Aalto University
School of Science

MS-E2114 Investment Science Lecture IX: Basic options theory

Fernando Dias (based on previous version by Prof. Ahti Salo)
Department of Mathematics and System Analysis
Aalto University, School of Science
September 3, 2023

Overview

Price processes

Options

Options pricing theory

This lecture

- Last week, we covered contracts for forwards and futures
- For simple derivative securities, the theoretical price is straightforward to calculate using no arbitrage assumption
- In this lecture, we cover price processes and options
- The payoff from an option typically depends on timing, i.e., if and when the option is exercised
\Rightarrow Options pricing theory calls for the modelling of asset prices

Overview

Price processes Options Options pricing theory

Price processes

- Decisions about multiperiod investments can be analyzed by modelling asset prices as stochastic processes
- Discrete processes \Rightarrow binomial lattices
- These are simple and adequate for the analysis of many types of investments
- Additive model

$$
S(k+1)=a S(k)+u(k)
$$

- Multiplicative model

$$
S(k+1)=u(k) S(k)
$$

- Continuous processes \Rightarrow Itô-processes
- Price can change by any amount within a given period interval
- Some Itô-processes have analytical solutions
- Itô-process

$$
d x(t)=a(x, t) d t+b(x, t) d z
$$

Additive model

- Consider the price process

$$
S(k+1)=a S(k)+u(k), \quad k=0,1, \ldots, N-1,
$$

where $u(k)$ is random and a is constant (usually $a>0$)

- $S(k)$ is therefore $(k=1,2, \ldots, N)$

$$
\begin{aligned}
S(1) & =a S(0)+u(0) \\
S(2) & =a S(1)+u(1)=a^{2} S(0)+a u(0)+u(1) \\
S(3) & =a S(2)+u(2)=a^{3} S(0)+a^{2} u(0)+a u(1)+u(2) \\
& \vdots \\
S(k) & =a^{k} S(0)+\sum_{i=0}^{k-1} a^{k-1-i} u(i)
\end{aligned}
$$

Additive model

- Additive price process

$$
S(k)=a^{k} S(0)+\sum_{i=0}^{k-1} a^{k-1-i} u(i)
$$

- If $u(k)$ is normally distributed, the price process is a sum of normal random variables and hence normally distributed
- If $u(k)$ has zero expectation so that $\mathbb{E}[u(k)]=0$, the expected value of the additive price process is

$$
\mathbb{E}[S(k)]=a^{k} S(0)
$$

- The additive model is partly unrealistic
- $u(i)$'s can be negative $\Rightarrow S(k)$ can become negative, too
- The volatility of $S(k+1)$ given $S(k)$ is not proportional to $S(k)$, contrary to what is suggested by empirical studies of actual asset prices

Multiplicative model

- In the multiplicative model

$$
S(k+1)=u(k) S(k), \quad k=0,1, \ldots, N-1
$$

- Independent random variables $u(k)$ model the relative change of the price in one period
- The multiplicative model is additive in terms of the logarithms of price, because

$$
\begin{array}{rlrl}
S(k+1) & =u(k) S(k) & & \text { take } \ln \\
\Rightarrow \ln S(k+1) & =\ln S(k)+\ln u(k) &
\end{array}
$$

- If $w(k)=\ln u(k)$ are normally distributed, then $u(k)$ are lognormally distributed and

$$
\ln S(k)=\ln S(0)+\sum_{i=0}^{k-1} w(i)
$$

Multiplicative model

- Multiplicative price process

$$
\ln S(k)=\ln S(0)+\sum_{i=0}^{k-1} w(i)
$$

If $\mathbb{E}[w(k)]=\nu_{p}$ and $\operatorname{Var}[w(k)]=\sigma_{p}^{2}$, then

$$
\begin{aligned}
\mathbb{E}[\ln S(k)] & =\ln S(0)+k \nu_{p} \\
\operatorname{Var}[\ln S(k)] & =k \sigma_{p}^{2}
\end{aligned}
$$

- Real stock prices are approximately lognormal
- However, empirical distributions tend to have fatter tails than those of the lognormal distribution
\Rightarrow Extreme price changes are more frequent than predicted by the lognormal distribution

Comparison of fat tails with normal distribution

Source: Brown Advisory

Binomial lattice

- Model parameters $S_{0}, \Delta t, d, u$ and p

1. Initial price S_{0}
2. Period length Δt (e.g., one week)
3. Relative price changes down d and up u
4. Probability of price going up p

Binomial lattice

- The lattice can be constructed to conform to the desired expected growth rate and variance
- Let the ν and σ^{2} be the yearly expectation and variance of the logarithmic price process, respectively
- These are defined as

$$
\begin{aligned}
\nu T & =\mathbb{E}\left[\ln \left(S_{T} / S_{0}\right)\right] \\
\sigma^{2} T & =\operatorname{Var}\left[\ln \left(S_{T} / S_{0}\right)\right]
\end{aligned}
$$

- Note that there is an error in the course book as formulas are missing T (time in years)

Binomial lattice

- Period-specific parameters can be estimated from data as follows:

$$
\begin{aligned}
\hat{\nu}_{p} & =\frac{1}{N} \sum_{k=0}^{N-1} \ln u(k)=\frac{1}{N} \sum_{k=0}^{N-1} \ln \frac{S(k+1)}{S(k)} \\
& =\frac{1}{N} \sum_{k=0}^{N-1}[\ln S(k+1)-\ln S(k)]=\frac{1}{N} \ln \frac{S(N)}{S(0)} \\
\hat{\sigma}_{p}^{2} & =\widehat{\operatorname{Var}}[w(k)]=\widehat{\operatorname{Var}}[\ln u(k)] \\
& =\frac{1}{N-1} \sum_{k=0}^{N-1}\left[\ln \frac{S(k+1)}{S(k)}-\hat{\nu}_{p}\right]^{2}
\end{aligned}
$$

Binomial lattice

- Yearly parameters are linked to periodic estimates
- Both expectation and variance are additive in terms of time
- If p is the length of the period, then annual (no subscripts) and periodic parameters (subscripted by p) are related by

$$
\begin{aligned}
& \hat{\nu}_{p}=\hat{\nu} p \Leftrightarrow \hat{\nu}=\frac{1}{p} \hat{\nu}_{p} \\
& \hat{\sigma}_{p}^{2}=\hat{\sigma}^{2} p \Leftrightarrow \hat{\sigma}^{2}=\frac{1}{p} \hat{\sigma}_{p}^{2}
\end{aligned}
$$

- For a general time difference Δt, we have

$$
\begin{aligned}
\hat{\nu}_{\Delta t} & =\hat{\nu} \Delta t \\
\hat{\sigma}_{\Delta t}^{2} & =\hat{\sigma}^{2} \Delta t
\end{aligned}
$$

Fitting the lattice parameters

- Let $S(0)=1$ so that

$$
\mathbb{E}[\ln S(1)]=\mathbb{E}[\ln S(0)+w(0)]=p \ln u+(1-p) \ln d
$$

- Then the variance of the logarithmic price is

$$
\begin{aligned}
\operatorname{Var}[\ln S(1)]= & p[\ln u-p \ln u-(1-p) \ln d]^{2} \\
& +(1-p)[\ln d-p \ln u-(1-p) \ln d]^{2} \\
= & p(1-p)(\ln u-\ln d)^{2}
\end{aligned}
$$

- Denote $U=\ln u$ and $D=\ln d$ to obtain

$$
\begin{aligned}
\mathbb{E}[\ln S(1)] & =p U+(1-p) D \\
\operatorname{Var}[\ln S(1)] & =p(1-p)(U-D)^{2}
\end{aligned}
$$

Fitting the lattice parameters

- We now require that the expectation and variance match the annual desired values (here, Δt is period length):

$$
\begin{aligned}
p U+(1-p) D & =\nu \Delta t \\
p(1-p)(U-D)^{2} & =\sigma^{2} \Delta t
\end{aligned}
$$

- The quantities ν and σ^{2} are annual parameters
- There are three unknown parameters and only two equations
- This extra degree of freedom can be exploited to set $d=1 / u$ so that $D=\ln d=\ln 1-\ln u=-U$ and hence

$$
\begin{aligned}
(2 p-1) U & =\nu \Delta t \\
4 p(1-p) U^{2} & =\sigma^{2} \Delta t
\end{aligned}
$$

Fitting the lattice parameters

- These equations give

$$
p=\frac{1}{2}+\frac{1 / 2}{\sqrt{\sigma^{2} /\left(\nu^{2} \Delta t\right)+1}}, \quad U=\ln u=\sqrt{\sigma^{2} \Delta t+(\nu \Delta t)^{2}}
$$

- For small Δt, these are approximately equal to

$$
p=\frac{1}{2}\left(1+\frac{\nu}{\sigma} \sqrt{\Delta t}\right), \quad u=e^{\sigma \sqrt{\Delta t}}, \quad d=e^{-\sigma \sqrt{\Delta t}}
$$

- We have now fitted the parameters of the binomial lattice to match the desired parameters
- E.g, the observed expectation and variance of the price process

Overview

Price processes

Options

Options pricing theory

Aalto University

Options

- Option = A contract which gives its owner the right, but not obligation, to sell or buy an asset at prespecified terms
- Right to buy 1000 shares of company A for $20 €$ per share on 30 May 2024
- Right to sell 10 tons of oil for $100 €$ / barrel in March 2025
- Terminology
- Underlying asset = the asset which the option gives the right to buy or sell
- Call option = option to buy the asset
- Put option = right to sell the asset
- Expiration date $=$ date by/upon which the option must be exercised (and after which the option expires)
- Exercise/strike price = price paid for the asset when the option is exercised
- Premium = price of the option

Options

- American option can be exercised at any time before expiration
- European option can be exercised only on the expiration date
- Classification refers to contract type, not location!
- Upon expiry, the value of an option depends on the price of the asset and the strike price
- If the price of company A stock is $20 € /$ share, the value of an expiring put option for selling 1000 shares at $25 €$ /share is $1000 \times(25-20) €=5000 €$

Example: Nokia Call and Put Options

NOK Option Chain

Date	Option		Calls \& Puts		Moneyness		Type	
December 2023 V	Composite		Calls \& Puts		All (Moneyness)		All (Types)	\wedge

Ige	Bid	Ask	Volume	Open Int.

Determining the premium

- The buyer of an option must pay a premium (the purchase price) to the seller of the option
- The premiums for options traded in exchanges are determined in the market
- Asset quantities, expiration dates and strike prices are all standardized

Risks of options

- The risk associated with an option is asymmetric for the seller and the buyer
- The buyer has the right - but no the obligation - to exercise the option
\Rightarrow Possible loss is limited to the size of the premium
- The seller of the options must fulfil his or her obligation if the buyer chooses to exercise the option
\Rightarrow The seller may incur losses (e.g., when selling call options and the price of the asset increases considerably above the strike price)
\Rightarrow Sellers are required to have margin accounts
- Options are often purchased in order to hedge one's position against risks

Overview

Price processes

Options pricing theory

Aalto University

Value of an option

- The value of an option depends on:

1. Price of underlying asset
2. Strike price
3. Time to expiry
4. Volatility of the price of the underlying asset
5. Interest rates
6. Dividends of the asset

Option value at expiration

- Consider a call with strike price K
- If at the time of expiry T, the price of underlying asset S is higher than K, then the value of the call is $S-K$
- If S is less than K, then the option is worthless
\Rightarrow Upon expiry, the value of the call is

$$
C=\max \{0, S-K\}
$$

- Consider a put with strike price K
- If at the time of expiry T, the price of underlying asset S is lower than K, then the value of the put is $K-S$
- If S is greater than K, then the option is worthless
\Rightarrow Upon expiry, the value of the put is

$$
P=\max \{0, K-S\}
$$

Option value at expiration

a) The value $C=\max \{0, S-K\}$ of a call at expiration
b) The value $P=\max \{0, K-S\}$ of a put at expiration

Time value of an option

- Let S_{t} be the price of the underlying asset at time $t<T$
- A call option is said to be
- In the money if $S_{t}>K$
- At the money if $S_{t}=K$
- Out of the money if $S_{t}<K$
- A put option is said to be
\Rightarrow In the money if $S_{t}<K$
- At the money if $S_{t}=K$
- Out of the money if $S_{t}>K$

Time value of an option

- Even if the call option is out of the money, the option still has value, because the price of the underlying asset may become higher before expiry

Other factors affecting the value of an option

$>$ Consider a call option which is out of the money
\Rightarrow The more volatile the asset, the greater the chance that its price will exceed the strike price

- Higher interest rates make call options more valuable
- Alternative 1: Buy 1000 shares at $\$ 10$ each for a total investment of \$10 000
- Alternative 2: Buy call options with $\$ 10$ strike price at $\$ 1$ for $\$ 1$ x $1000=\$ 1000$ and invest the rest $\$ 9000$ at the risk free interest rate. With higher rates, the return on this $\$ 9000$ is higher, making the call option more valuable

	Impact when factor increases	
Factor	Call	Put
Price of underlying asset	+	-
Strike price	-	+
Time to expiry	+	+
Price volatility of underlying asset	+	+
Prevailing interest rate	+	-
Dividends	-	+

Combining options

- Options are often combined to construct a given desired financial position
- Example: Butterfly spread
- Buy two calls with strike prices K_{1} and K_{3} such that $K_{3}>K_{1}$
- Sell two calls with strike price K_{2} such that $K_{1}<K_{2}<K_{3}$
- Usually K_{2} chosen so that it is close to the price of the underlying asset
- This portfolio has the following properties:

A: It yields a profit if the price of the underlying asset does not change much
B: It has a low risk even if the price of the underlying asset would change significantlv

Put-call parity

Theorem

(Put-call parity) Let C and P be the prices of a European call and a European put, both with a strike price of K and defined on the same stock with price S. The put-call parity states that

$$
C-P+d K=S
$$

where d is the risk-free discount factor to the expiration date.

Put-call parity

Proof: Consider the following position at time $t<T$:

1. Buy a call at C_{t}
2. Sell a put option at P_{t}
3. Deposit $d(t, T) K$ at the risk-free rate $(=1 / d(t, T)-1)$

Then, consider the following at time T :
A: If $S_{T} \geq K$, then the call yields a profit $S_{T}-K$, the put is worthless, and the deposit yields the cash flow $d(t, T) K / d(t, T)=K$
\Rightarrow Total cash flow is $\left(S_{T}-K\right)+K=S_{T}$
B: If $S_{T}<K$, then the call is worthless, the short position on put yields a loss of (i.e., you have to pay) $K-S_{T}$ and the deposit yields the cash flow K
\Rightarrow Total cash flow is $K-\left(K-S_{T}\right)=S_{T}$

Put-call parity

Thus, the position has the same value as the underlying asset at time T
\Rightarrow The position and the asset must have the same value at the preceding time t, too
Hence, at time t, it must hold that $C_{t}-P_{t}+d(t, T) K=S_{t}$.

Overview

Price processes

Options

Options pricing theory

