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Abstract
In this lectures, factor models and arbitrage pricing theory seek to explain returns and correlations between assets.

For random returns, the models are based on random variables, which can be explained by the behaviour of other
variables. By using the parameter estimation are required for mean-variance optimization.
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1 Single Factor Model
A single-factor model explains asset returns with common random variables. The rate of return of asset i expressed as:

ri = ai + bif + ei,

where,

• ai and bi are constants;

• f is the random explanatory variable (i.e., the factor);

• ei is the random error term.

This formulation is backed up by the following assumptions:

• E[ei] = 0 (not restrictive as ai can be chosen freely);

• ei is not correlated with f ;

⇒ E
[
(f − f̄)(ei − ēi)

]
= E

[
(f − f̄)ei

]
= 0

• Error terms of the assets are uncorrelated:

⇒ E [(ei − ēi)(ej − ēj)] = E [eiej ] = 0, i ̸= j

• Variances of error terms are known:

⇒ E
[
e2

i

]
= σ2

ei

With such assumptions, the expected rate of return is:

r̄i = E[ri] = ai + biE[f ] + E[ei]
⇒ r̄i = ai + bif̄

While the variance of the return ri is:

σ2
i = V ar[ri] = E

[
(ri − r̄i)2] = E

[
(ai + bif + ei − ai − bif̄)2]

= E
[(

bi(f − f̄) + ei

)2] = E
[
b2

i (f − f̄)2 + 2bi(f − f̄)ei + e2
i

]
⇒ σ2

i = b2
i σ2

f + σ2
ei

and the covariance between different assets i and j:

σij = Cov[ri, rj ] = E [(ri − r̄i)(rj − r̄j)]
= E

[(
bi(f − f̄) + ei

) (
bj(f − f̄) + ej

)]
= E

[
bibj(f − f̄)2 + (bjei + biej)(f − f̄) + eiej

]
⇒ σij = bibjσ2

f , i ̸= j
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With those statistical values in mind, the parameters from the single-factor model can be calculated. Thus it follows
that:

Cov[ri, f ] = E
[
(ri − r̄i)(f − f̄)

]
= E

[(
bi(f − f̄) + ei

)
(f − f̄)

]
⇒ Cov[ri, f ] = biσ

2
f

⇒ bi = Cov[ri, f ]
σ2

f

A total of 3n + 2 parameters to be estimated, among them f̄ , σ2
f , ai, bi, and σ2

ei
, for i = 1, 2, . . . , n. Parameters ai and

bi can be estimated from the time series of ri and f . Therefore, estimates differ depending on the selected period and
averaging and other statistical methods can be used to improve accuracy.

Standard statistical estimators:

ˆ̄ri = 1
n

n∑
k=1

rk
i

σ̂2
i = 1

n − 1

n∑
k=1

(
rk

i − ˆ̄ri

)2

Ĉov[ri, f ] = 1
n − 1

n∑
k=1

(
rk

i − ˆ̄ri

) (
fk − ˆ̄f

)
,

where superscript k denotes the kth sample.

Finally, the model parameters can be calculated from the standard estimates:

bi = Ĉov[ri, f ]
σ̂2

f

ai = ˆ̄ri − bi
ˆ̄f

The variance of error terms becomes:

σ2
i = b2

i σ2
f + σ2

ei

⇒ σ̂2
ei

= σ̂2
i − b2

i σ̂2
f

For a portfolio, the same analysis can be done. The collective return is given by:

r =
n∑

w=1
wiri =

n∑
i=1

wiai +
(

n∑
i=1

wibi

)
f +

n∑
i=1

wiei = a + bf + e,

where,

a =
n∑

i=1
wiai, b =

n∑
i=1

wibi, e =
n∑

i=1
wiei

For the error term of the portfolio return, we have:
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E[e] = E

[
n∑

i=1
wiei

]
=

n∑
i=1

wiE[ei]

⇒ E[e] = 0

Cov[f, e] = E

[
(f − f̄)

n∑
i=1

wiei

]
=

n∑
i=1

wiE[(f − f̄)ei]

⇒ Cov[f, e] = 0

V ar[e] = E

( n∑
i=1

wiei

) n∑
j=1

wjej

 =
n∑

i=1
w2

i E[e2
i ]

⇒ V ar[e] =
n∑

i=1
w2

i σ2
ei

Assuming that assets have equal weights and the variance of error terms is σ2
ei

= s2. Then, the variance of the error
term of the portfolio is:

σ2
e = V ar[e] =

n∑
i=1

w2
i σ2

ei
=

n∑
i=1

1
n2 s2 = 1

n
s2,

And the variance of the portfolio return is:

σ2 = V ar[r] = b2σ2
f + σ2

e ,

where σ2
e → 0 as n → ∞:

• Variance related to the error terms ei can be diversified;

• Variance related to terms bif cannot be diversified.

Compared to CAPM, the single factor is modelled as the market. Thus, the single-factor model is remodelled as:

ri − rf = αi + βi(rM − rf ) + ei

Taking the expectation of this postulated factor model gives:

r̄i − rf = αi + βi(r̄M − rf )
And the covariance of ri − rf with rM is:

σiM = Cov[ri − rf , rM ] = Cov[αi + βi(rM − rf ) + ei, rM ] = βiσ
2
M

⇒ βi = σiM

σ2
M

Another "line" can be calculated as a characteristic line, which is drawn by plotting ri, as given by the equation:

ri − rf = αi + βi(rM − rf ),

as a function of its factor rM in the (rM − rf , ri − rf )-space:
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• ei is assumed to be at its expectation, 0
• Slope of the line is equal to βi

• Intercept of the line is equal to αi

• CAPM predicts that αi = 0
• Measurements of ri and its factor rM can be plotted in a scatter diagram against this line
Security market line is drawn in (βi, r̄i)-space and capital market line is drawn in (σ, r̄)-space.

2 Multifactor Model
The return can be calculated by extrapolating from a single factor to multiple factors. Starting with two factors:

ri = ai + bi1fi + bi2f2 + ei,

where ai is the intercept and bi1, bi2 are factor loadings and the following assumptions:

• Expected error E[ei] = 0
• Error terms are uncorrelated with factors, and each other
• Factors can correlate with each other
For this model, the expected return in the two-factor model is:

r̄i = E[ri] = ai + bi1f̄ + bi2f̄2

And the covariance:
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Cov[ri, rj ] = E
[ (

bi1(f1 − f̄1) + bi2(f2 − f̄2) + ei

)(
bj1(f1 − f̄1) + bj2(f2 − f̄2) + ej

) ]
=
{

bi1bj1σ2
f1

+ (bi1bj2 + bi2bj1)σf1,f2 + bi2bj2σ2
f2

, i ̸= j

b2
i1σ2

f1
+ 2bi1bi2σf1,f2 + b2

i2σ2
f2

+ σ2
ei

, i = j

By estimating the parameters as done previously for the single-factor model, the following calculation for covariance
can be expressed:

Cov[ri, f1] = E
[(

bi1(f1 − f̄1) + bi2(f2 − f̄2) + ei

)
(f1 − f̄1)

]
= bi1σ2

f1
+ bi2σf1,f2

Cov[ri, f2] = bi2σ2
f2

+ bi1σf1,f2

Which is derived from the covariance matrix.

Multiple factors can be considered if a single-factor model has a large error term variance. If the error term variance is
nearly as high as the variance of returns, the factor model does not explain much. Too many factors lead to overfitting
⇒ Poor predictions.

Several factors can be used to estimate different factors:

• Gross National Product (GNP);

• Consumer price indices;

• Unemployment rate.

Factors extracted from the market, such as:

• Market portfolio return;

• Average return of companies in one industry;

• Days since the last market peak.

Firm characteristics, such as:

• Price-earnings ratio;

• Dividend payout ratio;

• Earnings forecast.

Fama-French discusses factors such as:

1. Market risk;

2. Firm size;

3. Book-to-market ratio.

Book-to-market ratio = Inverse of price (i.e., market capitalization) / book value (P/B) ratio. For details, see Fama
& French (1993): Common risk factors in the returns on stocks and bonds. Journal of Financial Economics 33 (optional
reading, available at https://doi.org/10.1016/0304-405X(93)90023-5)/
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3 Arbitrage Pricing Theory (ATP
A particular type of single-factor model is the arbitrage pricing theory model, where the parameters are chosen to

exclude any arbitrage opportunities (which remove some combinations between all parameters).

In this model, such assumptions are required:

• There is a large number of assets;

• Instead of optimizing concerning mean-variance (as in CAPM), the investors just prefer higher returns to lower
returns;

• S. Ross (1976): The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory 13, 341-360.

Starting with a single factor with two assets and no error term:

ri = ai + bif,

rj = aj + bjf

Invest in assets i (weight wi = w) and j (wj = 1 − w) that follow a single factor model:

In a portfolio, the return is:

r = w(ai + bif) + (1 − w)(aj + bjf)
= wai + (1 − w)aj + (wbi + (1 − w)bj) f

The selection of the weight w should be that the coefficient of factor f is 0:

wbi + (1 − w)bj = 0

⇒w = bj

bj − bi

The portfolio with coefficient 0 for factor f is risk-free (no variance). Hence, its return must be rf = λ0:

r = bj

bj − bi
ai +

(
1 − bj

bj − bi

)
aj

= bj

bj − bi
ai − bi

bj − bi
aj = λ0

In this setup, λ0 denotes the risk-free interest rate.

Given a risk-free interest rate λ0, we find out that the factor model parameters of assets i and j must be proportional
to each other to ensure the absence of arbitrage:

r = bj

bj − bi
ai − bi

bj − bi
aj = λ0

⇒bjai − biaj = λ0(bj − bi)
⇒bj(ai − λ0) = bi(aj − λ0)

⇒ai − λ0

bi
= aj − λ0

bj

Otherwise, the factor model would offer arbitrage opportunities. For, different riskless asset combinations would imply
different risk-free interest rates.

Thus, for every asset i, ratio (ai − λ0)/bi must be equal to some constant c:
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⇒ ai − λ0

bi
= c

⇔ ai = λ0 + bic

Thus:

r̄i = ai + bif̄ = λ0 + bic + bif̄

= λ0 + bi(c + f̄) = λ0 + biλ1,

where λ1 = c + f̄ is the price of risk associated with factor f , i.e. the factor price. This can be generalized to
several factors.

Another special version of APT is without error terms defined as simple APT.

Definition 3.1. Simple APT

Suppose that there are n assets whose rates of return are governed by m < n factors according to the equation:

ri = ai +
m∑

j=1
bijfj

for all assets i = 1, 2, . . . , n. Then there are constants:
λ0, λ1, . . . , λm such that expected rates of return are given by:

r̄i = λ0 +
m∑

j=1
bijλj

for all assets i = 1, 2, . . . , n.

Suppose now that there is also an error term ei in the factor model of return of asset i with m factors:

ri = ai +
m∑

j=1
bijfj + ei

Next, form a portfolio of n assets using weights wi:

r =
n∑

w=1
wiri =

n∑
i=1

wiai +
m∑

j=1

n∑
i=1

wibijfj +
n∑

i=1
wiei

= a +
m∑

j=1
bjfj + e

where,

a =
n∑

i=1
wiai, bj =

n∑
i=1

wibij , e =
n∑

i=1
wiei

The variance of the error term of the portfolio is:
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σ2
e =

n∑
i=1

w2
i σ2

ei

Assume that all asset error term variances σ2
ei

are bounded, that is:

σ2
ei

≤ s2

For some s, assume that all assets have similar weights (i.e., we have wi ≤ W/n for some W ≈ 1). This means that
the portfolio is well-diversified.

With the assumptions of similar and bounded weights, we have:

σ2
e =

n∑
i=1

w2
i σ2

ei
≤

n∑
i=1

W 2

n2 s2 = 1
n

W 2s2

⇒ lim
n→∞

σ2
e = 0

Hence, a well-diversified portfolio with many assets has practically no non-diversifiable risk. At the limit, the rate of
return of such a portfolio is fully explained by the factor model (because the error terms tend to go to zero, as n goes to
infinity):

r = a +
m∑

j=1
bjfj ,

//
At limit, as the error terms have gone to zero, simple APT states the expected rate of return of a well-diversified

portfolio with a very large number of individual assets is:

r̄ = λ0 +
m∑

j=1
bjλj ,

//
Suppose the above holds for a well-diversified portfolio with a very large n. In that case, the same must also hold for an

individual asset i, since different well-diversified portfolios may differ just by a small amount of the asset i. Thus, we have:

r̄i = λ0 +
m∑

j=1
bijλj ,

This pricing equation is referred to as the General APT.
In the CAPM, the returns are essentially explained by a factor model. Some insights can be gained if the assumptions

of the general APT hold. Assuming that:

1. the CAPM holds,

2. the general APT holds (the number of assets n is large and market portfolio is well-diversified), and

3. the returns of individual assets are determined by the following two-factor model:
ri = ai + bi1f1 + bi2f2 + ei

Covariance with the market portfolio is now:
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Cov[rM , ri] = E
[
(rM − r̄M )

(
bi1(f1 − f̄1) + bi2(f2 − f̄2) + ei

)]
= bi1Cov[rM , f1] + bi2Cov[rM , f2] + Cov[rM , ei]

Since the assumptions of APT hold, we have Cov[rM , ei] ≈ 0 and thus:

Cov[rM , ri] = bi1Cov[rM , f1] + bi2Cov[rM , f2]

Dividing by σ2
M gives the beta of an asset:

βi = bi1
Cov[f1, rM ]

σ2
M

+ bi2
Cov[f2, rM ]

σ2
M

= bi1βf1 + bi2βf2

The βi of asset i is the factor-loading-weighted sum of the factors’ betas.

4 Parameter Estimation
Assuming the following return rate:

1 + ry = (1 + r1)(1 + r2) · · · (1 + r12)
Assume that monthly returns are small:

1 + ry ≈ 1 + r1 + r2 + · · · + r12

⇒ ry = r1 + r2 + · · · + r12

Monthly returns are equally distributed and uncorrelated:

r̄y = 12r̄

σ2
y = E

( 12∑
i=1

(ri − r̄)
)2 = E

[ 12∑
i=1

(ri − r̄)2

]
= 12σ2

When the number of periods p becomes larger, the ratio between the standard deviation and expected return for each
period increases:

⇒ Finding short term estimators becomes more difficult;

• If the yearly parameters are E[ry] = 12% and σy = 15%, the monthly parameters p = 12 are E[rp] = 1% and
σp = 1/

√
12 · 15% = 4.33%;

• The one-month return is within the interval 1 ± 4.33% with a 68% probability, a rather wide confidence interval.
Thus, single-period expected returns are hard to estimate reliably even if the time series are long.

Let there be a time series of n independent and identically distributed observations, denoted by ri, where
each observation is drawn from a random variable with an expected value r̄ and standard deviation σ:

Unbiased estimator of expected rate of return is:

ˆ̄r = 1
n

n∑
i=1

ri

Because the expected value of the estimator is the true expected rate of return r̄:
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E
[ˆ̄r] = 1

n

n∑
i=1

E[ri] = 1
n

n∑
i=1

r̄ = r̄

The variance of the unbiased estimator of the expected rate of return is:

σ2
ˆ̄r = V ar

[ˆ̄r] = V ar

[
1
n

n∑
i=1

ri

]
= 1

n2 V ar

[
n∑

i=1
ri

]

Because the observations are independent, we have:

V ar
[ˆ̄r] = 1

n2

n∑
i=1

V ar [ri] = 1
n2

n∑
i=1

σ2 = n

n2 σ2 = 1
n

σ2

The standard deviation of the unbiased estimator thus is:

σˆ̄r = 1√
n

σ

Standard deviation σˆ̄r of estimator ˆ̄r decreases slowly with n, because
√

n is in its denominator. As an example, let
monthly E[r] = 1% and σ = 4.33% and consider a time series of n = 12 months:

σˆ̄r = 1√
12

4.33% = 1.25%

Should we want to estimate the standard deviation, which is within 10% of the expected returns (0.1 · 1% = 0.10%),
then we would need a time series of 156 years and 3 months:

σˆ̄r = 1√
n

4.33% = 0.10%

⇒ n =
(

4.33%
0.10%

)2
= 1875 = 12 · 156.25

5 Utility theory and risk aversion
In EUT (Expected Utility Theory), investors’ preferences under risk are consistent with a utility function U : R → R:
• Wealth level x1 preferred to wealth level x2 if and only if

U(x1) > U(x2)
• Random variable A is preferred to random variable B if and only if

E [U(A)] > E [U(B)]
von Neumann-Morgenstern utility functions are unique up to positive affine transformations. U(x) and V (x) represent

the same preferences if and only if:
U(x) = aV (x) + b,

where a > 0 and b ∈ R .

Different types of utility functions:
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• Linear
U(x) = x

• Exponential (a > 0)
U(x) = −e−ax

• Logarithmic
U(x) = ln x

• Power (b ≤ 1, b ̸= 0)
U(x) = bxb

• Quadratic
U(x) = x − bx2

(increasing for x < 1/(2b)

1 2 3 4

3

2

1

1

2

3

4

Logarithmic

Linear

Power

Quadratic

Exponential

The certainty equivalent of a random variable X is the certain wealth c for which:

E [U(c)] = E [U(X)]
⇔ U(c) = E [U(X)]

For a 50% chance to win 100 € and a 50% chance of winning nothing, the certainty equivalent could be c = 40€. If
U has an inverse function U−1, certainty equivalent can be calculated as:

c = U−1 (E [U(X)])

An investor is:

• Risk neutral if for all random variables X, his or her certainty equivalent for X is E[X]
• Risk averse if for all non-constant random variables X, his or her certainty equivalent for X is less than E[X]
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• Risk seeking if for all non-constant random variables X, his or her certainty equivalent for X is more than E[X]
In EUT, the investor with utility function U is:

• Risk neutral if U is linear,

• Risk averse if U is strictly concave, i.e.,

U(λx + (1 − λ)y) > λU(x) + (1 − λ)U(y)

for all x ̸= y and 0 < λ < 1.

• Risk seeking if U is strictly convex, i.e.,

U(λx + (1 − λ)y) < λU(x) + (1 − λ)U(y)

for all x ̸= y and 0 < λ < 1.

Arrow-Pratt risk aversion coefficient:

a(x) = −U ′′(x)
U ′(x)

It measures the degree of risk aversion (concavity) at point x and also measures the relative rate of change of
slope of U at x:

• Let k(x) = U ′(x) be the slope of U at x;

• Relative rate of change of k(x) is:

dk(x)/dx

k(x) = U ′′(x)
U ′(x) = −a(x)

For the exponential utility function, the risk aversion coefficient is constant:

U(x) = −e−bx ⇒ U ′(x) = be−bx, U ′′(x) = −b2e−bx

⇒ a(x) = −−b2e−bx

be−bx
= b

//
For the logarithmic utility function, risk aversion decreases with wealth:

U(x) = ln x

⇒ a(x) = 1
x

The utility function may help the investor choose investments that suit them:

Via elicitation methods:
• Ask for certainty equivalents to get the value of U for different random variables;

• Select the functional form of a utility function, fix some parameters to 1, and proceed by carrying out more utility
assessments;

Risk aversion is related to the mean-variance criterion. Assume quadratic utility:

U(x) = ax − 1
2bx2, where a > 0, b ≥ 0
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• This is increasing for x ≤ a/b;

• Assume that the initial wealth level is 0 (the result can be extended for positive wealth levels);

• Because E[Y 2] = V ar[Y ] + E[Y ]2, portfolio with random wealth Y has:

E [U(Y )] = E
[
aY − 1

2bY 2
]

= aE[Y ] − 1
2bE[Y 2]

= aE[Y ] − 1
2bE[Y ]2 − 1

2bV ar[Y ]

⇒ Thus, the optimal portfolio can be chosen based on expected return and variance for quadratic utility functions.
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