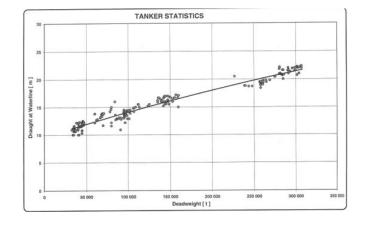

# MEC-E1004 Principles of Naval Architecture

*Lecture 3 – Main dimensions* 

# Learning points!

- After the lecture, you will be able to:
  - List and define terminology related to a ship's main dimensions
  - You will become familiar with (and be able to apply) approaches to determine a ship's main dimensions






# Assignment 3 – Main dimensions

- Determine your ship's main dimensions considering her mission & operational profile
  - Identify size constraints set by the route and ports, and discuss how they affect the design
  - Make use of statistics and empirical formulae
    - ✓ Feel confident on possible deviations from your reference ship
  - Define whether your ship is limited by weight, volume and/or main dimensions

|                  | TANKER STATISTICS |        |     |      |      |      |        |                |              |                |                         |
|------------------|-------------------|--------|-----|------|------|------|--------|----------------|--------------|----------------|-------------------------|
| Name             | Launch            | DWT    | Lee | В    | Tac. | D    | Po     | V <sub>0</sub> | Engine Speed | Engine Design  | Liquid Cargo            |
|                  | date              | ton    | m   | m    | m    | m    | kW     | kn             | rpm          |                | Capacity m <sup>3</sup> |
| SOLA VERDE       | 01.01.93          | 32 500 | 169 | 28.0 | 10.9 | 14,9 | 7 098  | .14            |              | 5RTA52         |                         |
| DA QING 73       | 01.07.93          | 34 000 | 186 | 27.5 | 10,0 | 15.0 | 5 852  | 14             |              | SL50MC         |                         |
| ACTINIA          | 01.03.92          | 34 204 | 169 | 32,0 | 11,2 | 15,1 | 7 829  | 14             |              | 5L60MC         | 4790                    |
| DA GING 71       | 01,04.94          | 34 630 | 186 | 27,5 | 10,0 |      | 5 852  | 10             |              | 5L50MC         |                         |
| JO SPRUCE        | 01.04.93          | 35 000 | 176 | 32,0 | 10,6 | 14,0 | 10 415 |                |              | 6L60MC         |                         |
| TASMAN           | 01.02.90          | 35 367 | 176 | 26,8 | 11,6 | 15,9 | 8 679  | 15             | 117          | 5L80MC         |                         |
| IBNU             | 01.04.93          | 35 601 | 170 | 28.0 | 10,8 | 17,0 | 7 648  |                |              | SL60MC         |                         |
| BANDAR AYU       | 01.03.93          | 38 345 | 172 | 28,0 | 11,0 | 16,6 | 7 855  | 15             |              | 6L50MC         | 4190                    |
| TANDJUNG AYU     | 01.01.93          | 36 362 | 172 | 28,0 | 11,0 | 18,6 | 7 068  | 15             |              | 6S50MC         | 4572                    |
| DURGANDINI       | 01.11.92          | 36 406 | 172 | 28,0 | 11,0 | 16,6 | 7 655  | 15             |              | 6L50MC         | 4572                    |
| CAMPODOLA        | 1000000           | 36 522 | 192 | 26,5 | 10,7 | 14,0 | 10 738 | 15             |              | 7K74EF         | 309                     |
| JO CEDAR         | 01,11.93          | 36 800 | 176 | 32,0 | 10,6 | 14,0 | 10 415 |                |              | 6L60MC         |                         |
| PANCA SAMUDRA    | 01.02.93          | 37 087 | 166 | 30,5 | 10,9 | 16,9 | 7 355  | 15             |              | 6RTA52         | 4297                    |
| PERGIWO          | 01,11.92          | 37 087 | 166 | 30,5 | 10,9 | 16,9 | 7 355  | 15             |              | 6RTA52         | 4291                    |
| SAD SAMUDRA      | 01.05.93          | 37 087 | 166 | 30,5 | 10,9 | 16,9 | 7 355  | 15             |              | 6RTA52         | 4297                    |
| AKATSUKI MARU    | 01.04.92          | 37 999 | 172 | 31,0 | 12,2 | 18,2 | 7.090  | 14             | 96           | 6L60MC         | 5090                    |
| DIAMANT          | 01.12.92          | 39 768 |     | 28,0 | 12,0 | 16,8 | 8 421  | 15             |              | K6SZ70/150     |                         |
| RUBIN            | 01.12.93          | 39 768 |     | 28,0 | 12,0 | 16,8 | 8 421  | 16             |              | K6SZ70/150     |                         |
| TOMIS NORTH      | 01,10.92          | 39 768 | 180 | 28,0 | 12,0 | 16,7 | 8 421  | 14             |              | 6DKRN60/195-10 | 4454                    |
| TOPAZ            | 01.02.94          | 39 768 |     | 28,0 | 12,0 | 16,8 | 8 421  | 15             |              | K6SZ70/150     |                         |
| FOLEGANDROS      | 01.03.92          | 39 900 | 174 | 32,2 | 11,0 | 19,0 | 6.767  | 14             |              | 6S50MC         | 5640                    |
| CAPTAIN ANN      | 01,11,91          | 40 000 | 168 | 32,2 | 10,9 | 17,0 | 7 279  | 14             |              | SUECEOLS       |                         |
| IVER EXPLORER    | 01.05.90          | 40 077 | 169 | 32,0 | 11,2 | 15,1 | 8 679  | 14             | 117          | SL60MC         | 4505                    |
| MOSOR SAILOR     | 01.06.91          | 40 490 | 169 | 32,0 | 10,0 | 15,1 | 7 649  | 14             |              | 5L60MC         |                         |
| HALIA            | 01.06.93          | 40 549 | 174 | 32,2 | 12,2 | 18,0 | 7 457  | 14             |              | 6S50MC         | 5286                    |
| BRITISH ADMIRAL  | 01.02.90          | 41 100 |     | 30,6 | 10,0 |      | 5 149  | 14             |              | 6UEC52L8       | 4800                    |
| NAVIX ERICA      | 01.11.91          | 41 430 | 172 | 30,0 | 11,7 | 18,4 | 7 134  | 14             |              | 5860MC         | 5249                    |
| MELODIA          | 01.01.92          | 41 450 | 172 | 30,0 | 11,7 | 18,4 | 7 134  | . 14           |              | 5S60MC         | 5249                    |
| MINAS LEO        | 01.04.92          | 41 476 | 172 | 30.0 | 11,7 | 18,4 | 7 134  | 14             |              | 5S60MC         | 5249                    |
| BELLUS           | 01.08.91          | 41 490 | 172 | 30,0 | 11,7 | 18,4 | 7 134  | . 14           |              | 5S60MC         | 5249                    |
| EMERALD RIVER    | 01.04.91          | 41 502 | 172 | 30,0 | 11,7 | 18,4 | 7 134  | 14             |              | 5S60MC         | 5249                    |
| ANTONIO D'ALESIO | 01.09.90          | 42 005 | 170 | 29,5 | 12,3 | 16,6 | 7 988  | 14             |              | 6RTA52         | 4802                    |
| BRIGHT EXPRESS   | 01.09.92          | 42.235 | 171 | 31,3 | 11,5 | 17,8 | 9.378  | 14             |              | 5S60MC         | 4846                    |
| DYNAMIC EXPRESS  | 01.12.92          | 42 253 | 171 | 31,3 | 11,5 | 17,8 | 9 378  | 14             | 102          | 5860MC         | 4647                    |
| KANG YUN         | 01.10.91          | 43 404 | 182 | 32,1 | 11.5 | 15,9 | 9.267  |                |              | 7RTA72         |                         |

TANKED STATISTICS





### **Selection of main dimensions**

Question: Why is the selection of a ship's main dimensions important?

### Why the selection of main dimensions is key?

- They define to large extent a ship's technical and economical performance
  - Set constraints for ship's usage
- Mistakes done in the selection of a ship's main dimensions are very costly (or impossible) to correct in subsequent design/building phases





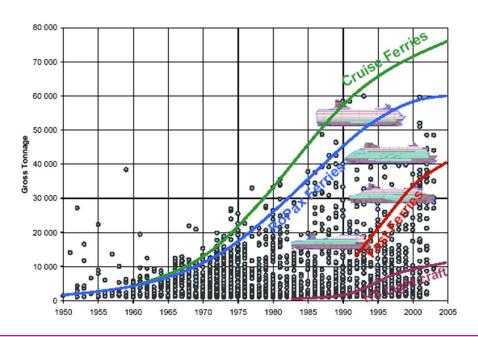



Image credit J-P Rodrigue



# Why the selection of main dimensions is key? (Examples)

Trend towards larger ships to achieve higher cost-efficiency



Why the selection of main dimensions is key? (Examples)

Early container ship (1956-) Side of the container ship (1956-)

Load carrying capability (buoyancy)

Hull resistance in still and deep water and in waves

Stability (safety)

Seaworthiness

- the motions, the accelerations and the loads from water in rough seas are to be as small as possible
- Longitudinal Strength
- Cost efficiency
  - Scale efficiency → Generally, for fully utilized ships, the costefficiency (e.g. cost per passenger or cargo unit) increases by size

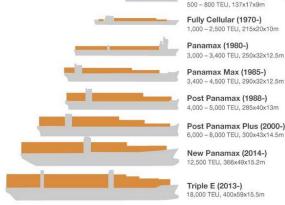



Image credit J-P Rodrigue



# Selection of main dimensions – Length (L)

#### **Determined considering**

- Required cargo capacity
  - L is a general factor of size
- Hull resistance
  - Calm water resistance is sensitive to hull length
  - The Length-breadth ratio L/B is typically 4 10
- Longitudinal strength
  - The length-depth ratio affects the strength of the hull girder
  - $L/D \approx 10 18$
- Physical constraints set by
  - Shipyard facilities (e.g. Meyer Turku's building dock is 365 m long)
  - Channel docks
  - Port facilities
  - Fairways
  - ...



Image credit Meyer Werft

### Selection of main dimensions – Drought (T)

- Also referred to as draft
- T is dependent on the Archimedes law
  - Tincreases until the weight of the displaced water equals the weight of the ship
  - Several load condition specific definitions within the maximum and minimum allowed T values
- Generally T should be as large as possible to
  - Enable a large propeller diameter for high energy efficiency
  - To minimize slamming in rough seas
    - Draft-length ratio T/L (≈0,035 0,05) affects the bow slamming in rough seas
- Often limited by physical constraints (shallow water)
  - Restrictions set by ports and the associated waterways are found in port catalogues

### Selection of main dimensions – Breadth (B)

- A general factor of size
- Determined considering
  - Cargo carrying capacity (e.g. the number of lanes on a RORO ship, or the number of side-by-side containers on a cargo ship)



Image credit Finnlines

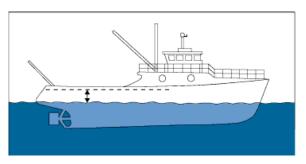
- Transverse stability
  - Increase in B  $\rightarrow$  additional stability
  - Both the Breadth-Draft ratio B/T ( $\approx$ 2,3 4,5) and the Breadth-Depth ratio B/D ( $\approx$ 1.75 -3), affects the transversal stability of a ship
- Hull resistance
  - Added resistance (e.g. wave resistance) is sensitive to B, calm water resistance not so much
- Physical constraints (e.g. set by channels, docks, etc.)



Image credit mjolnershipping.com

## Selection of main dimensions

Depth (D) and Freeboard (F)


### Depth (D)

- A general volume factor
- A strength factor

#### Freeboard (F)

Sufficient freeboard is essential for stability. If the deck edge goes under the water when the vessel heels, the danger of capsizing is great.

#### Sufficient freeboard



#### Overloaded vessel → Too low freeboard

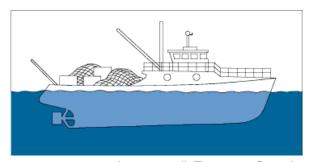
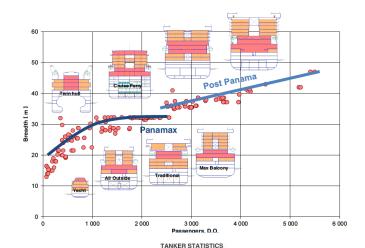



Image credit Transport Canada

### Selection methods for main dimensions

#### Based on a reference ship

- The main dimensions are determined based on a reference ship
- The dimensions can be modified using the Normand's number approach


#### Based on statistical data

- The main dimensions are selected based on statistically determined regression curves
- The statistics should be comprehensive including tens of delivered ships

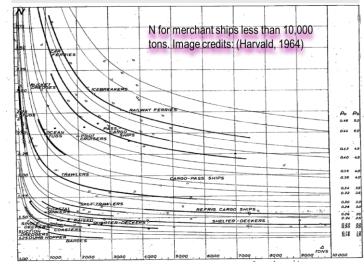
#### Based on direct calculations

- The main dimensions and displacement equilibrium are determined based on direct calculations

Regardless of method, the selection of the main dimension is an iterative process



| Name             | Launch   | DWT    | Lee  | В    | Two  | D    | Pa     | Vs | Engine Speed | Engine Design  | Liquid Ca | rgo .          |
|------------------|----------|--------|------|------|------|------|--------|----|--------------|----------------|-----------|----------------|
|                  | date     | ton    | m    | m    | m    | m    | kW     | kn | rpm          |                | Capacity  | m <sup>3</sup> |
| ISOLA VERDE      | 01.01.93 | 32 500 | 169  | 28,0 | 10,9 | 14,9 | 7 098  | 14 |              | 5RTA52         |           |                |
| DA QING 73       | 01.07.93 | 34 000 | 186  | 27.5 | 10.0 | 15.0 | 5 852  | 14 |              | 5L50MC         |           |                |
| ACTINIA          | 01.03.92 | 34 204 | 169  | 32,0 | 11,2 | 15,1 | 7 829  | 14 |              | 5L60MC         |           | 4796           |
| DA QING 71       | 01.04.94 | 34 630 | 186  | 27.5 | 10.0 |      | 5 852  | 10 |              | 5L50MC         |           |                |
| JO SPRUCE        | 01.04.93 | 35 000 | 176  | 32,0 | 10,6 | 14,0 | 10 415 |    |              | 6L60MC         |           |                |
| TASMAN           | 01.02.90 | 35 367 | 176  | 26.8 | 11,6 | 15,9 | 8 679  | 15 | 117          | 5L60MC         |           |                |
| IBNU             | 01.04.93 | 35 601 | 170  | 28,0 | 10,8 | 17,0 | 7 648  |    |              | 5L60MC         |           |                |
| BANDAR AYU       | 01.03.93 | 38 345 | 172  | 28.0 | 11.0 | 16,6 | 7 855  | 15 |              | 6L50MC         |           | 4195           |
| TANDJUNG AYU     | 01.01.93 | 36 362 | 172  | 28,0 | 11,0 | 16,6 | 7 068  | 15 |              | 6S50MC         |           | 45721          |
| DURGANDINI       | 01.11.92 | 38 406 | 172  | 28.0 | 11,0 | 16,6 | 7 855  | 15 |              | 6L50MC         |           | 4572           |
| CAMPODOLA        |          | 36 522 | 192  | 26,5 | 10,7 | 14,0 | 10 738 | 15 |              | 7K74EF         |           | 3894           |
| JO CEDAR         | 01.11.93 | 36 800 | 176  | 32.0 | 10,6 | 14,0 | 10 415 |    |              | 6L60MC         |           |                |
| PANCA SAMUDRA    | 01.02.93 | 37 087 | 166  | 30,5 | 10,9 | 16,9 | 7 355  | 15 |              | 6RTA52         |           | 4297           |
| PERGIWO          | 01,11,92 | 37 087 | 166  | 30,5 | 10,9 | 16,9 | 7 355  | 15 |              | 6RTA52         |           | 4297           |
| SAD SAMUDRA      | 01.05.93 | 37 087 | 166  | 30,5 | 10,9 | 16,9 | 7 355  | 15 |              | 6RTA52         |           | 42974          |
| AKATSUKI MARU    | 01.04.92 | 37 999 | 172  | 31,0 | 12,2 | 18,2 | 7 090  | 14 |              | 6L60MC         |           | 50997          |
| DIAMANT          | 01.12.92 | 39 768 | -    | 28,0 | 12,0 | 16,8 | 8 421  | 15 |              | K6SZ70/150     |           |                |
| RUBIN            | 01.12.93 | 39 768 |      | 28,0 | 12,0 | 16,8 | 8 421  | 15 |              | K6SZ70/150     |           |                |
| TOMIS NORTH      | 01.10.92 | 39 768 | 180  | 28,0 | 12,0 | 16,7 | 8 421  | 14 |              | 6DKRN60/195-10 |           | 44540          |
| TOPAZ            | 01.02.94 | 39 768 |      | 28,0 | 12,0 | 16,8 | 8 421  | 15 |              | K6SZ70/150     |           |                |
| FOLEGANDROS      | 01.03.92 | 39 900 | 174  | 32,2 | 11,0 | 19.0 | 6 767  | 14 |              | 6S50MC         |           | 56407          |
| CAPTAIN ANN      | 01.11.91 | 40 000 | 168  | 32,2 | 10,9 | 17,0 | 7 279  | 14 |              | 5UEC80LS       |           |                |
| IVER EXPLORER    | 01.05.90 | 40 077 | 169  | 32,0 | 11,2 | 15,1 | 8 679  | 14 |              | 5L60MC         |           | 45052          |
| MOSOR SAILOR     | 01.06.91 | 40 490 | 169  | 32,0 | 10,0 | 15,1 | 7 649  | 14 |              | 5L60MC         |           |                |
| HALIA            | 01.06.93 | 40 549 | 174  | 32,2 | 12,2 | 18,0 | 7 457  | 14 |              | 6S50MC         |           | 52884          |
| BRITISH ADMIRAL  | 01.02.90 | 41 100 | 0.00 | 30,8 | 10,0 |      | 5 149  | 14 |              | 6UEC52LS       |           | 48000          |
| NAVIX ERICA      | 01.11.91 | 41 430 | 172  | 30,0 | 11,7 | 18,4 | 7 134  | 14 |              | 5S60MC         |           | 5249           |
| MELODIA          | 01.01.92 | 41 450 | 172  | 30,0 | 11,7 | 18,4 | 7 134  | 14 |              | 5S60MC         |           | 52494          |
| MINAS LEO        | 01.04.92 | 41 476 | 172  | 30,0 | 11,7 | 18,4 | 7 134  | 14 |              | 5S60MC         |           | 52494          |
| BELLUS           | 01.08.91 | 41 490 | 172  | 30,0 | 11.7 | 18,4 | 7 134  | 14 |              | 5960MC         |           | 52494          |
| EMERALD RIVER    | 01.04.91 | 41 502 | 172  | 30,0 | 11,7 | 18,4 | 7 134  | 14 |              | 5960MC         |           | 52494          |
| ANTONIO D'ALESIO | 01.09.90 | 42 086 | 170  | 29,5 | 12,3 | 16,6 | 7 988  | 14 |              | 6RTA52         |           | 48025          |
| BRIGHT EXPRESS   | 01.09.92 | 42 235 | 171  | 31,3 | 11,5 | 17,8 | 9 378  | 14 |              | 5S60MC         |           | 4848           |
| DYNAMIC EXPRESS  | 01.12.92 | 42 253 | 171  | 31,3 | 11,5 | 17,8 | 9 378  | 14 | 102          | 5S60MC         |           | 48471          |
| KANG YUN         | 01.10.91 | 43 404 | 182  | 32.1 | 11.5 | 15,9 | 9 267  |    |              | 7RTA72         |           |                |




# Normand's no. (N)

Can be used to estimate the change in a ship's total weight i.e. the displacement change  $d\Delta$ , caused by scaling the size of a ship to accommodate extra/reduced weight dW

- Is defined as a ratio between the displacement and weight changes
- Starting point is the equilibrium between displacement and ship's weight
- The added weight dW causes the displacement change  $d\Delta$







# Reference Ship + Normand's no.

 Let's assume that the weight W<sub>i</sub> can be defined as a function of displacement Δ having the following format:

$$W_i = C_i \Delta^{k_i}$$
 (1)

The derivation of the equation in terms of the displacement results:

$$\frac{dW_i}{d\Delta} = k_i C_i \Delta^{k_i - 1} = k_i \frac{W_i}{\Delta}$$
 (2)

 When the both sides of the expression is multiplied by d∆ and the result is substituted into the weight equation, we get

$$d\Delta = dW + \frac{d\Delta}{\Delta} \sum k_i W_i (3)$$

# Reference Ship + Normand's no.

 After separating the variables, the following expression is obtained:

$$\left(\Delta - \sum k_i W_i\right) d\Delta = \Delta dW \qquad (4)$$

 When the derivative of the displacement with respect to the added weight is solved, the following expression is obtained for Normand's number N:

$$N = \frac{d\Delta}{dW} = \frac{\Delta}{\Delta - \sum_{i=1}^{n} k_i W_i}$$
 (5)

# Reference Ship + Normand's no.

- Lightship weight is composed of:
  - Hull weight W<sub>H</sub>, outfitting weight W<sub>O</sub> and machinery weight W<sub>M</sub>.
- Ship deadweight composed of:
  - Fuel weight W<sub>F</sub> and cargo weight W<sub>G</sub>.
- Let's derive the relationships between the weights and the displacement:
  - Hull and outfitting weight W<sub>H+O</sub> can be assumed to be function of the product of the ship length L, breadth B and depth D:

$$W_{H+O} = C_{H+O} * LBD$$
 (6)

Displacement as a function of the length L, breadth B and draught T gets

$$\Delta = \text{constant * LBT}$$
 (7)

 Assuming that the ratio between depth and draught D/T is constant, the relation between the weights and displacement is:

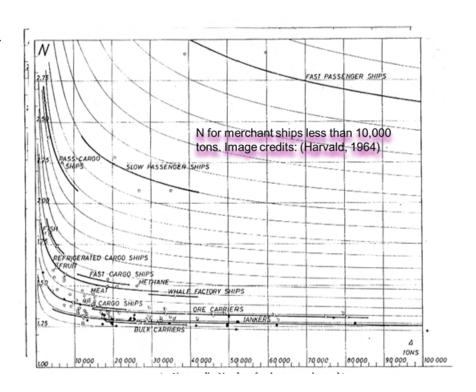
$$W_{H+O} = C_{H+O} * \Delta$$
 (8)

### **Selection of main dimensions**

 Assumption that machinery weight is related power P, the following expression can be written:

$$P = \frac{v^3 \Delta^{\frac{2}{3}}}{C_A}$$

And thus, the machinery weight is


$$W_M = C_M \Delta^{\frac{2}{3}}$$

 Fuel weight is related to the fuel consumption, which can be calculated based on power and operation time

$$W_F = C_F \Delta^{\frac{2}{3}}$$

 Based on the relation between the weights and displacements, Normand's number is:

$$N = \frac{d\Delta}{dW} = \frac{\Delta}{\Delta - W_H - W_O - \frac{2}{3}(W_M + W_F)}$$



# Statistical approach

- Different procedures can be followed to obtain first estimation of main dimensions
- The selection of the appropriate procedure depends on the available data, curves, empirical formula, etc.
- For example, if we are given: DWT, Speed (owner requirements) and we need to define the main particulars:
  - Get displacement from the tabular values of deadweight displacement ratios.
  - Length, C<sub>b</sub> and L/B can be calculated using regressionbased equations, suitable empirical formulas or tabular data.
  - ✓ Draft can be calculated using C<sub>b</sub>, B, L and displacement
  - ✓ Depth can be calculated based on the L/D ratio from statistical data.

|                                                          | 1                        | 2                                  | 3            | 4                                      | 5                                       | 6                                   |
|----------------------------------------------------------|--------------------------|------------------------------------|--------------|----------------------------------------|-----------------------------------------|-------------------------------------|
| Ship type                                                | Limits                   |                                    | DWT/Δ<br>(%) | W <sub>ST</sub> /W <sub>L</sub><br>(%) | W <sub>OT</sub> / W <sub>L</sub><br>(%) | W <sub>M</sub> / W <sub>L</sub> (%) |
|                                                          | Lower                    | Upper                              |              |                                        |                                         |                                     |
| General cargo ships (t DWT)                              | 5,000                    | 15,000                             | 65-80        | 55-64                                  | 19-33                                   | 11–22                               |
| Coasters, cargo ships (GRT)                              | 499                      | 999                                | 70-75        | 57-62                                  | 30-33                                   | 9-12                                |
| Bulk carriersa (t DWT)                                   | 20,000                   | 50,000                             | 74-85        | 68-79                                  | 10-17                                   | 12-16                               |
|                                                          | 50,000                   | 200,000                            | 80-87        | 78-85                                  | 6-13                                    | 8-14                                |
| Tankers <sup>b</sup> (t DWT)                             | 25,000                   | 120,000                            | 78-86        | 73-83                                  | 5-12                                    | 11-16                               |
|                                                          | 200,000                  | 500,000                            | 83-88        | 75-88                                  | 9-13                                    | 9-16                                |
| Containerships (t DWT)                                   | 10,000                   | 15,000                             | 65-74        | 58-71                                  | 15-20                                   | 9-22                                |
|                                                          | 15,000                   | 165,000°                           | 65-76        | 62 - 72                                | 14-20                                   | 15-18                               |
| Ro-Ro (cargo) (t DWT)                                    | $L \cong 80 \text{ m}$   | 16,000 t                           | 50-60        | 68-78                                  | 12-19                                   | 10-20                               |
|                                                          |                          | DWT                                |              |                                        |                                         |                                     |
| Reefers <sup>d</sup> (ft <sup>3</sup> ) of net ref. vol. | 300,000                  | 500,000                            | 45-55        | 51-62                                  | 21-28                                   | 15-26                               |
| Passenger Ro-Ro/ferries/<br>RoPax                        | <i>L</i> ≅85 m           | <i>L</i> ≅120 m                    | 16–33        | 56–66                                  | 23–28                                   | 11–18                               |
| Large passenger ships (cruise ships)                     | <i>L</i> ≅200 m          | $L \cong 360^{\text{e}} \text{ m}$ | 23–34        | 52–56                                  | 30–34                                   | 15–20                               |
| Small passenger ships                                    | <i>L</i> ≅50 m           | <i>L</i> ≅120 m                    | 15-25        | 50-52                                  | 28-31                                   | 20-29                               |
| Stern Trawlers                                           | $L \approx 44 \text{ m}$ | <i>L</i> ≅82 m                     | 30-58        | 42-46                                  | 36-40                                   | 15-20                               |
| Tugboats                                                 | $P_B \cong 500$<br>KW    | 3,000 KW                           | 20–40        | 42–56                                  | 17–21                                   | 38–43                               |
| River ships (towed)                                      | <i>L</i> ≅32 m           | <i>L</i> ≅35 m                     | 22-27        | 58-63                                  | 19-23                                   | 16-21                               |
| River ships (self-propelled)                             | <i>L</i> ≅80 m           | <i>L</i> ≅110 m                    | 78-79        | 69-75                                  | 11-13                                   | 13-19                               |
| Ship type Hull form                                      |                          |                                    | I            | Ratios                                 |                                         |                                     |
| coefficients                                             |                          |                                    |              | of main                                |                                         |                                     |

|                                       | coefficients                         |                  |                                      |                   | of main<br>dimensions                        |           |                                              |
|---------------------------------------|--------------------------------------|------------------|--------------------------------------|-------------------|----------------------------------------------|-----------|----------------------------------------------|
|                                       | $C_{\mathbf{p}}$                     | $C_{\mathrm{M}}$ | $C_{\mathbf{B}}$                     | $C_{\mathrm{WP}}$ | $L_{ m PP}\!/\!B$                            | B/T       | $L_{ m PP}/oldsymbol{V}^{1/3}$               |
| Fast seagoing<br>cargo ships          | 0.57-0.65                            | 0.97-0.98        | 0.56-0.64                            |                   | 5.7–7.8                                      | 2.2–2.6   | 5.6–5.9                                      |
| Slow seagoing<br>cargo ships          | 0.66-0.74                            | 0.97-0.995       | 0.65-0.73                            | 0.80-0.86         | 4.8-8.5                                      | 2.1-2.3   | 5.2-5.4                                      |
| Coastal cargo<br>ships                | 0.69-0.73                            | -0.985           | 0.58-0.72                            | 0.78-0.83         | 4.5-5.5                                      | 2.5–2.7   | 4.2–4.8                                      |
| Small short sea<br>passenger<br>ships | 0.61-0.63                            | 0.82-0.85        | 0.51-0.53                            | 0.65-0.70         | 5.8-6.5                                      | 3.3-3.9   | 6.3-6.6                                      |
| Ferries                               | 0.53-0.62                            | 0.91-0.98        | 0.50-0.60                            | 0.69-0.81         | 5.9-6.2 <sup>a</sup><br>5.2-5.4 <sup>b</sup> | 3.7-4.0   | 6.2–6.9 <sup>6</sup><br>5.7–5.9 <sup>1</sup> |
| Fishing vessels                       | 0.61-0.63                            | 0.87-0.90        | 0.53-0.56                            | 0.76-0.79         | 5.1-6.1                                      | 2.3 - 2.6 | 5.0-5.4                                      |
| Tugboats                              | 0.61 - 0.68                          | 0.75 - 0.85      | 0.50-0.58                            | 0.79 - 0.84       | 3.8-4.5                                      | 2.4-2.6   | 4.0-4.6                                      |
| Bulk carriers                         | 0.79-0.84                            | 0.990–<br>0.997  | 0.72-0.86                            | 0.88-0.92         | 5.0-7.1ª                                     | 2.1-3.2   | 4.7–5.6                                      |
| Tanker $F_n$<br>= 0.15                | 0.835-<br>0.855                      | 0.992-<br>0.996  | 0.82-0.88                            | 0.88-0.94         | 5.1-6.8                                      | 2.4-3.2   | 4.5–5.6                                      |
| Tankers $F_n$<br>= 0.16 - 0.18        | 0.79-0.83                            | 0.992-<br>0.996  | 0.78-0.86                            | 0.88-0.92         | 5.0-6.5                                      | 2.2-2.9   | 4.5–5.2                                      |
| Fast seagoing<br>reefers              | (0.55) <sup>c</sup><br>0.59–<br>0.62 | 0.96-0.985       | (0.53) <sup>c</sup><br>0.57–<br>0.59 | 0.68-0.72         | 6.7–7.2                                      | 2.8-3.0   | 6.1–6.5                                      |



### Note on tutorial

- Exercise 1: Three basic exercises on ship form coefficients to build up your knowledge and experience from Lecture 2
- Exercise 2: An example on reference ship and Normands No.
- Exercise 3: A step by step example on how to apply the statistical approach
- Exercise 4: An example on how to apply direct calculations
- Bonus information on statistical relationships between main dimensions (empirical charts)



### **Tools**

- Explanatory note on how to use the xls tools
- Database with information on statistical data for different ship types (not perfect but can be useful!)
- Calculation tool for Normand's no.

# **Summary and conclusions**

#### The main dimensions consist of

- Linear dimensions: length, breadth,...
- Area based dimensions
- Volume based dimensions

# The selection of appropriate main dimensions is very important as they define to a large extent a ship's technical and economical performance

- Can be selected/determined in various ways
  - Based on a reference ship
    - The dimensions can be scaled using the Normand's number
  - Based on statistical data
  - Based on direct calculations



Image credit pancanal.com

# **Summary and conclusions**

- Ship hydrodynamic performance, seakeeping, maneuvering, stability, strength, etc. depend on the selection of the main dimensions and their ratios.
- There are different methods to obtain the first estimation of the main dimensions
  - ✓ Based on a reference ship ( Normand's number can be used to define the new displacement )
  - ✓ Based on statistical data
  - ✓ Based on direct calculations
- Regardless of method, the selection of the main dimension is an iterative process that is sensitive to data availability and design novelty



# Thank you!