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1 Introduction
In this course, we have studied cash flows focused mostly on the premises of fixed-income securities (e.g. bonds).

However, there are high levels of uncertainty in future cash flows and market prices. In this lecture, we are looking into
portfolio choice under uncertainty under the framework of Harry Markowitz (Nobel prize winner in 1952).

2 Random returns
Considering the following scenario: a fixed amount X0 were invested at the present moment, generating a return X1

after a year. In theory, the returned amount can be calculated by interest rates. In practice, a series of unpredictable
factors can influence the returned amount. Therefore, it is called random amount. In this case, the total return and
return rate can be calculated as:

R = X1

X0
(1)

r = X1 − X0

X0
(2)

Thus, the return and future value can be measured as:

r = X1 − X0

X0
(3)

X1 = (1 + r)X0 (4)
In this context, the term return refers to the absolute amount between original investment and final payment (X1−X0,

although some authors may refer to the return as the shorthand for the rate of return.

Another useful definition is short shelling (or shorting), which refers to selling an asset one does not own. In order to
do this, one can borrow the asset from someone who owns it (=has a long position) (e.g., brokerage firm) and sell it
for, say, X0. At the end of the borrowing period, one must buy the asset from the market for X1 to return it (plus the
dividends the stock may have paid) to the original owner.

In practice, the borrower has to pay a borrowing cost to the lender. A typical borrowing cost for shares of European
stocks for an institutional investor is 0.35% (+ dividends paid). Depending on the contract, the lender can call back
the asset from the borrower.

In this type of financial transaction, four components are vital to understand it correctly:

• Profit or loss made from the transaction (e.g. the difference between X0 and X1 after the borrowing period;

• Consequences related to X0: extended budget in X0 are not considered part of profit or loss, and it can be used as
collateral for the asset loan (belonging to the borrower);

• Dividends (or coupons) by during the shorting: it should compensate the lender for the shorting, although they are
not directly paid or owned by any party involved and contributes to the final payment;

• Margin or fee of compensation to the lender.

In this scenario, the cost of borrowing accommodates for margin and dividends. If the margin and dividends paid
during borrowing are zero, the profit/loss from the transaction is X0 − X1, but it does not account for what was done
with X0 received in the beginning – it is treated just as an expansion of the budget. If the asset value declines (resulting
in X1 ≤ X0, shorting offers a profit (considering the difference between those greater than zero). On the other hand,
with an increase in the asset value, the difference becomes negative and loss is perceived. Due to volatility, there is no
guarantee of how large those losses (or profits) can be.

When a portfolio of assets is available, shorting can also be assessed. Considering, X0i as the investment in the i-th
asset (negative when shorting), then:

X0 =
n∑

i=1
X0i (5)
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Where X0 is the total investment, for each investment, there is a weight associated with it (based on its importance
or relevance to the investor). Those are calculated as:

wi = X0i

X0
⇒

n∑
i=1

wi =
n∑

i=1

X0i∑n
j=1 X0j

= 1 (6)

For each investment, X1i represents the cash flow from investment at the end of the period, which is the associated
return Ri = 1 + ri.

Finally, the portfolio return can be calculated as:

R =
∑n

i=1 X1i

X0
=
∑n

i=1 RiX0i

X0
=
∑n

i=1 RiwiX0

X0
=

n∑
i=1

wiRi

⇒ 1 + r =
n∑

i=1
wi(1 + ri) = 1 +

n∑
i=1

wiri ⇒ r =
n∑

i=1
wiri

Before introducing random variables, a few concepts should be established. Starting with the expected value (E[x]),
which is the mean (or average) outcome of a random variable. For a finite number of realizations xi with probabilities
pi, i = 1, 2, . . . , n:

E[x] =
n∑

i=1
pixi = x̄

Similarly, the variance is the expected value of the squared deviation from the mean x̄. It measures the deviation
around the expected value:

σ2 = V ar[x] = E[(x − x̄)2]
= E[x2 − 2xx̄ + x̄2]
= E[x2] − 2E[x]x̄ + x̄2

⇒ σ2 = V ar[x] = E[x2] − E[x]2

A third value is the covariance, which is the expected product of deviations from the respective means of two random
variables x1, x2:

σ12 = Cov[x1, x2] = E[(x1 − x̄1)(x2 − x̄2)]
= E[x1x2 − x1x̄2 − x̄1x2 + x̄1x̄2]
= E[x1x2] − E[x1]x̄2 − x̄1E[x2] + x̄1x̄2

⇒ σ12 = Cov[x1, x2] = E[x1x2] − E[x1]E[x2]

Therefore, covariance and variance are closely related, such that:

σ2
1 = V ar[x1] = Cov[x1, x1] = σ11

Also, the covariance coefficient measures the strength of the linear relationship of two random variables:

ρ12 = Corr[x1, x2] = σ12

σ1σ2

Cov[x1, x2]√
V ar[x1]

√
V ar[x2]

The following conclusion can be established with this coefficient:

• No correlation ⇔ ρ12 = 0 ⇔ σ12 = 0
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• Positive correlation ⇔ ρ12 > 0

• Negative correlation ⇔ ρ12 < 0

• Perfect correlation ⇔ ρ12 = ±1

|ρ12| ≤ 1 ⇔ |σ12| ≤ σ1σ2

Variance can also be measured for a combination of random variables, such that:

σ2
a1x1+a2x2

= V ar[a1x1 + a2x2]
= a2

1V ar[x1] + a2
2V ar[x2] + 2a1a2Cov[x1, x2]

More generally, the variance of a linear combination of random variables x1, x2, . . . , xn is:

σ2∑n

i=1
aixi

= V ar

[
n∑

i=1
aixi

]

=
n∑

i=1

n∑
j=1

aiajCov[xi, xj ] =
n∑

i=1

n∑
j=1

aiajσij

3 Portfolio mean and variance
For a particular portfolio, the expected value and variance are calculated as follows:

r =
n∑

i=1
wiri

⇒ E[r] =
n∑

i=1
wiE[ri] =

n∑
i=1

wir̄i

σ2 = V ar

[
n∑

i=1
wiri

]

⇒ σ2 =
n∑

i=1

n∑
j=1

wiwjCov[ri, rj ] =
n∑

i=1

n∑
j=1

wiwjσij

Investing in several assets tends to lower portfolio variance due to two main reasons: deviations from the means tend
to average out, and with more variants, less likely to experience misfortune in all of them ("divide your portion to seven,
or even to eight, for you do not know what misfortune may occur on the earth" The Bible, Ecclesiastes 11:2 ). For a
scenario, where an equal investment in processed n assets generates the following expected return m, variance σ2, and
uncorrelated returns (σij = 0, i ̸= j):

r̄ =
n∑

i=1
wir̄i =

n∑
i=1

1
n

m = m

V ar[r] =
n∑

i=1

n∑
j=1

wiwjσij =
n∑

i=1
w2

i σii =
n∑

i=1

1
n2 σ2 = 1

n
σ2

⇒ lim
n→∞

V ar[r] = lim
n→∞

1
n

σ2 = 0

No variation, yet the expected return is the same. With higher uncorrelated assets, the variance cannot be reduced
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to zero. For example, with σij = 0.3σ2, i ̸= j, we have:

V ar[r] =
n∑

i=1

n∑
j=1

wiwjσij =
n∑

i=1

1
n2 σii +

n∑
i=1

n∑
j=1
j ̸=i

1
n2 σij

= 1
n

σ2 + n(n − 1) 1
n2 0.3σ2 =

(
0.7 1

n
+ 0.3

)
σ2

⇒ lim
n→∞

V ar[r] = lim
n→∞

(
0.7 1

n
+ 0.3

)
σ2 = 0.3σ2

The mean-standard variance diagram can be used to understand the best combination between different assets. The
yellow area corresponds to the set of all possible (σ,E[r]) that can be obtained from portfolios such that wi ≥ 0,

∑n
i=1 wi =

1, while blue area = As above but with shorting allowed (wi’s, i = 1, 2, 3, can be negative as well).
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Asset 3

From this curve, the efficient frontier can be established as a curve above (and including) green points (minimum vari-
ance point (minimum variance attainable using assets 1, 2 and 3). Those points are part of the green curve, representing
the minimum variance set.
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4 Markowitz model
The core idea of this model is to minimise the covariance between projects subject to a combined expected return

that matches the efficient frontier r̄. Such a model can be summarized as:

min
w

1
2

n∑
i=1

n∑
j=1

wiwjσij

s.t.
n∑

i=1
wir̄i = r̄

n∑
i=1

wi = 1

By using Lagrange multipliers:

L = 1
2

n∑
i=1

n∑
j=1

wiwjσij − λ

(
n∑

i=1
wir̄i − r̄

)
− µ

(
n∑

i=1
wi − 1

)
Equations of the efficient set are solved by setting the partial derivatives of L to zero:

∂

∂wi
L =

n∑
j=1

wjσij − λr̄i − µ = 0, ∀i = 1, 2, . . . , n

∂

∂λ
L =

n∑
i=1

wir̄i − r̄ = 0

∂

∂µ
L =

n∑
i=1

wi − 1 = 0

5 Two-fund theorem
Starting with the theorem itself:

Theorem 5.1. Two-fund theorem
Given any two efficient funds (portfolios) with different expected returns, it is possible to duplicate any other efficient
portfolio in terms of its mean and variance properties as a combination.

Proof : Let w1 and w2 be efficient portfolios with expected returns r̄1 and r̄2 and corresponding Lagrange multipliers
λ1, µ1 and λ2, µ2. Construct the portfolio wα = αw1 + (1 − α)w2, α ∈ R (linear combination of initial portfolios).

• Weights in wα sum to 1;

• The expected return of wα is r̄ = αr̄1 + (1 − α)r̄2;

• If r̄1 ̸= r̄2, then any r̄ can be obtained by choosing a suitable α (this α may be negative).

In order to check if wα is efficient, we first look at the optimality conditions:

∂

∂wi
L =

n∑
j=1

wjσij − λr̄i − µ = 0, ∀i = 1, 2, . . . , n

∂

∂λ
L =

n∑
i=1

wir̄i − r̄ = 0

∂

∂µ
L =

n∑
i=1

wi − 1 = 0
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By assumption, (wi, λi, µi), i = 1, 2 satisfies these with r̄ = r̄i. However, there is no guarantee that the the point
(wα, λα, µα) = α(w1, λ1, µ1) + (1 − α)(w2, λ2, µ2) also satisfy the optimality conditions.

The last two equations imply that the sum of the weights could be equal to 1, and the combination of the expected
return is equal to the total return (considering its respective weights). Replacing those components into the first equation
results in:

∂

∂wα
i

Lα =
n∑

j=1
wα

j σij − λαr̄i − µα = 0, ∀i = 1, 2, . . . , n

Substituting for the definition of (wα, λα, µα) we get:

n∑
j=1

(
αw1

j + (1 − α)w2
j

)
σij −

(
αλ1 + (1 − α)λ2) r̄i

−
(
αµ1 + (1 − α)µ2) = 0

Rearranging the terms with α and (1 − α) together, the left-hand side of the equation can be expressed as:

∂

∂wα
i

Lα = α
∂

∂w1
i

L1 + (1 − α) ∂

∂w2
i

L2

We can finally conclude that the optimality conditions are satisfied with the final equation.

• ∂
∂wα

i
Lα is equal to zero, because we know that ∂

∂w1
i
L1 and ∂

∂w2
i
L2 are zero;

6 One-fund theorem
So far, all calculations assumed that risk was involved. However, there is a category of investments that are risk-free.

In such:
• Return rf and variance σ2

f = 0;

• Unlimited lending and borrowing are possible at the risk-free rate rf .

Considering the 1 − α investment in a portfolio of risky assets A with expected return r̄A and variance σ2
A, and the

share α in the risk-free asset.

The expected return is:

r̄α = αrf + (1 − α)r̄A

The standard deviation is:

σα =
√

(1 − α)2σ2
A = (1 − α)σA

In this case, the following theorem can be established:

Theorem 6.1. One-fund theorem
When there is a risk-free asset, there is a single fund F of risky assets such that any efficient portfolio can be
constructed as a combination of the fund F and the risk-free asset.

Proof :
• (σα, r̄α) forms a line in σ-r̄-space as a function of α

• (σα, r̄α) should be selected so that the line is as steep as possible, i.e., its slope k = (r̄α − rf )/σα is at maximum
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⇒ max
w

∑n
i=1 wi(r̄i − rf )√∑n
i=1
∑n

j=1 wiwjσij

Let S =
∑n

i=1 wi. We need not constrain S to 1 since S will cancel out from the above expression, which makes
solving the problem easier.

The corresponding frontier can be visualized below:
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F

Standard deviation 𝜎

Where the green point represents the portfolio that maximizes the slope k of the line r̄ = rf + kσ from (σα, r̄α)
through the feasible set.

In order to determine this portfolio, we can observe the optimal value of the equation in Theorem 6.1. At optimum,
the partial derivative of the slope concerning each weight wk is zero:

0 = ∂

∂wk

∑n
i=1 wi(r̄i − rf )√∑n
i=1
∑n

j=1 wiwjσij

, k = 1, 2, . . . , n

0 = r̄k − rf√∑n
i=1
∑n

j=1 wiwjσij

− 1
2

∑n
i=1 wi(r̄i − rf )(√∑n

i=1
∑n

j=1 wiwjσij

)3 2
n∑

i=1
wiσik

⇒r̄k − rf =
∑n

i=1 wi(r̄i − rf )∑n
i=1
∑n

j=1 wiwjσij

n∑
i=1

wiσik, k = 1, 2, . . . , n

Note that each partial derivative equation has the same term at the beginning of the right-hand side (independent of
the wk used to take the derivative). Let us denote this term by λ(w):

λ(w) =
∑n

i=1 wi(r̄i − rf )∑n
i=1
∑n

j=1 wiwjσij

The partial derivative equation for each wk can now be written as:

r̄k − rf = λ(w)
n∑

i=1
wiσik, k = 1, 2, . . . , n

Instead of solving the resulting system of equations, a new variable can be introduced and replaced in the new system.
Let vk be a new variable represent a function of wi, i = 1, ..., n as:

vk = λ(w)wk = wk

∑n
i=1 wi(r̄i − rf )∑n

i=1
∑n

j=1 wiwjσij

With the new variables vk, the partial differential equations become:
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r̄k − rf =
n∑

i=1
viσik, k = 1, 2, . . . , n

The resulting system of equation is now solvable in vk, which allows to compute the optimal wk:

vk = λ(w)wk

Note that vk satisfy:
n∑

i=1
vi = λ(w)

n∑
i=1

wi = λ(w)

Thus, we can solve wk from known vk by normalization:

vk∑n
i=1 vi

= λ(w)wk

λ(w) = wk, k = 1, 2, . . . , n
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