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ABSTRACT
The paper introduces a technique by which the hull girder shear forces and bending moments can be minimised,
based on the equality of the moments of higher order of the weight and buoyancy forces. Cargo hold weights
determined on the basis of these equalities can be shown to result to minimum bending moments and shear
forces. The proposal is illustrated in the simplified case of a barge and a 24000 tdw bulk carrier.
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1. Introduction

Traditionally, when trimming a ship, two equations are used: first, equality of ship weight
and buoyancy forces (zero moment) and second, equality of the static moments of ship weight and
displacement with respect to some point (first moment). Thus, the cargo load in two cargo holds or
tanks can be determined. As there are more than two cargo holds or tanks in a ship, one should
assume cargo load in the remaining cargo holds or tanks in order to have only two unknowns. This
practice works relatively well, but can be improved using computers.

There will be no trim, hull girder bending and shear if the distributions of the weight and
buoyancy forces are exactly the same. While this is not possible in real ships, the more high-order
moments of the two forces can be made equal, the smaller the hull girder bending and shear will be.
Thus one can increase the number of equations representing the equality of moments of the ship’s
weight and buoyancy forces up to the number of cargo holds and tanks to be loaded.

Lyuben D. Ivanov, American Bureau of Shipping, livanov@eagle.org
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2. Calculation of the Moments of Any Order

The mathematical base of the calculations is the integration by parts,∫ b

a
u(x)v ′(x)dx = [u(x)v(x)]ba −

∫ b

a
u ′(x)v(x)dx

which can be applied to moments of any order. For example, introducing elementary area dA(y) =
x(y)dy , as well as elementary static moment dSx(y) = ydA(y) = yx(y)dy and elementary moment
of inertia dIx(y) = y2 dA(y) = ydSx(y) with respect to x -axis, Fig. 1, we can calculate the area, the
static moment and the moment of inertia respectively as

A(y) =
∫ y

0
x(y)dy = x(y)y −

∫ y

0
x ′(y)ydy

Sx(y) =
∫ y

0
ydA(y) = yA(y)−

∫ y

0
A(y)dy

Ix(y) =
∫ y

0
ydSx(y) = ySx(y)−

∫ y

0
Sx(y)dy

Y

X

hdy

y

x(y)

c

Fig. 1: Example for rectangular triangle.
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Fig. 2: Illustration of simplified procedure.

Geometric interpretation in Fig. 2: Ix(y) is the area OAD, ySx(y) the area OADE, and∫ y
0 Sx(y)dy the area ODE. For example, if x(y) = c(1 − y/h), A = ch/2 , Sx(h) = ch 2/6

and Ix(h) = ch 3/12 . The error of the trapezoidal rule of numerical integration for a rectangular
triangle is 0.22%. The same principle can be applied to real ships, see an example in figures 3 to 5
for a 47000 tdw product tanker. The distance from point O to any transverse section is presented in
dimensionless form, ξ = x/Lpp . The first dimensionless integral function of the lightweight η(ξ) is
defined as

η(ξ) =
P(ξ)
PLW

=
1

PLW

∫ ξ

0
p(ξ)dξ

P(ξ) is the lightweight aft of ξ, PLW is the total lightweight, p(ξ) in Fig. 3 is the lightweight
distribution, and P(ξ) is the integral function of p(ξ).

The second integral function is defined with respect to point O as

m(ξ) = ξp(ξ)−
∫ ξ

0
η(ξ)dξ

This corresponds to the area OABC less the area OAB in Fig. 3. Fig. 6 gives an example (note different
scales used for η and m ).
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Fig. 3: Lightweight distribution and its first dimensionless
integral function η(ξ) of a 47000 tdw product tanker.
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Fig. 6: Integral functions η(x) and m(x) for the
lightweight of a 47000 tdw product tanker.

The ship’s equilibrium is described by the following equations (n is the number of cargo holds
to be loaded):

MP ,0 = MB ,0 MP ,1 = MB ,1 ... MP ,n = MB ,n (1)

The subscripts P and B denote weight and buoyancy forces, respectively. The second subscript
denotes the order of the corresponding moment (0 for zero moment, 1 for the first moment and n for
the n th moment). The ‘zero’ moment is equal to the buoyancy or ship’s weight; the ‘first’ moment is
equal to the static moment of the buoyancy or of the ship’s weight etc.

If one assumes that the ship will be loaded up to its design draught, one can use the curve
of the immersed cross-sectional areas for the calculation of the required moments of the buoyancy
forces following the outlined procedure.

The unknown parameters in the ship’s weight are the cargo weights in the cargo holds or
tanks envisaged for loading. For convenience, the moments of the ship’s weight are presented in the
following form:

MP ,i = MP ,i ,k + MP ,i ,u

The subscript k denotes all known weight components (lightweight, weight of the fuel oil, lubricants,
potable water and water for the machinery, weight related to the crew etc.). The subscript u denotes
the unknown moments of the cargo in the cargo holds or tanks envisaged for loading. We can write

MP ,i ,k = MLW ,i + Mf ,i + Mw ,i + ML ,i + Mc ,i

MLW ,i , Mf ,i , Mw ,i , ML ,i and Mc ,i are the i th order moments of the lightweight, fuel oil, water, lubricants
and of the weight related to the crew, respectively.
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It is convenient to express the unknown moments of the cargo weights in the cargo holds or
tanks envisaged for loading through the moments of the corresponding volumes. These moments can
be accurately calculated when the capacity plan is known. Another way to perform the calculations
is to simplify the curve representing the cargo holds’ (or tanks’) volume distribution within the length
of each cargo hold (or tank) e.g. as a trapezoid. For example, for three cargo holds (or tanks), one can
write for MP ,i ,u :

MP ,i ,u = λ1 MV1 ,i + λ2 MV2 ,i + λ3 MV3 ,i

λ1 , λ2 and λ3 are unknown coefficients to be determined from eq. (1). They have the same dimension
as the specific weight of the cargo, i.e. t/m3 . MV1 ,i , MV2 ,i and MV3 ,i are the i th moments of the total
volume in the first, second and third cargo hold or tank envisaged for loading. Moments of higher
order than one cannot be calculated as a product of the weight and the corresponding lever powered
to 2 , 3 etc. The correct calculation requires integration (the above given procedure can be applied).
Some simplification is possible if the distribution of the volume available for cargo, fuel oil etc. is
approximated as trapezoid, Fig. 7; then the equation for n th moment Mn with respect to the axis of
comparison is

Mn =
1

x2 − x1

[
(y1 x2 − y2 x1 )

xn+1
2 − xn+1

1

n + 1
+ (y2 − y1 )

xn+2
2 − xn+2

1

n + 2

]
(2)

y(x) = y1 + (y2 − y1 )(x − x1 )/(x2 − x1 ) (3)

For n = 0 , 1 , 2 , 3 etc. Mn are respectively the area, static moment, moment of inertia, moment of
third order etc. of the trapezoid.
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Fig. 7: Simplification of the volume distribution for cargo,
fuel oil, lubricants etc.
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Fig. 8: Example for a floating homogeneous paral-
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3. Simple Example

Before applying the proposed procedure to ship’s trimming, a simple example for a homoge-
neous floating parallelepiped is considered. The weight is assumed equal to buoyancy forces and
the centre of mass above the centre of buoyancy. A parametric study was performed by changing
gradually the value b (Fig. 8) from 0 to a while keeping the weight and centroid constant. For each
combination of b and c , the maximum bending moment acting on the parallelepiped was calculated
together with the moments up to sixth order.

To avoid working with large numbers, present the n th moment as Mn = ρn
nP , where P denotes

weight, buoyancy force, volume etc. For comparison between different cases, it is convenient to
present the gyradius rn in dimensionless format as rn = ρn/`, where ` is a characteristic length.

Fig. 9 shows the load intensity, shear force and bending moment distributions; the correspond-
ing equations are:

q(x) =
{

(c − a)(1 − 4x/`) for x ≤ `/2
(c − a)

[
2
` (2x − `)− 1

]
for x > `/2

Q(x) =
{

(c − a)x(1 − 2x/`) for x ≤ `/2
(c − a)

(
x − `

2

) [
2
`

(
x + `

2

)
− 3

]
for x > `/2

M(x) =

{
(c − a)x2

(
1
2 −

2
3

x
`

)
for x ≤ `/2

(c − a)
[
`2

24 +
(
x − `

2

) (
5`
12 −

7x
6 + 2

3
x2

`

)]
for x > `/2

The effect of the difference between the radii of gyration of weight and buoyancy forces of
different order on the maximum of the bending moment is summarised in Fig. 10. One can observe
the linear dependency of the bending moment on the difference between the second-order radii of
gyration of weight and buoyancy forces, which coincides with the findings in Ivanov (2006). The
dependency of the bending moment on the difference between higher-order radii of gyration of weight
and buoyancy is nonlinear. The dependencies of the bending moment on the difference between
the radii of gyration of weight and buoyancy for orders higher than three are very close. One can
also observe that the smaller the difference between the moments, the smaller the bending moment.
For example, if the difference between the dimensionless second-, third- and fourth-order radii of
gyration of the weight and buoyancy forces is 0 .03 , the bending moment reduces by 15, 40 and 46%,
respectively. Further reduction of the difference between higher order radii of gyration does not
reduce bending moment significantly (the reduction of the bending moment is calculated relatively to
the basic case b = 0 , Fig. 8).
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Fig. 9: Load intensity q(x), shear force Q(x) and
bending moment M(x) for the simple example.
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denote weight and buoyancy forces, respectively.
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4. Example for a 24000 tdw Bulk Carrier

The example refers to a 24000 tdw bulk carrier designed as a mathematical model to test the
proposed methodology. Its main dimensions: Lpp = 172 .21 m, Loa = 178 .24 m, LWL = 175 .65 m,
BWL = 22 .8 m and D = 14 .11 m. The ship has five cargo holds.

4.1. Calculation of Lightweight

The lightweight of the ship is PLW = 7092 t with the centre of gravity at −0 .0745Lpp

from midship. The dimensionless integral curves used to calculate the values of the zero moment
(lightweight), first moment (static moment with respect to ship’s end) and second moments (moment
of inertia with respect to ship’s end) m0 , m1 and m2 are given in Fig. 11. They were calculated
following the above procedure. The dimensionless notation for the integral curves is introduced as

m0 (ξ) =
M0 (ξ)
PLW

=
PLW (ξ)

PLW
m1 (ξ) =

M1 (ξ)
PLW Loa

m2 (ξ) =
M2 (ξ)
PLW L 2

oa

The function µ(ξ) in Fig. 11 is the moment of weight (area, force, etc.) aft of section ξ with respect
to this section. The non-dimensional parameter α in Fig. 11 is the farthest point of the lightweight
distribution curve from the aft perpendicular.

Table 1 gives the absolute values of the moments for the weight forces (lightweight) together
with data for the buoyancy forces and the consumables (fuel oil, diesel oil, water, lubricants and
weight related to crew).

Tab. 1: Data for Mn .

M0 ,∆ M1 ,∆ M2 ,∆ M0 ,DW1 M1 ,DW1 M2 ,DW1 M0 ,LW M1 ,LW M2 ,LW

30913 2967065 336810433 2451 102122 4687704 7092 563080 64214181

The dimensionless function m0 (ξ) is the same as the function η(ξ) used for analytical calcula-
tion of shear forces in Ivanov (2006). The dimensionless integral function µ(ξ) used for analytical
calculation of bending moments in Ivanov (2006) is related to the introduced dimensionless integral
function m1 (ξ) as

m1 (ξ) = η(ξ)[ξ − α− µ(ξ)/η(ξ)]
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Fig. 11: Dimensionless integral functions µ(ξ), m0 (ξ),
m1 (ξ) and m2 (ξ) for the ship’s lightweight.
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Fig. 12: Dimensionless integral functions m0 (ξ),
m1 (ξ) and m2 (ξ) for the buoyancy forces.

4.2. Calculation of Buoyancy Forces

The ship’s displacement is ∆ = 30913 t with the centre 0 .0224Lpp from midship. The
dimensionless integral curves used to calculate the values of the moments m0 , m1 and m2 are given
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Fig. 13: Dimensionless integral functions m0 (ξ),
m1 (ξ), m2 (ξ) and µ(ξ) for the consumables and
weight related to crew.
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Fig. 14: Distribution of the total cross-sectional area
and the area available for cargo loading.

in Fig. 12. They were calculated following the same procedure as for the weight forces. The absolute
values of the moments for the buoyancy forces are given in Table 1. For comparison, the moments of
weight and buoyancy forces are calculated with respect to different axes; they are recalculated with
respect to the aft end of Loa using the formulae of Appendix B.

4.3. Calculation of Deadweight

The deadweight is split into two parts, weight of consumables (fuel oil, diesel oil, water,
lubricants, weight related to crew) and cargo weight. The weight of consumables consists of heavy
fuel oil in main engine room (104 t), heavy fuel oil outside main engine room (1968 t), diesel oil
(127 t), lubricants (104 t), water for machinery (4 .6 t) and weight related to crew (145 t). The cargo
weight is 21370 t. The dimensionless integral functions of the consumables are shown in Fig. 13 and
the absolute values of the moments are given in Table 1.

The example considers the case when the ship is loaded in alternate cargo holds 1 , 3 and 5 .
These cargo holds should be so loaded that the ship will be on even keel and the still-water shear
forces and bending moments will be minimal. To determine the amount of cargo in each cargo hold,
one should solve a system of three algebraic equations using moments of zero, first and second order.
It is convenient to work with the volume of each cargo hold and use the specific weight of the cargo
as the unknown parameter.

Once obtained, the product of the cargo hold volume and the corresponding ‘virtual specific
weight’ will provide the absolute value of the cargo in the cargo hold. Then, using the stowage factor
of the cargo, one can determine the required portion of the cargo hold volume needed. In other words,
the mathematically derived ‘virtual specific weight’ consists of two components – specific weight of
the real cargo and coefficient of cargo hold volume usage.

Following eq. (1) and using the numerical data for the ship’s lightweight, displacement and
first part of the deadweight, one can write the following equation:

m∑
i=1

Vn ,i xi = Cn (4)

where Cn = Mn ,∆ −Mn ,DW1 −Mn ,LW .
If only three cargo holds are used for carrying the cargo, eq. (4) becomes

V0 ,5 x5 + V0 ,3 x3 + V0 ,1 x1 = C0

V1 ,5 x5 + V1 ,3 x3 + V1 ,1 x1 = C1

V2 ,5 x5 + V2 ,3 x3 + V2 ,1 x1 = C2

(5)

Here the letter V is used to distinguish the moments for cargo volumes from the moments for weight
and buoyancy forces. The first subscript denotes the order of the moment, the second subscript the
number of the cargo hold. The roots x1 , x3 and x5 can be found by any specialised computer program;
the input data and the results are shown in Tables 2 to 4.
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Fig. 18: Still-water shear force and bending moment.

The calculation of the n th moments of cargo hold volumes requires a capacity curve, which
provides information for the volume in each cargo hold and its longitudinal centre of gravity. For
the sample ship, the volumes available for cargo are shown in figures 14 and 15 together with
the volumes of the forepeak, after peak and the total volume below ship’s deck. The volumes are
non-dimensionalised with the total volume available for cargo in holds 1 , 3 and 5 , 15890 m3 .

The calculation of the n th moments of the cargo hold volumes is performed by the trapezoidal
rule following equations (2) and (3).

The example refers to a stowage factor of 0 .40 m3 /t (iron ore). For this case, the weight of
the cargo is distributed as 5869 , 13453 and 2048 t in holds 1 , 3 and 5 , respectively. Thus, the
coefficients of usage (the ratio between the used volume and the total volume) are 0 .52 (hold No. 1),
0 .92 (No. 3) and 0 .15 (No. 5). The load intensity and the still-water shear forces and bending moments
are shown in figures 16 to 18.

The method is efficient when the stowage factor of the cargo is such that no cargo hold is fully
used. If the stowage factor were 0 .435 m3 /t, the volume of cargo hold No. 3 would be fully used. If
the stowage factor were larger than 0 .435 m3 /t, only two unknowns remain, the cargo in holds 1
and 5 . In this case, only two equations are needed to balance the ship and the traditional practice for

Tab. 2: n th moments of the volumes of cargo holds.

V0 ,5 V0 ,3 V0 ,1 V1 ,5 V1 ,3 V1 ,1 V2 ,5 V2 ,3 V2 ,1

5503 5847 4542 259473 577394 678443 12541850 57350086 101588519

Tab. 3: Parameters Ci .

C0 C1 C2

21370 2301863 267908549

Tab. 4: Roots of Eq. (5).

x5 x3 x1

0.3721 2.3010 1.2923
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trimming the ship is to be followed. Nevertheless, the proposed methodology is still useful because it
indicates the best location of the cargo even though this location may be impossible due to limited
volumes of cargo holds. It might be difficult to implement the optimum solution in existing ships
because of the limitation imposed by the maximum cargo per hold (in the design stage, the strength
of the inner bottom and inner hull are already adapted to withstand the cargo as computed from the
variety of loading patterns).

5. Conclusions

A method for ship’s trimming and loading is proposed that uses moments of high order of the
weight and buoyancy forces. The more higher order moments of the weight and buoyancy forces are
equal, the smaller the hull-girder bending and shear will be. The existence of onshore and onboard
ships computers facilitates the application of the method.

Appendix A. Distribution of Buoyancy Forces

If data for the buoyancy forces are not available, one can use the following formulae as a first
approximation, Fig. 19:

y(xr) = A(1 − x2
r /r2 ) + δ(x2

r )(xr − r) y(xe) = A(1 − x2
e /e2 ) + nx2

e (xe − e)

δ = −12
r4 V − A [x2 − x1 + 2(e + r)/3 ] + e4 n/12

n = −Ee−4 [(e + r)/20 + (x2 − x1 )/12 ]−1

E = Smid + A
{

2
3

[
r
(

L
2 − x1

)
− e

(
x2 − L

2

)]
− 1

2

[
(x2 − x1 )(x2 + x1 − L) + (e2 − r2 )/2

]}
+
(

27
35 r + L

2 − x1
) {

V − A
[
x2 − x1 + 2

3 (e + r)
]}

V denotes buoyancy forces and Smid the static moment of the buoyancy forces with respect to midship
(positive when the centre of buoyancy is forward from midship). Smid is the product of the buoyancy
forces and the LCB from midship, Smid = VζB ,i Lpp , where ζB ,i is the dimensionless LCB from midship.
If LCB is not given, one can calculate it as a portion of Lpp based on data of Moor et al. (1961):

ζB ,i = 4 .366 − 11 .619CB + 7 .771C 2
B − 9 .613 Ti

T + 5 .112
( Ti

T

)2
+ 25 .12CB

Ti
T − 16 .41C 2

B
Ti
T

−13 .301CB
( Ti

T

)2
+ 8 .639C 2

B

( Ti
T

)2

Ti is the draught. This equation is valid for a ship on even keel, which suits the aim of this work.
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Fig. 19: Approximation of the buoyancy forces distri-
bution.
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Fig. 20: Transfer of n th moment to new axis.
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Appendix B. Transfer of n th Moment to Another Axis

Assume that n th moment of a given figure is calculated with respect to an axis through point
A (Fig. 20); the n th moment with respect to another axis through point B can be calculated using the
binomial formula

(a + x)n = an +
(

n
1

)
an−1 x +

(
n
2

)
an−2 x2 +

(
n
3

)
an−3 x3 + · · ·+

(
n
n

)
xn

with the binomial coefficients(
n
k

)
=

n(n − 1)(n − 2)...(n − k + 1)
k !

=
n!

k !(n − k)!
=
(

n
n − k

)
The equations up to n = 5 are

M1 ,B (x) = a M0 (x) + M1 ,A (x)
M2 ,B (x) = a2 M0 (x) + 2a M1 ,A (x) + M2 ,A (x)
M3 ,B (x) = a3 M0 (x) + 3a2 M1 ,A (x) + 3a M2 ,A (x) + M3 ,A (x)
M4 ,B (x) = a4 M0 (x) + 4a3 M1 ,A (x) + 6a2 M2 ,A (x) + 4aM3 ,A (x) + M4 ,A (x)
M5 ,B (x) = a5 M0 (x) + 5a4 M1 ,A (x) + 10a3 M2 ,A (x) + 10a2 M3 ,A (x) + 5aM4 ,A (x) + M5 ,A (x)

The subscripts A and B denote the n th moment with respect to the axis through points A and B ,
respectively; the subscripts 1 to 5 denote the moment order.
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