.1
8	8076.6	80.8	251.4	332.1	26	3145.9	31.5	300.7	332.1
9	7825.2	78.3	253.9	332.1	27	2845.2	28.5	303.7	332.1
10	7571.3	75.7	256.4	332.1	28	2541.6	25.4	306.7	332.1
11	7314.9	73.2	259.0	332.1	29	2234.8	22.4	309.8	332.1
12	7055.9	70.6	261.6	332.1	30	1925.0	19.3	312.9	332.1
13	6794.3	67.9	264.2	332.1	31	1612.2	16.1	316.0	332.1
14	6530.1	65.3	266.8	332.1	32	1296.1	13.0	319.2	332.1
15	6263.3	62.6	269.5	332.1	33	977.0	9.8	322.4	332.1
16	5993.8	59.9	272.2	332.1	34	654.6	6.6	325.6	332.1
17	5721.6	57.2	274.9	332.1	35	329.0	3.3	328.9	332.1
18	5446.6	54.5	277.7	332.1	36	0.1	$\leftarrow \approx 0$		

Overview

Introduction

Annuities

Bonds

Duration

Immunization

Bonds as examples of fixed income securities

- A bond pays its principal (also known as face value or par value) on its maturity date
- E.g. pay a face value of $1000 €$ on 1.1.2029
- Most bonds pay periodic interest payments (also known as coupon payments)
- Coupon rate defined as a percentage of face value
- E.g., coupon rate 9% p.a. \Rightarrow receive $90 €$ on every 1st of January until 1.1.2029
- Coupon rate of a par bond (issue price $=$ face value) is close to the prevailing interest rate when the bond is issued
\rightarrow If the bond is issued at a discount (issue price is less than face value), then the coupon rate can be less
- Price appreciation to maturity generates further return to the investor
- Originally, actual coupons were attached to printed bond certificates

Bond yield

- Yield (To Maturity)(YTM) = Internal rate of return (IRR) of a bond per annum (p.a.) at its current price
(i) Face value F
(ii) m coupon payments p.a., each payment C / m
(iii) n periods (payments) left to maturity
- If the current price is $P \Rightarrow$, then YTM is the rate λ such that

$$
\begin{aligned}
& P=\frac{F}{[1+(\lambda / m)]^{n}}+\underbrace{\sum_{k=1}^{n} \frac{C / m}{[1+(\lambda / m)]^{k}}}_{\text {Finite life stream }} \\
\Rightarrow & P=\frac{F}{[1+(\lambda / m)]^{n}}+\frac{C}{\lambda}\left(1-\frac{1}{[1+(\lambda / m)]^{n}}\right)
\end{aligned}
$$

The formula is best understood if you substitute $r=\lambda / m$ as the periodic (e.g. monthly) IRR, and then obtain an annualized rate (= YTM) by linear annualization $\lambda=r m$.

Bond yield

- As with IRR in general, YTM (λ) is computed numerically
- Accrued interest (AI) tells how much interest the bond has accrued since the last coupon payment
\rightarrow Linear interpolation:

$$
A I=\frac{\text { Days since last coupon }}{\text { Days in period }} \times \text { Coupon payment }
$$

- Consider a bond which has face value $1000 €$, coupon rate 9% with coupon payments every Feb 15 and Aug 15.
- If this bond is bought on May 5, there are 83 days since last coupon payment and 99 days until next payment
- $A I=\frac{83}{83+99} \times \frac{9 \%}{2} \times 1000 €=20.52 €$

Example of bond quotes

U.S. Treasury Quotes Wednesday, January 13, 2016

Treasury Notes \& Bonds

Maturity	Coupon	Bid	Asked	Chg	Asked yield
1/31/2020	1.250	99.45	99.47	0.0469	1.385
1/31/2020	1.375	99.93	99.95	0.0234	1.389
2/15/2020	3.625	108.82	108.84	0.0391	1.393
2/15/2020	8.500	128.23	128.25	0.0547	1.369
2/29/2020	1.250	99.38	99.39	0.0703	1.402
2/29/2020	1.375	99.91	99.93	0.0938	1.393
3/31/2020	1.125	98.84	98.85	0.1250	1.407
3/31/2020	1.375	99.82	99.84	0.0859	1.415
4/30/2020	1.125	98.80	98.81	0.1094	1.411
4/30/2020	1.375	99.76	99.77	0.0703	1.429
5/15/2020	3.500	108.56	108.58	0.0703	1.451
5/15/2020	8.750	130.61	130.63	0.1094	1.437
5/31/2020	1.375	99.66	99.68	0.1172	1.451

Coupon: Annual rate (\%)
Ask and bid prices: \% of face value
Chg: Daily change in asked price
Asked yield: yield to maturity at asked price

Price-yield curve

Price-yield curve

Price-yield curve

- Yield $\lambda=0$ if and only if the price equals the total cash flow, that is, $P=F+n C / m$
- Yield λ equals the coupon rate if and only if price $P=$ face value F
- If the yield λ increases, the price P of bonds with small coupon rates decline more than the price of bonds with high coupon rates
- The bigger early coupon payments are less affected by the rising interest rates
- For bonds of longer maturity, the price-yield curve is steeper

Steeper curve \Longleftrightarrow bond prices are more sensitive to the interest rate

Overview

Introduction

Bonds

Duration

Immunization

Duration

- Consider the cash flow stream $\left(c_{0}, c_{1}, \ldots, c_{n}\right)$ which gives c_{i} at time $t_{i}, i=0, \ldots, n$
- The duration of this cash flow stream is

$$
D=\frac{P V\left(t_{0}\right) t_{0}+P V\left(t_{1}\right) t_{1}+\cdots+P V\left(t_{n}\right) t_{n}}{P V},
$$

where $P V\left(t_{i}\right), i=0,1, \ldots, n$ is the present value of c_{i} and $P V=P V\left(t_{0}\right)+\cdots+P V\left(t_{n}\right)$

- This is the PV weighted average of the payment times $t_{0}, t_{1}, \ldots, t_{n}$ of the cash flow stream $\left(c_{0}, c_{1}, \ldots, c_{n}\right)$
- i-th weight $=$ share of the $P V\left(t_{i}\right)$ out of the total $P V$
- By definition, these weights add up to one

Duration

- Duration is a measure of the bond's 'average' maturity
- If there are no coupons, then duration = maturity
- If there are coupons, then duration < maturity
- For two bonds with the same total cash flow (i.e., coupons + face value), the duration is shorter for the one with higher coupon rate

Macaulay duration

- What interest rate r should one use when computing duration?
- Macaulay duration: $r=$ YTM

$$
\begin{aligned}
\Rightarrow \quad D & =\frac{\sum_{k=1}^{n} \frac{k}{m} \frac{c_{k}}{\left(1+\frac{\lambda}{m}\right)^{k}}}{P V}, \text { where } \\
P V & =\sum_{k=1}^{n} \frac{c_{k}}{\left(1+\frac{\lambda}{m}\right)^{k}}
\end{aligned}
$$

- For bonds (derived in exercises)

$$
\begin{aligned}
& \quad D=\frac{1+y}{m y}-\frac{1+y+n(c-y)}{m c\left[(1+y)^{n}-1\right]+m y}, \text { where } \\
& m=\text { periods per year } \quad n=\mathrm{nr} \text { of periods left } \\
& y=\lambda / m=\text { yield per period } \quad c=\text { coupon rate }
\end{aligned}
$$

Modified duration

- The present value of cash flow c_{k} is

$$
\begin{aligned}
P V_{k} & =\frac{c_{k}}{[1+(\lambda / m)]^{k}} \\
\Rightarrow \frac{d P V_{k}}{d \lambda} & =-\frac{(k / m) c_{k}}{[1+(\lambda / m)]^{k+1}}=-\frac{(k / m) P V_{k}}{1+(\lambda / m)}
\end{aligned}
$$

- The price sensitivity of a bond is

$$
\begin{aligned}
P & =\sum_{k=1}^{n} P V_{k} \\
\Rightarrow \frac{d P}{d \lambda} & =\sum_{k=1}^{n}-\frac{(k / m) P V_{k}}{1+(\lambda / m)}=-\frac{1}{1+(\lambda / m)} \frac{\sum_{k=1}^{n}(k / m) P V_{k}}{P} P \\
\Rightarrow \frac{d P}{d \lambda} & =-\frac{1}{1+(\lambda / m)} D P=-D_{M} P
\end{aligned}
$$

where D_{M} is the modified duration $D_{M}=D /[1+(\lambda / m)]$

Applying modified duration

- Consider a bond such that
- Maturity 30 y , no coupons (i.e., coupon rate 0%)
- Assume that interest rates rise from 10% to 11%

$$
\lambda \rightarrow \lambda+\Delta \lambda, \quad \lambda=0.1, \Delta \lambda=0.01
$$

- No coupons $\Rightarrow D=$ Maturity $\Rightarrow D_{M}=30 /[1+0.1] \approx 27.27$
- Linear approximation:

$$
\begin{aligned}
& \Delta P \approx-D_{M} P \Delta \lambda \\
\Rightarrow & \frac{\Delta P}{P} \approx-D_{M} \Delta \lambda=-27.27 \times 0.01=-27.27 \%
\end{aligned}
$$

- Price approx. sinks by 27% if the interest rate rises by 1%

The actual price drop when yield changes from 10% to 11% is 23.78%. For smaller changes the approximation is more accurate: For 0.1% change, the drop is 2.689% and for 0.01% change, 0.2723%.

Application of modified duration

- Consider another bond with
- Maturity 30 y , coupon rate $10 \%, 2$ coupons per year
- Price $=$ face value, i.e., YTM is 10%
- Macaulay duration

$$
D=9.938 \Rightarrow D_{M}=9.938 /[1+(0.1 / 2)] \approx 9.47
$$

- Price change

$$
\frac{\Delta P}{P} \approx-D_{M} \Delta \lambda=-9.47 \times 0.01=-9.47 \%
$$

\Rightarrow The relatively decline in price is now much less because of the coupon payments

The actual price drop when yield changes from 10% to 11% is 8.72%. For smaller changes the approximation is more accurate: For 0.1% change, the drop is 0.9386% and for 0.01% change, 0.09457%.

Duration of a portfolio

- Portfolio of bonds $=$ a collection consisting of a set of m bonds
- Price $P=P_{1}+P_{2}+\cdots P_{m}$
- $P_{i}=$ price of bond $i=1,2, \ldots, m$

Theorem

(Duration of a portfolio) Suppose there are m fixed-income securities with prices and durations of P_{i} and D_{i}, respectively, $i=1,2, \ldots, m$, all computed using the same yield. Then the price P and duration D of the portfolio consisting of the aggregate of these securities are

$$
\begin{aligned}
& P=P_{1}+P_{2}+\cdots+P_{m} \\
& D=w_{1} D_{1}+w_{2} D_{2}+\cdots+w_{m} D_{m},
\end{aligned}
$$

where $w_{i}=P_{i} / P, i=1,2, \ldots, m$

Duration of a portfolio

- Proof. Outline for the case of two securities A and B :

$$
\begin{aligned}
D^{A+B} & =\sum_{k=0}^{n} \frac{P V_{k}^{A+B} t_{k}}{P^{A+B}} \\
D^{A} & =\sum_{k=0}^{n} \frac{P V_{k}^{A} t_{k}}{P^{A}} \\
D^{B} & =\sum_{k=0}^{n} \frac{P V_{k}^{B} t_{k}}{P^{B}} \\
\Rightarrow P^{A} D^{A}+P^{B} D^{B} & =\sum_{k=0}^{n} t_{k}\left(P V_{k}^{A}+P V_{k}^{B}\right)
\end{aligned}
$$

Duration of a portfolio

- Divide both sides of equation by $P=P^{A+B}=P^{A}+P^{B}$

$$
\begin{aligned}
\Rightarrow \frac{P^{A} D^{A}+P^{B} D^{B}}{P} & =\frac{\sum_{k=0}^{n} t_{k}\left(P V_{k}^{A}+P V_{k}^{B}\right)}{P}=D \\
\Rightarrow D & =\frac{P^{A}}{P} D^{A}+\frac{P^{B}}{P} D^{B}
\end{aligned}
$$

- By definition, duration of a portfolio of A and B is

$$
D^{A+B}=\sum_{k=0}^{n} \frac{t_{k} P V_{k}^{A+B}}{P^{A+B}}=\sum_{k=0}^{n} \frac{t_{k} P V_{k}^{A+B}}{P}
$$

- Thus, $P V_{k}^{A+B}=P V_{k}^{A}+P V_{k}^{B}$ implies $D^{A+B}=D$
- Holds when payments from A and B are discounted with the same rate for each period k, assuming the same yield
- This assumption of identical interest rates does not hold for Macaulay duration which uses YTM for each bond

Overview

Introduction

Annuities

Bonds Duration

Immunization

Aalto University

Immunization

- Immunization is the development of an investment strategy when:
- An investor has a liability stream (a cash flow stream the investor has to pay) that is sensitive to interest rates
- He or she wants to construct an investment portfolio to match this liability stream both in terms of
\Rightarrow present value and
\Rightarrow interest rate sensitivity
- The combination of the portfolio and the liability stream is insensitive (immune) to (small) interest rate changes
- If an investor wants to immunize a bond portfolio, then he or she may have to short other bonds, which may be difficult or expensive in practice

Immunization

- Principle: Buy a portfolio of equal NPV whose interest rate sensitivity is the same as that of the liability stream being immunized
- If there are zero coupon bonds with many enough maturities, then perfect matching of cash flows is possible
- Would match interest rate sensitivities exactly
- This is difficult, however, because zero coupon bonds are rare and there may be no bonds whose maturities coincide with those of the cash flows of the portfolio
- The other method is to use duration
- First-order (i.e., first derivative) approximation of interest rate sensitivity

Immunization

- Task: Immunize a liability stream with duration D and price P
- Bonds A and B available for immunization
- Buy A and B for total amount V_{A} and V_{B} (unit price times units bought) such that

$$
\begin{aligned}
P & =V_{A}+V_{B} \\
D & =w_{A} D_{A}+w_{B} D_{B}, \text { where } \\
w_{i} & =\frac{V_{i}}{P}, i=A, B
\end{aligned}
$$

- In practice, more than two bonds would used
- Helps diversify risk (of default)
- Leads to more variables than equations \Rightarrow there can be many solutions

Example: Immunization

- A company is liable to pay 1 million $€$ in 10 years
\Rightarrow No coupons \Rightarrow Duration 10 y
- Immunize using the following three bonds whose face value is $100 €$ and which pay two coupons per year

Bond	Coupon rate	Maturity (y)	Price (€)	YTM	Duration (y)
1	6%	30	69	9%	11.44
2	11%	10	113	9%	6.54
3	9%	20	100	9%	9.61

- The PV of the liability at the prevailing rate is

$$
P=\frac{1000000 €}{[1+(0.09 / 2)]^{20}} \approx 414634 €
$$

Example: Immunization

- If we use bonds $1 \& 2$

$$
\begin{aligned}
& \begin{cases}P & =V_{1}+V_{2} \\
D & =\frac{V_{1}}{P} D_{1}+\frac{V_{2}}{P} D_{2}=10\end{cases} \\
& \Rightarrow \begin{cases}V_{1} & =P \frac{D-D_{1}}{D_{1}-D_{2}} \approx 292788 \\
V_{2} & =P \frac{D_{1}-D}{D_{1}-D_{2}} \approx 121854\end{cases} \\
& \Rightarrow \begin{cases}\frac{V_{1}}{P_{1}} & =\frac{292}{} 788 \\
\frac{V_{2}}{P_{2}} & =\frac{121854}{113}=\mathbf{4} 41 \text { units of bond } \# \mathbf{1}\end{cases}
\end{aligned}
$$

Example: Immunization

- If we use bonds $2 \& 3$
- No solution with positive amounts of bonds (weighted average of $D_{2}=6.54$ and $D_{3}=9.61$ less than $D=10$ with all positive weights)

$$
\left.\begin{array}{rl}
& \left\{\begin{array}{l}
V_{2}=P \frac{D_{3}-D}{D_{3}-D_{2}} \approx-52575 \\
V_{3}
\end{array}=P-V_{2} \approx 467317\right.
\end{array}\right] \begin{array}{ll}
\frac{V_{2}}{P_{2}} & =-\frac{52575}{113}=\text { sell short } 465 \text { units of bond \# } 2 \\
\frac{V_{3}}{P_{3}} & =\frac{467317}{100}=\text { purchase } 4673 \text { units of bond \# } 3
\end{array}
$$

Example: Immunization

		Percent yield		
		9.0	8.0	10.0
Bond 1	Price	69.04	77.38	62.14
	Shares	4241.00	4241.00	4241.00
	Value	292798.64	328168.58	263535.74
Bond 2	Price	113.01	120.39	106.23
	Shares	1078.00	1078.00	1078.00
	Value	121824.78	129780.42	114515.94
Obligation	Value	414642.86	456386.95	376889.48
Surplus		-19.44	1562.05	1162.20

Overview

Introduction

Annuities

Bonds Duration

Immunization

Links

Aalto University

Links

- Bloomberg bond rates
- Statistics on the Finnish central government debt
- Information on credit ratings
- Credit ratings of Finland
- Euro area yield curves
- Russia government bonds
- 10-year government bond spreads
- Debt structure of Stora Enso
- S\&P credit rating of Stora Enso
- List of sovereign debt crises
- List of stock market crashes and bear markets

Overview

Introduction

Annuities

Bonds

Duration

Immunization

Links

