

MS-E2114 Investment Science Lecture V: Mean-variance portfolio theory

Fernando Dias (based on previous version by Prof. Ahti Salo)

Department of Mathematics and System Analysis Aalto University, School of Science

September 3, 2023

Overview

Random returns

Portfolio mean and variance

Markowitz model

Two-fund theorem

One-fund theorem

This lecture

- So far, we have analyzed cash flows under certainty
 - Most emphasis has been on fixed income securities
 - Credit risks have not been explicitly addressed
 - ► Market price volatility (=variability) has not been addressed
- Yet future cash flows and market prices of most investments are uncertain
 - Stock prices, dividends, real property values, etc.
 - Also the length of the period for which capital is tied can be uncertain
- We cover the Nobel prize framework of Harry Markowitz for portfolio choice under uncertainty
 - Markowitz H. (1952). Portfolio selection, *Journal of Finance* vol. 7, pp. 77-91.
 - Link to Markowitz on the Nobel Prize website
 - Link to Markowitz' Nobel Prize lecture

Overview

Random returns

Portfolio mean and variance

Markowitz model

Two-fund theorem

One-fund theorem

Random returns

- Assume that you invest a fixed amount X_0 now and receive the (random) amount X_1 a year later
- - ► Thus R = 1 + r and $X_1 = (1 + r)X_0$
- $ightharpoonup X_1$ is random $\Rightarrow r$ is random, too
 - If $X_1 < X_0$, then r will be negative
- ▶ The term *return* normally refers to $X_1 X_0$
 - ► An absolute sum of money in relevant currency (e.g., €)
 - Sometimes *return* is a shorthand for the rate of return (which is a percentage)

- ► Short selling or shorting = Selling an asset that one does not own
- To short an asset, one can borrow the asset from someone who owns it (=has a **long position**) (e.g., brokerage firm) and sell it for, say, X_0
- By the end of borrowing period, one has to buy the asset from the market for X_1 to return it (plus the dividends the stock may have paid during the period) to the original owner
- In practice, the borrower has to pay a borrowing cost to the lender
 - A typical borrowing cost for shares of European stocks for an institutional investor is 0.35% (+ dividends paid)
 - Depending on the contract, the lender can call back the asset from the borrower

- ► There are four components in a shorting transaction
 - 1. Profit or loss from buying the asset back at X_1 at the end of borrowing period: $(X_0 - X_1)$
 - 2. What happens with X_0 you gained at start?
 - \triangleright X_0 expands your budget for uses such as investing in other stocks
 - What happens with this extended budget is not here considered a part of profit/loss of shorting, even though one can invest e.g. at the risk-free asset
 - \triangleright At times, cash X_0 may be used as collateral for the asset loan (interest here belongs to the borrower)
 - 3. Dividends / coupons paid by the asset during shorting
 - Must be compensated to the lender in shorting
 - Neither the lender nor the borrower receives them, because the asset has been sold
 - Dividends and coupons can be treated as a part of asset return, hence the profit impact will be the same
 - Margin / fee to compensate the lender

- Cost of borrowing equals a margin + dividends / coupons actually paid during the borrowing period
- ▶ If the margin and dividends / coupons paid during borrowing are zero, the profit/loss from the transaction is $X_0 X_1$
- This does not account for what was done with X_0 received in the beginning it is treated just as an expansion of the budget

- If the asset value declines to $X_1 < X_0$, shorting gives a <u>profit</u> $X_0 X_1 > 0$
- ▶ If the asset value increases to $X_1 > X_0$, the difference $X_0 X_1$ will be negative and shorting leads to a <u>loss</u> of $X_1 X_0$
- ▶ Because prices can increase arbitrarily, losses can become very large ⇒ Shorting can be very risky and is therefore prohibited by some institutions

► Total return for a short position: Receive $-X_0$ and pay $-X_1$

$$\Rightarrow R = \frac{-X_1}{-X_0} = \frac{X_1}{X_0} = 1 + r$$

- ► This is same as for the long position
- ▶ Initial position $X_0 < 0$ of asset \Rightarrow profit rX_0
 - ightharpoonup Allows one to bet on declining asset values (r < 0)
 - ► Short 100 stock and sell them for $X_0 = 1000 \in$. If price declines by 10% and you buy the stock back for $900 \in$, and you obtain a profit of $100 \in$

$$r = \frac{X_1 - X_0}{X_0} = \frac{-900 - (-1\ 000)}{-1\ 000} = -0.1$$
$$X_1 - X_0 = rX_0 = -0.1 \cdot (-1\ 000) = 100$$

Portfolio return

- Portfolio of *n* assets
 - $ightharpoonup X_{0i} = \text{investment in the } i\text{-th asset (negative when shorting)}$
 - $X_0 = \sum_{i=1}^n X_{0i} = \text{total investment}$
 - Weight of the *i*-th asset i $w_i = \frac{X_{0i}}{X_0} \Rightarrow \sum_{i=1}^n w_i = \sum_{i=1}^n \frac{X_{0i}}{\sum_{j=1}^n X_{0j}} = 1$
 - $ightharpoonup X_{1i}$ = cash flow from investment at the end of the period
 - Total return of *i*-th asset $R_i = 1 + r_i$
- Portfolio return

$$R = \frac{\sum_{i=1}^{n} X_{1i}}{X_0} = \frac{\sum_{i=1}^{n} R_i X_{0i}}{X_0} = \frac{\sum_{i=1}^{n} R_i w_i X_0}{X_0} = \sum_{i=1}^{n} w_i R_i$$

$$\Rightarrow 1 + r = \sum_{i=1}^{n} w_i (1 + r_i) = 1 + \sum_{i=1}^{n} w_i r_i$$

$$\Rightarrow r = \sum_{i=1}^{n} w_i r_i$$

- Expected value $\mathbb{E}[x]$ is the mean ('average') outcome of a random variable
 - For a finite number of realizations x_i with probabilities $p_i, i = 1, 2, ..., n$,

$$\mathbb{E}[x] = \sum_{i=1}^{n} p_i x_i = \bar{x}$$

Variance Var[x] is the expected value of the squared deviation from the mean \bar{x}

$$\begin{split} \sigma^2 &= \mathsf{Var}[x] = \mathbb{E}[(x-\bar{x})^2] \\ &= \mathbb{E}[x^2 - 2x\bar{x} + \bar{x}^2] \\ &= \mathbb{E}[x^2] - 2\,\mathbb{E}[x]\bar{x} + \bar{x}^2 \\ \Rightarrow \sigma^2 &= \mathsf{Var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 \end{split}$$

▶ Standard deviation is the expected deviation from the mean

$$\sigma = \mathsf{Std}[x] = \sqrt{\mathsf{Var}[x]}$$

Covariance $Cov[x_1, x_2]$ is the expected product of deviations from the respective means of two random variables x_1, x_2

$$\sigma_{12} = \mathsf{Cov}[x_1, x_2] = \mathbb{E}[(x_1 - \bar{x}_1)(x_2 - \bar{x}_2)]$$

$$= \mathbb{E}[x_1 x_2 - x_1 \bar{x}_2 - \bar{x}_1 x_2 + \bar{x}_1 \bar{x}_2]$$

$$= \mathbb{E}[x_1 x_2] - \mathbb{E}[x_1] \bar{x}_2 - \bar{x}_1 \mathbb{E}[x_2] + \bar{x}_1 \bar{x}_2$$

$$\Rightarrow \sigma_{12} = \mathsf{Cov}[x_1, x_2] = \mathbb{E}[x_1 x_2] - \mathbb{E}[x_1] \mathbb{E}[x_2]$$

Covariance and variance closely related

$$\sigma_1^2 = \mathsf{Var}[x_1] = \mathsf{Cov}[x_1, x_1] = \sigma_{11}$$

Correlation coefficient $Corr[x_1, x_2]$ measures the strength of the linear relationship of two random variables

$$\rho_{12} = \operatorname{Corr}[x_1, x_2] = \frac{\sigma_{12}}{\sigma_1 \sigma_2} \frac{\operatorname{Cov}[x_1, x_2]}{\sqrt{\operatorname{Var}[x_1]} \sqrt{\operatorname{Var}[x_2]}}$$

- No correlation $\Leftrightarrow \rho_{12} = 0 \Leftrightarrow \sigma_{12} = 0$
- Positive correlation $\Leftrightarrow \rho_{12} > 0$
- Negative correlation $\Leftrightarrow \rho_{12} < 0$
- Perfect correlation $\Leftrightarrow \rho_{12} = \pm 1$
- We have

$$|\rho_{12}| \le 1 \Leftrightarrow |\sigma_{12}| \le \sigma_1 \sigma_2$$

Variance of a linear combination of two random variables

$$\begin{split} \sigma_{a_1x_1+a_2x_2}^2 &= \mathsf{Var}[a_1x_1 + a_2x_2] \\ &= a_1^2\,\mathsf{Var}[x_1] + a_2^2\,\mathsf{Var}[x_2] + 2a_1a_2\,\mathsf{Cov}[x_1,x_2] \end{split}$$

More generally, the variance of a linear combination of random variables x_1, x_2, \ldots, x_n is

$$\sigma_{\sum_{i=1}^{n} a_i x_i}^2 = \operatorname{Var} \left[\sum_{i=1}^{n} a_i x_i \right]$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \operatorname{Cov}[x_i, x_j] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i a_j \sigma_{ij}$$

Overview

Random returns

Portfolio mean and variance

Markowitz model

Two-fund theorem

One-fund theorem

Portfolio mean and variance

- Consider *n* assets with random returns r_i , i = 1, 2, ..., n, such that $\mathbb{E}[r_i] = \overline{r}_i$
- Expected return of the portfolio

$$r = \sum_{i=1}^{n} w_i r_i$$

$$\Rightarrow \mathbb{E}[r] = \sum_{i=1}^{n} w_i \mathbb{E}[r_i] = \sum_{i=1}^{n} w_i \bar{r}_i$$

Portfolio variance

$$\sigma^{2} = \operatorname{Var} \left[\sum_{i=1}^{n} w_{i} r_{i} \right]$$

$$\Rightarrow \sigma^{2} = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \operatorname{Cov}[r_{i}, r_{j}] = \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \sigma_{ij}$$

Diversification

- ▶ Investing in several assets tends to lower portfolio variance
 - Deviations from the means tend to average out
 - "Divide your portion to seven, or even to eight, for you do not know what misfortune may occur on the earth." The Bible, Ecclesiastes 11:2
- Invest equal amounts in *n* assets with expected return *m*, variance σ^2 , and uncorrelated returns $(\sigma_{ij} = 0, i \neq j)$

$$\overline{r} = \sum_{i=1}^{n} w_i \overline{r}_i = \sum_{i=1}^{n} \frac{1}{n} m = m$$

$$\operatorname{Var}[r] = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij} = \sum_{i=1}^{n} w_i^2 \sigma_{ii} = \sum_{i=1}^{n} \frac{1}{n^2} \sigma^2 = \frac{1}{n} \sigma^2$$

$$\Rightarrow \lim_{n \to \infty} \operatorname{Var}[r] = \lim_{n \to \infty} \frac{1}{n} \sigma^2 = 0$$

No variation, yet the expected return is the same!

Diversification

- Uncorrelated assets are ideal for diversification
- ▶ If the returns are correlated, say, $\sigma_{ij} = 0.3\sigma^2$, $i \neq j$, we have

$$\begin{aligned} \mathsf{Var}[r] &= \sum_{i=1}^{n} \sum_{j=1}^{n} w_{i} w_{j} \sigma_{ij} = \sum_{i=1}^{n} \frac{1}{n^{2}} \sigma_{ii} + \sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{n} \frac{1}{n^{2}} \sigma_{ij} \\ &= \frac{1}{n} \sigma^{2} + n(n-1) \frac{1}{n^{2}} 0.3 \sigma^{2} = \left(0.7 \frac{1}{n} + 0.3\right) \sigma^{2} \\ \Rightarrow \lim_{n \to \infty} \mathsf{Var}[r] &= \lim_{n \to \infty} \left(0.7 \frac{1}{n} + 0.3\right) \sigma^{2} = 0.3 \sigma^{2} \end{aligned}$$

► Hence, variance <u>cannot</u> be reduced to zero

Mean-standard deviation diagram

- Variance (or standard deviation) of returns is widely used as a measure of risk
 - If two portfolios have the same expected return, then the one with smaller variance is preferred
- Consider 3 assets

Asset
$$i$$
 | 1 | 2 | 3 | $\mathbb{E}[r_i]$ | 10% | 12% | 14% | $\rho = \begin{bmatrix} 1 & 0.2 & 0.2 \\ 0.2 & 1 & 0.3 \\ 0.2 & 0.3 & 1 \end{bmatrix}$

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_{1}\sigma_{2}}$$

$$\Rightarrow \Sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix} = \begin{bmatrix} 0.64\% & 0.16\% & 0.19\% \\ 0.16\% & 1\% & 0.36\% \\ 0.19\% & 0.36\% & 1.44\% \end{bmatrix}$$

Mean-standard deviation diagram

- ▶ What are the possible combinations of returns and variances?
 - Pairs $(\sigma, \mathbb{E}[r])$ such that

$$\begin{cases} \mathbb{E}[r] &= \sum_{i=1}^{n} w_i \, \mathbb{E}[r_i] \\ \sigma^2 &= \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij} \end{cases}$$

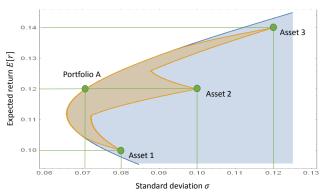
- Portfolio A with $w_1 = w_2 = w_3 = 1/3$ has
 - Expected return

$$\bar{r}_A = \sum_{i=1}^3 \frac{1}{3} \mathbb{E}[r_i] = 0.12$$

Standard deviation

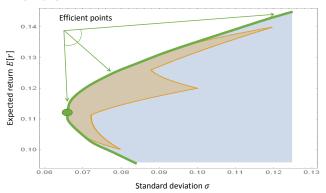
$$\sigma_A = \sqrt{\sum_{i=1}^3 \sum_{j=1}^3 \frac{1}{3^2} \sigma_{ij}} = 7.07\%$$

Mean-standard deviation diagram



- Yellow area = Set of all possible $(\sigma, \mathbb{E}[r])$ that can be obtained from portfolios such that $w_i \ge 0, \sum_{i=1}^n w_i = 1$
- ► Blue area = As above but with shorting allowed (w_i) 's, i = 1, 2, 3, can be negative as well)

Efficient frontier



- Green curve = Minimum variance set (minimum variance attainable for a given return)
- ► Green point = Minimum variance point (minimum variance attainable using assets 1, 2 and 3)
- ► **Efficient frontier** = Curve above (and including) this point

Overview

Random returns

Portfolio mean and variance

Markowitz model

Two-fund theorem

One-fund theorem

Markowitz model

 \triangleright Portfolios of the efficient frontier \bar{r} can be found by solving

$$\min_{\mathbf{w}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij}$$
s.t.
$$\sum_{i=1}^{n} w_i \bar{r}_i = \bar{r}$$

$$\sum_{i=1}^{n} w_i = 1$$

Markowitz model

► Set up the Lagrangian

$$L = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij} - \lambda \left(\sum_{i=1}^{n} w_i \overline{r}_i - \overline{r} \right) - \mu \left(\sum_{i=1}^{n} w_i - 1 \right)$$

Equations of the efficient set are solved by setting the partial derivatives of *L* to zero

$$\frac{\partial}{\partial w_i} L = \sum_{j=1}^n w_j \sigma_{ij} - \lambda \bar{r}_i - \mu = 0, \quad \forall i = 1, 2, \dots, n$$

$$\frac{\partial}{\partial \lambda} L = \sum_{i=1}^n w_i \bar{r}_i - \bar{r} = 0$$

$$\frac{\partial}{\partial \mu} L = \sum_{i=1}^n w_i - 1 = 0$$

Asset
$$i$$
 | 1 | 2 | 3
 $\mathbb{E}[r_i]$ | 1 | 2 | 3
 σ_i | 1 | 1 | 1 | $\rho = \Sigma = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$L = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij} - \lambda \left(\sum_{i=1}^{n} w_i \overline{r}_i - \overline{r} \right) - \mu \left(\sum_{i=1}^{n} w_i - 1 \right)$$

$$\frac{\partial}{\partial w_1} L = w_1 \sigma_1^2 - \lambda \overline{r}_1 - \mu = w_1 - \lambda - \mu = 0$$
 (1a)

$$\frac{\partial}{\partial w_2} L = w_2 \sigma_2^2 - \lambda \overline{r}_2 - \mu = w_2 - 2\lambda - \mu = 0 \tag{1b}$$

$$\frac{\partial}{\partial w_3} L = w_3 \sigma_3^2 - \lambda \bar{r}_3 - \mu = w_3 - 3\lambda - \mu = 0$$
 (1c)

$$\Rightarrow \begin{cases}
\frac{\partial}{\partial w_{1}}L = w_{1}\sigma_{1}^{2} - \lambda \bar{r}_{1} - \mu = w_{1} - \lambda - \mu = 0 \\
\frac{\partial}{\partial w_{2}}L = w_{2}\sigma_{2}^{2} - \lambda \bar{r}_{2} - \mu = w_{2} - 2\lambda - \mu = 0 \\
\frac{\partial}{\partial w_{3}}L = w_{3}\sigma_{3}^{2} - \lambda \bar{r}_{3} - \mu = w_{3} - 3\lambda - \mu = 0 \\
\frac{\partial}{\partial \lambda}L = \sum_{i=1}^{3} w_{i}\bar{r}_{i} - \bar{r} = w_{1} + 2w_{2} + 3w_{3} - \bar{r} = 0 \\
\frac{\partial}{\partial \mu}L = \sum_{i=1}^{3} w_{i} - 1 = w_{1} + w_{2} + w_{3} - 1 = 0
\end{cases} (1a)$$
(1b)

$$\frac{\partial}{\partial \mu}L = \sum_{i=1}^{3} w_i - 1 = w_1 + w_2 + w_3 - 1 = 0$$
 (1e)

► Equations (1a)-(1c) yield

$$w_1 = \lambda + \mu$$
, $w_2 = 2\lambda + \mu$, $w_3 = 3\lambda + \mu$

► Substituting these into (1d) and (1e) yields

$$\begin{cases} 14\lambda + 6\mu &= \overline{r} \\ 6\lambda + 3\mu &= 1 \end{cases} \Rightarrow \begin{cases} \lambda = \frac{1}{2}\overline{r} - 1 \\ \mu = \frac{7}{3} - \overline{r} \end{cases},$$

and thus

$$w_1 = \frac{4}{3} - \frac{1}{2}\overline{r}, \quad w_2 = \frac{1}{3}, \quad w_3 = \frac{1}{2}\overline{r} - \frac{2}{3}$$

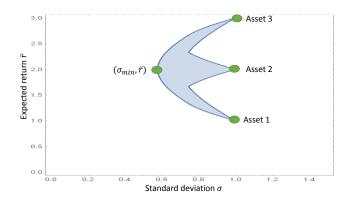
Substituting the optimal weights w_1, w_2, w_3 into the objective of minimizing the portfolio variance yields

$$\min_{\mathbf{w}} \sigma^2 = \min_{\mathbf{w}} \sum_{i=1}^3 w_i^2 = \frac{1}{2} \bar{r}^2 - 2\bar{r} + \frac{7}{3}$$
 (2)

The expected return \bar{r} for which variance is minimized can be found by differentiating (2) with respect to \bar{r}

$$\Rightarrow \overline{r} - 2 = 0 \Rightarrow \overline{r} = 2$$

$$\Rightarrow \sigma_{min}^2 = \frac{1}{3}, \quad \sigma_{min} = \frac{1}{\sqrt{3}} \approx 0.577$$



▶ Blue area = The set of all possible pairs $(\sigma, \mathbb{E}[r])$ that a portfolio can obtain for some $w_1, w_2, w_3 \ge 0, \sum_{i=1}^n w_i = 1$

Overview

Random returns

Portfolio mean and variance

Markowitz model

Two-fund theorem

One-fund theorem

Theorem

(**Two-fund theorem**) Given any two efficient funds (portfolios) with different expected returns, it is possible to duplicate any other efficient portfolio in terms of its mean and variance properties as a combination of these two.

Proof: Let $\mathbf{w^1}$ and $\mathbf{w^2}$ be efficient portfolios with expected returns \overline{r}^1 and \overline{r}^2 and corresponding Lagrange multipliers λ^1, μ^1 and λ^2, μ^2 . Construct the portfolio $\mathbf{w}^{\alpha} = \alpha \mathbf{w^1} + (1 - \alpha) \mathbf{w^2}, \alpha \in \mathbb{R}$.

- Weights in \mathbf{w}^{α} sum to 1
- The expected return of \mathbf{w}^{α} is $\bar{r} = \alpha \bar{r}^1 + (1 \alpha)\bar{r}^2$
- ► If $\bar{r}^1 \neq \bar{r}^2$, then any \bar{r} can be obtained by choosing a suitable α (this α may be negative)

leave Is \mathbf{w}^{α} efficient? Optimality conditions are:

$$\frac{\partial}{\partial w_i} L = \sum_{j=1}^n w_j \sigma_{ij} - \lambda \bar{r}_i - \mu = 0, \quad \forall i = 1, 2, \dots, n$$

$$\frac{\partial}{\partial \lambda} L = \sum_{i=1}^n w_i \bar{r}_i - \bar{r} = 0$$

$$\frac{\partial}{\partial \mu} L = \sum_{i=1}^n w_i - 1 = 0$$

- ▶ By assumption, $(\mathbf{w}^i, \lambda^i, \mu^i)$, i = 1, 2 satisfies these with $\bar{r} = \bar{r}^i$
- Does the point $(\mathbf{w}^{\alpha}, \lambda^{\alpha}, \mu^{\alpha}) = \alpha(\mathbf{w}^{1}, \lambda^{1}, \mu^{1}) + (1 \alpha)(\mathbf{w}^{2}, \lambda^{2}, \mu^{2})$ also satisfy the optimality conditions?

- ► Two last equations are clearly satisfied:
 - Sum of weights is 1 by construction

$$ightharpoonup \overline{r}^{\alpha} = \overline{r} = \alpha \overline{r}^1 + (1 - \alpha) \overline{r}^2$$

► The first set of equations becomes:

$$\frac{\partial}{\partial w_i^{\alpha}} L^{\alpha} = \sum_{j=1}^n w_j^{\alpha} \sigma_{ij} - \lambda^{\alpha} \bar{r}_i - \mu^{\alpha} = 0, \quad \forall i = 1, 2, \dots, n$$

Substituting for the definition of $(\mathbf{w}^{\alpha}, \lambda^{\alpha}, \mu^{\alpha})$ we get

$$\sum_{j=1}^{n} \left(\alpha w_j^1 + (1-\alpha)w_j^2\right) \sigma_{ij} - \left(\alpha \lambda^1 + (1-\alpha)\lambda^2\right) \bar{r}_i$$
$$-\left(\alpha \mu^1 + (1-\alpha)\mu^2\right) = 0$$

Rearranging the terms with α and $(1 - \alpha)$ together, the left-hand side of the equation can be expressed as

$$\frac{\partial}{\partial w_i^{\alpha}} L^{\alpha} = \alpha \frac{\partial}{\partial w_i^1} L^1 + (1 - \alpha) \frac{\partial}{\partial w_i^2} L^2$$

- $ightharpoonup rac{\partial}{\partial w_i^{lpha}}L^{lpha}$ is equal to zero, because we know that $rac{\partial}{\partial w_i^1}L^1$ and $rac{\partial}{\partial w_i^2}L^2$ are zero
- Thus, all of the optimality conditions are satisfied
- ► Hence \mathbf{w}^{α} is optimal, which completes the proof.

Overview

Random returns

Portfolio mean and variance

Markowitz model

Two-fund theorem

One-fund theorem

Risk-free asset

- ▶ What if there is a risk-free asset?
 - Return r_f and variance $\sigma_f^2 = 0$
 - Unlimited lending and borrowing are possible at the risk-free rate r_f
- Let us invest the share 1α in a portfolio of risky assets A with expected return \bar{r}_A and variance σ_A^2 , and the share α in the risk-free asset
- ► The expected return is

$$\bar{r}_{\alpha} = \alpha r_f + (1 - \alpha)\bar{r}_A$$

Standard deviation is

$$\sigma_{\alpha} = \sqrt{(1-\alpha)^2 \sigma_A^2} = (1-\alpha)\sigma_A$$

One-fund theorem (with a risk-free asset)

Theorem

(**One-fund theorem**) When there is a risk-free asset, there is a single fund F of risky assets such that any efficient portfolio can be constructed as a combination of the fund F and the risk-free asset.

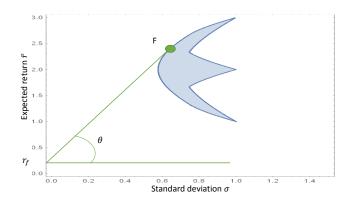
Proof:

- $(\sigma_{\alpha}, \bar{r}_{\alpha})$ forms a line in σ - \bar{r} -space as a function of α
- $(\sigma_{\alpha}, \bar{r}_{\alpha})$ should be selected so that the line is as steep as possible, i.e., its slope $k = (\bar{r}_{\alpha} r_f)/\sigma_{\alpha}$ is at maximum

$$\Rightarrow \max_{\mathbf{w}} \frac{\sum_{i=1}^{n} w_i(\bar{r}_i - r_f)}{\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij}}} \quad \Box$$

Let $S = \sum_{i=1}^{n} w_i$. We need not constrain *S* to 1, since *S* will cancel out from the above expression, which makes solving the problem easier

One-fund theorem (with a risk-free asset)



Free region of the formula of the feasible set of line $\bar{r} = r_f + k\sigma$ from $(\sigma_\alpha, \bar{r}_\alpha)$ through the feasible set

- How to determine this portfolio F?
- At optimum, the partial derivative of the slope with respect to each weight w_k is zero:

$$0 = \frac{\partial}{\partial w_{k}} \frac{\sum_{i=1}^{n} w_{i}(\bar{r}_{i} - r_{f})}{\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i}w_{j}\sigma_{ij}}}, \quad k = 1, 2, \dots, n$$

$$0 = \frac{\bar{r}_{k} - r_{f}}{\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i}w_{j}\sigma_{ij}}} - \frac{1}{2} \frac{\sum_{i=1}^{n} w_{i}(\bar{r}_{i} - r_{f})}{\sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i}w_{j}\sigma_{ij}}}^{3} 2 \sum_{i=1}^{n} w_{i}\sigma_{ik}$$

$$\Rightarrow \bar{r}_{k} - r_{f} = \frac{\sum_{i=1}^{n} w_{i}(\bar{r}_{i} - r_{f})}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i}w_{j}\sigma_{ij}}^{3} \sum_{i=1}^{n} w_{i}\sigma_{ik}, \quad k = 1, 2, \dots, n$$

Note that each partial derivative equation has the same term at the beginning of the right-hand side (independent of the w_k used to take derivative). Let us denote this term by $\lambda(\mathbf{w})$

$$\lambda(\mathbf{w}) = \frac{\sum_{i=1}^{n} w_i(\bar{r}_i - r_f)}{\sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \sigma_{ij}}$$

The partial derivative equation for each w_k can now be written as

$$\bar{r}_k - r_f = \lambda(\mathbf{w}) \sum_{i=1}^n w_i \sigma_{ik}, \quad k = 1, 2, \dots, n$$

- ► While this system of equations may look challenging, it can easily be solved by a change of variables
- ▶ Define a new variable v_k as a function of w_i , i = 1, ..., n as

$$v_k = \lambda(\mathbf{w})w_k = w_k \frac{\sum_{i=1}^n w_i(\bar{r}_i - r_f)}{\sum_{i=1}^n \sum_{j=1}^n w_i w_j \sigma_{ij}}$$

With the new variables v_k , the partial differential equations become

$$\overline{r}_k - r_f = \sum_{i=1}^n v_i \sigma_{ik}, \quad k = 1, 2, \dots, n$$

- \triangleright This system of equations can easily be solved for v_k
- ► This solution approach works here well due to the specific nature of the equations

From the solution v_k , we can compute the optimal w_k using the definition of v_k

$$v_k = \lambda(\mathbf{w})w_k$$

 \triangleright Note that v_k satisfy

$$\sum_{i=1}^{n} v_i = \lambda(\mathbf{w}) \sum_{i=1}^{n} w_i = \lambda(\mathbf{w})$$

► Thus, we can solve w_k from known v_k by normalization

$$\frac{v_k}{\sum_{i=1}^n v_i} = \frac{\lambda(\mathbf{w})w_k}{\lambda(\mathbf{w})} = w_k, \quad k = 1, 2, \dots, n$$

Example: One-fund theorem

Optimality conditions

$$\bar{r}_k - r_f = \sum_{i=1}^3 v_i \sigma_{ik} \Rightarrow \begin{cases} v_1 = 1 - 1/2 = 1/2 \\ v_2 = 2 - 1/2 = 3/2 \\ v_3 = 3 - 1/2 = 5/2 \end{cases}$$

Normalization of weights

$$w_k = \frac{v_k}{\sum_{i=1}^3 v_i}, \quad \sum_{i=1}^3 v_i = 9/2 \Rightarrow \begin{cases} w_1 = (1/2)/(9/2) = 1/9 \\ w_2 = (3/2)/(9/2) = 3/9 \\ w_3 = (5/2)/(9/2) = 5/9 \end{cases}$$

Overview

Random returns

Portfolio mean and variance

Markowitz model

Two-fund theorem

One-fund theorem

