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ABSTRACT 

The ever increasing use of high-strength materials and ad- 
vanced technologies in surface ship structural design requires a 
very careful and systematic analysis to insure that levels of 
safety are maintained. This is much more easily said than 
done. The application of new technologies will not allow ex- 
trapolation of existing design criteria. Due to the uncertainties 
involved with future loading conditions, material properties, 
quality of workmanship in construction, and the limitations in 
numerical methods of analysis, the absolute safety of a Struc- 
ture cannot be established. It would therefore seem appro- 
priate to use methods of analysis which would attempt to ac- 
count for the various uncertainties and which allow the 
designer to limit the risk of unacceptable consequences. Esti- 
mation of this risk, even if used only to compare design alter- 
natives, can be a useful and economical tool. 

Structural reliability has its roots in the fields of civil and 
aerospace engineering and has made great strides forward in 
the last decade. Many methods have been proposed to evaluate 
the risk of structural failure. These methods include: first 
order second moment (FOSM), advanced second moment 
(ASM), and Monte Carlo simulation using both conditional 
expectation and antithetic variates techniques for variance 
reduction. AU of these methods consider the type of the prob- 
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lem, the various parameters involved, and the uncertainties 
associated with these parameters. In estimating the risk, the 
uncertainties are modeled as random variables with mean 
values, variance, and probability density and distribution 
functions. Each method uses this information in a different 
manner, involving some assumptions and limitations. 

In this paper we evaluate the available methods as to their 
suitability for estimating the risk of structural failure in ships. 
The merits and shortcomings of each method are discussed 
and each is then used to solve a simple example problem. The 
most effective method is chosen for more advanced work in 
this field. 

INTRODUCTION 

T h e  structural weight of naval surface combatants 
constitutes approximately 35% of the total lightship dis- 
placement, making hull structures the heaviest of all 
ship subsystems. Any improvements in vessel capability 
through growth of the mission related payload will 
necessitate an equivalent reduction in weight in some 
other subsystem. Because of the proportionally low cost 
of the hull subsystem, improvements can be made with- 
out drastically increasing total vessel cost as shown in 
Figure 1. 

How can structural weight be reduced? The use of 
new materials and technologies can provide a means of 
making the vessel lighter. But what about vessel 
strength? Current design criteria will become invalid or 
unrealistic as new materials and technologies are intro- 
duced. This is because the design criteria are typically 
codified in the form of simple equations or charts which 
are meant for a particular application. These usually 
contain some empirically derived factors of safety which 
may not be evident to the user. The use of these criteria 
can possibly lead to overdesigning the structure or, 
worse, underdesigning it without proper estimation of 
safety. 

Consequently, improved design criteria and analysis 
methods need to be developed. These methods should 
be capable of handling the new technologies and ma- 
terials as well as existing ones. Since the loading of a 
ship structure is mainly the sea, a truly random system, 
the most appropriate new method should be one which 
takes into account the randomness of both loading and 
structural properties to estimate the risk of unacceptable 
response. Many reliability or risk estimation methods 
have been proposed [ I  to 191 which consider these 
parameters. Uncertainties are modeled in terms of the 
mean, the variance, and the probability density and dis- 
tribution functions. The limitations and assumptions in- 
volved in each method are a result of how that method 
uses part or all of the statistical information available. 
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Figure 1. Functional breakdown of notional surface combatant. 

The aim of this paper is to evaluate the practical avail- 
able reliability methods and determine the most suitable 
for use in ship structures. 

STRUCTURAL RELIABILITY 

The definition of “reliability” according to Webster 
is “suitable or fit to be relied upon; worthy of de- 
pendence or reliance . . . suggests consistent depend- 
ability of judgment, character, performance, or 
results.” Structural reliability is, then, how well some 
structural system will perform with regard to a given ex- 
pectation. This can most easily be shown using the laws 
of probability. The reliability of a structure is the prob- 
ability that the structure will survive for a given period 
of time and/or under specified loading conditions. For 
a structural system this can be stated as: 

Probability of survival = P, = P(Strength 2 Load) 
or 

Probabilityof failure = Pf = 1 -P, = P(Strength < Load) 

Ideally, structures are designed so that the strength 
will always exceed the load, but realistically there is 
always some finite chance of failure. For generations, 
the “safe” design of a structure was accomplished by 
estimating the maximum load the structure could expect 

to experience in its lifetime, multiplying that by some 
constant (factor of safety), and requiring the strength to 
equal that value. 

A typical expression would be: 

Max LoadLif, x Factor of Safety = Design Strength 

The factor of safety is empirically arrived at to hope- 
fully account for all of the uncertainties involved in the 
design and construction of the structure. Typically, this 
factor was tempered by experience with past successful 
structures and acceptable standards of the day. Many 
shipbuilding and land construction codes are still based 
on this approach. 

In this country, the idea of treating both the load and 
the strength as random variables was first proposed by 
Freudenthal [l ,  21 and later improved upon by others [3 
to 91. This idea allows one to then treat the problem of 
reliability using statistical methods. In order to perform 
a reliability analysis, a mathematical model is first de- 
rived which relates the load and resistancelstrength 
parameters, called basic variables. This relationship is 
expressed in the form of a limit-state equation, for 
instance: 
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Figure 2. Probability density functions of load and strength. 

where the Xi’s are the basic variables; the load and 
strength random variables. 

Equation (1) defines the “failure” surface, such that 
failure occurs for g ( ) < 0. Here failure can be defined 
by the collapse, fracture, buckling, or just loss of service- 
ability of the structure. Then the probability of failure 
can be expressed as: 

Pf = \ ... \ fx (XI, XI, ... xn) dxl, dx2, ... dxn (2) 

where fx is the joint probability density function of XI, 
X2 ..., and the integration is performed on the region 
where g ( ) < 0. For a typical problem determining the 
probability density function (PDF) of a single basic var- 
iable may be difficult, let alone finding a joint PDF. 
Consequently, one of the assumptions typically made to 
make equation (2) more tractable is that the basic var- 
iables are statistically independent. 

Consider the case mentioned earlier, where the limit- 
state equation can be defined by just two basic variables 
in a linear combination. 

where R and Q are the resistance and load effects. 
For a limit-state equation in this form, the failure 

event becomes R - Q < 0 and the probability of failure 
is 

where FR is the cumulative distribution function of R 
and fQ is the probability density function of Q. 

Assuming that the load and strength are statistically 
independent random variables, they could be shown on 
a frequency diagram as in Figure 2. The probability of 
failure is represented by (however, not equal to) the 
overlap region [14]. This region is affected by the 
relative position of the distributions, that is the mean 
values of the strength and load. Reducing the mean 
value of the strength increases the overlap and thus the 
probability of failure (Figure 3). Changing the shape of 
the distributions by changing the variance about the 
mean value will also affect the probability of failure 
(Figure 4). It would, therefore, stand to reason that a 
measure of the reliability could be calculated from the 
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Figure 3. Effect of mean values on probability of failure. 

mean and variance (the first two moments) of the ran- 
dom variables. This idea is carried forward in some of 
the methods which are discussed next. 

The concept of structural reliability has been applied 
to ships principally by Mansour and Fallkner [6, 10, 11, 
12, 131. Their work in the last decade has been in- 
strumental in helping the classification societies and 
navies of their respective countries begin investigations 
into modifying existing design criteria to include a prob- 
abilistic type of analysis. One of the methods they pro- 
posed [l 11 will be discussed later. 

RELIABILITY METHODS 

The various reliability methods can be classified 
conveniently according to the manner in which they deal 
with the statistical properties of the basic variables. This 
Classification is common among most engineering dis- 
ciplines [8, 141. 

LEVEL 1 OR FIRST MOMENT METHODS 

These methods typically employ only an estimated or 
nominal value in the analysis of the reliability of a struc- 
tural event. The measure of reliability usually is a factor 
of safety in a form such as: 

m = R/Q 

0 f R  o r  f 

S t r e n q t h  

o v e r l a p  w i t h  new 
s t r e n g t h  V a r i a n c e  

Figure 4. Effect of variance on probability of failure. 
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where m is the factor of safety; R is the nominal resis- 
tance; Q is the working load. 

As mentioned earlier these factors of safety are con- 
ventionally arrived at based upon past experience and 
the intuition of the designer. The obvious disadvantage 
of this method is that it does not account for the uncer- 
tainties in the load and strength parameters. The failure 
probability is also dependent upon the shape of the den- 
sity function of each basic variable as shown in Figure 1. 
This method does not include the different shapes (or 
uncertainties) in the analysis. Admittedly, when the 
mean values are separated far enough (if the safety fac- 
tor is large enough) the variance of the basic variables 
becomes much less important. Unfortunately, this leads 
to a structure which might be typically expensive and 
inefficient. 

LEVEL 2 OR SECOND MOMENT METHODS 

These methods make use of the knowledge of the first 
moments of the random variable, i.e., the mean and 
variance. The resulting margin of safety is still a scalar 
quantity, and these methods are therefore considered 
semiprobabilistic. That is to say that they combine sta- 
tistics and determinism. These methods also vary in 
their sophistication in estimating the probabilistic 
nature of the basic variables. Two methods will be dis- 
cussed here. 

First Order Second Moment 

This is one of the oldest methods, dating from the 
1950s. The approximate mean and variance of Z in 
equation (1) can be estimated by expanding g(x) in a 
Taylor series about the mean value of the Xi's and trun- 
cate the series at the linear terms [5 ,  15, 161. This will 
provide the first order approximate mean and variance 
of 2: 

z = g (XI, x2,  ..., Xj) (4) 

For statistically independent basic variables, the vari- 
ance is given by: 

where Z is the mean value of 2; uz is the standard devia- 
tion of Z. 

The partial derivatives of g are evaluated at the mean 
values of all of the parameters. A second order mean 
and variance can be calculated by including the next 
higher level terms in the Taylor series expansion. This is 
commonly done for the mean value but not for the vari- 
ance because the procedure is much more involved. A 
measure of safety can be estimated in terms of the relia- 

bility index /3* from the knowledge of the mean and 
variance of Z 

- 
Z p* = - 
oz 

/3* is, in fact, just the reciprocal of the coefficient of 
variation of Z. If Z is assumed to be normally distri- 
buted then it can be readily shown that the probability 
of failure, Pf, is 

Pf = 1 -a@*) (7) 

where @ is the cumulative distribution function of the 
standard normal variate which is tabulated in many 
books on probability and statistics 115, 161. 

The weaknesses of this method lie in the linearization 
of the expansion of equation (1). When g( ) is non- 
linear, neglecting the higher order terms may, in fact, 
introduce significant errors. These errors are a result of 
choosing the mean value from equation (4) as the linear- 
ization point. It is possible, depending on the function 
g( ), for this mean point to not lie on the failure surface. 
Additionally, the reliability of index fl* will not be the 
same when different, though mechanically equivalent, 
formulations of the same problem are used, e.g., stress 
versus bending moment formulation [9, 141. This is to 
say that equations (4, 5, 6, 7) will only give correct 
results when the function g( ) is linear and Z is normally 
distributed. 

Advanced Second Moment 

As a result of dissatisfaction with the first order sec- 
ond moment method, several researchers [5 ,  171 pro- 
posed improvements to that method. Here the Taylor 
series expansion of g( ) is linearized at some point on 
the failure surface called the design or checking point, 
e.g. (XI*, XZ* .. X3*). This point is established by trans- 
forming the basic variables Xi to a set of reduced, un- 
correlated variables with zero mean and unit variance 
Xi*. The transformation is as follows: 

The safe state and the failure state can now be shown, 
separated by the failure surface, in the space of the re- 
duced coordinates in Figure 5 .  The equation describing 
the failure surface can now be written in terms of the re- 
duced coordinates as 

g (Ox1 XI* + XI, (7x2 x2* + a2, ..., OX" X"* + %") = 0 (9) 

One can see, by looking at Figure 5, that, as the fail- 
ure surface moves closer to or farther from the origin, 
the size of the safe region increases or decreases accord- 
ingly. Therefore, the position of the failure surface with 
respect to the origin of the reduced coordinates could be 
used as a measure of the reliability or safety. Hasofer 
and Lind [17] have shown that 0 is the minimum 
distance between the failure surface and the origin. It 
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Figure 5. Formulation of safety analysis in both original and 
reduced coordinates. 

has been further shown [18] that the point on the failure 
surface at the minimum distance from the origin is the 
most probable failure point. The object of the advanced 
second moment method is, then, to iterate until con- 
verging upon a minimum value of /3 by appropriately 
choosing the checking points on the failure surface and 
performing a first order analysis. The following system 
of equations represent this iteration [9]: 

xi* = x, - ai p uxi 

g(X,* x2* ,... ) X3*) = 0 

(1 1) 

(12) 

where the partial derivatives 6g/6xi are evaluated at the 
Xi*; ai is the direction cosine of the basic variable, Xi. 
The relationship between the probability of failure Pt 
and /3 remain the same as in equation (7) as long as all of 
the basic variables are normally-distributed. 

The case where the distributions of the basic variables 
Xi are non-normal may also be handled with this 

90 Naval Engineers Journal, May 1985 

method. This procedure is to evaluate /3 using equivalent 
normal distributions [9, 191. These are normal distribu- 
tions with the same cumulative distribution function 
and probability density functions at the checking point 
(XI*, XZ* ,... X3*) as the actual distributions for the 
basic variables. The mean value and standard deviation 
of the equivalent distribution at the checking point on 
the failure surface are given by 

where Fi and fi are the non-normal distribution and den- 
sity functions of Xi; $( ) is the density function of the 
standard normal variate. These two equations (13, 14) 
would precede equations (10, 11, 12) in the iterative pro- 
cedure described above. 

The principal difficulty with the advanced second mo- 
ment method lies in the complicated system of equations 
which must be developed and solved. As the number of 
basic variables increases, the solution process becomes 
long and the number of iterations required for a soh- 
tion increases. In addition, it is no simple task to auto- 
mate the process for a general form of limit-state equa- 
tion, principally because of the partial derivatives in 
equation (10). The process is capable of estimating solu- 
tions for nonlinear equations as well as equations with 
correlated basic variables [19]. However, the accuracy of 
the solution and convergence of the algorithm depends 
on the behavior of the limit-state equation in the vicinity 
of the origin. If there are several local minimum dis- 
tances to the origin, the solution process may not con- 
verge on the global minimum. Finally, the probability 
of failure is calculated from /3 using equation (7). Again 
this will only be an approximation because equation (7) 
assumes normally-distributed variables. 

LEVEL 3 OR PROBABILISTIC METHODS 

Level 3 methods are those in which calculations are 
made to determine the “exact” probability of failure of 
a structural element, making full use of a full proba- 
bilistic description of the basic variables. This can be 
done exactly if the joint PDF of the basic variables in 
equation (2) is known. In many cases even if the joint 
PDF is known the solution to equation (2) must be 
numerically approximated. An alternative means would 
be to use Monte Car10 methods to simulate the random 
variables and calculate the probability of failure from 
the limit-state equation. 

“EXACT” METHOD 

Mansour [6,  10, 111 and Faulkner [ l l ]  have applied 
this “exact” approach to the problem of the longitudinal 
strength of ships. The word exact is in quotes because 
even though a correct form of equation (2) is developed 
for the problem, the solution to the equation requires 
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numerical approximation. In this case a limit-state equa- 
tion of the following form was assumed 

R - Zn = g(x) 

where R is the strength of the ship for the particular 
failure mode investigated; Zn is the total extreme bend- 
ing moment. The strength is assumed to be normally 
distributed and the bending moment to be made up of a 
deterministic still water component and a wave com- 
ponent which follows a Weibul distribution. If statis- 
tical independence between load and strength is as- 
sumed, as commonly done in engineering, the prob- 
ability of failure is given as 

(15) 

where fR is probability density function of the load. In- 
cluding the equations for the cumulative distribution 
function of a standard normal distribution and the 
PDF of a Weibul distribution for the load, equation (15) 
becomes 

Pf = 1 - jr ‘P, (x) f R  (x) dx 

2 . EXP [ - l I 2 ( ~ )  Z-m, ] dz 

where N is the number of encounters or records used to 
find mean value of the wave bending moment; m, is the 
value of the deterministic still water bending moment; p 
and u are the mean and standard deviations of the 
strength; k and 2 are the Weibul characteristic value and 
distribution parameters. 

A close-form solution of equation (16) in this form is 
not possible. Consequently, Mansour [6] presented the 
following approximation to the “exact” solution for a 
long-term (ships lifetime) analysis. 

(17) 
Here the Weibul characteristics value k = A, the ex- 
pected value of the extreme wave bending moment and 
the shape parameter Q = 1. 

Within the field of naval architecture there has been a 
tendency not to pursue this formulation in favor of a 
semiprobabilistic method [8, 12, 13, 20, 211. This is due 
to the limited amount of data available to determine the 
precise form of the distribution of the basic variables 
and because the type of solution u given in equation (17) 
is not readily attainable for a general case or a case in- 
cluding coupling of the failure modes. 

SIMULATION METHODS 

Monte Carlo simulation techniques can be used to 
estimate the probabilistic characteristics of the func- 
tional relationship Z in equation (1). Monte Carlo, or 
direct simulation, consists of drawing samples of the 
basic variables according to their statistical properties 

and then feeding them into the limit-state equation. If it 
is known that failure occurs when g ( ) < 0 then an esti- 
mate of the mean probability of failure can be found by 

- Nf 
Pf = - N 

where Nf is the number of simulation cycles where g ( ) 
< 0; N is the total number of simulation cycles. Ob- 
viously, as N - 03, then pf - Pf, the true mean of the 
pppulation. The accuracy of equation (18) can be eval- 
uated in terms of its variance. For a small probability of 
failure and/or a small number of simulation cycles, the 
variance of pf can be quite large. Consequently, it may 
take a large number of simulation cycles to achieve a 
specified accuracy with an unknown probability of 
failure. 

T o  overcome this weakness investigators have pro- 
posed techniques to increase the efficiency of simulation 
methods by reducing the variance of the estimated out- 
put [9]. This type of investigation has led to several vari- 
ance reduction techniques (VRTs). Ayyub and Haldar 
[9] have shown that, for typical structural problems, 
combining two of these techniques, conditional expec- 
tation and antithetic variates, provides the most effi- 
cient results. A short description of the two techniques 
follows: 

a) Conditional expectation VRT. Utilizing the con- 
cept of conditional means and variances [15, 161 allows 
for the reduction of the variance of the simulated esti- 
mate of the probability of failure. For instance, if there 
is a function such that the probability of failure could be 
written as: 

It is obvious that the probability of failure depends on 
the value of R for a given value of Q. This can be writ- 
ten as: 

If the cumulative distribution function of R is known, 
then the solution of equation (19) becomes: 

The advantage of this technique in simulation 
methods is that the basic variable which is being condi- 
tioned on does not need to be generated at each simu- 
lation cycle, and, therefore, any uncertainties associated 
with that variable are removed. Consequently, one 
simply chooses to condition on the variable with the 
largest variance. The steps involved in the process are 
further explained later with a practical example. 

b) Antithetic variates VRT. Suppose that for two 
consecutive simulation cycles the estimated values of the 
limit state equation are Z P  and Zi”. These two esti- 
mates can be combined to form another estimator. 

(21) 

91 

zi = 1/2 [ Z P  + Zic”] 
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then the expected value of Zi will be given by: 

E [Zi] = 112 [E (Zi(')) + E(Zi(2)] = Z 

which says that Zi is an unbiased estimator of the popu- 
lation mean. It can be shown also that the variance of Zi 
is: 

V X  (Zj) = 1/4 [VZ (Zj')) + V X  (Z;')) + 2 * COV (22) 

(Zb'), ZP)] 

Now, if negative correlation between Z P  and Zj2) can 
be induced, the COV term in equation (22) will become 
negative which will, in turn, reduce the variance of the 
estimator Zi. 

Within a simulation algorithm this can most easily be 
accomplished when generating the random variables. If 
U is a random variable uniformly distributed between 0 
and 1, then 1-U is another random variable which is 
negatively correlated with U and is also uniformly dis- 
tributed between 0 and 1. Each of these variables is then 
used to generate a basic random variable Xi such that a 
pair of negatively correlated basic variables result. This 
is done for each basic variable in the limit-state equa- 
tion. The limit-state equations are solved for Z P  and 
Zi2). The average of these estimators are found using 
equation (21) and the estimate of the population mean 
value ?! is given by 

The advantages of simulation methods are most ap- 
parent in the analysis of complex probability problems 
which have mathematically intractable analytical 
models. Simulation methods can deal with problems in- 
volving coupling of failure modes, correlation between 
basic variables, and complex limit-states. However, the 
results of the simulation should be viewed in the same 
light as results of laboratory experiments. This is to say 
that no matter how intricate the simulation model, the 
results will only be as good as the assumptions involved 
in creating the model and the reliability of the data 
input. 

EXAMPLE PROBLEM 

In order to compare the methods just discussed, an 
example problem is solved using each method. The 
problem chosen for analysis is to determine the prob- 
ability of ductile yielding of a vessel's deck under ex- 
treme bending moments. Any of the other possible 
modes of failure could have been chosen, i.e., fatigue, 
plastic collapse, buckling, but the availability of data on 
this problem facilitated comparison of methods. The 
vessel chosen for the analysis is a naval frigate, the same 
one used by Mansour and Faulkner [ 111. The principal 
dimensions are given in Table 1 and the midship section 
is shown in Figure 6. 
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TABLE 1. Vessel Characteristics 

Length Between 
Perpendiculars 360 ft (1 10 m) 

Beam (moulded) 41.0 f t  (12.5 m) 
Depth 28.9 ft (8.78 m) 
Draft 12.0 ft (3.66 m) 
Displacement 2,800 tons (2,845 tonnes) 
Section Modulus 

(at deck) 5,700 in2 ft (1.12 m3) 

The problem is essentially a simple beam in bending 

Mu = CY 1%) 

and can be written as: 

where Mu is the ultimate bending moment; C is the sec- 
tion modulus of the vessel; and Y is the tensile yield 
stress of the vessel material. 

In order to see the effect of different, but mechani- 
cally equivalent, formulations on each method two 
limit-state equations will be used. The first limit-state 
equation is in a very simple linear form as used by Man- 
sour and Faulkner [ 1 11 : 

Z = R - Q  (25) 

where R is the resistance, given in tons/in2 and is equal 
to Y in equation (24); Q is the total load in tons/in2 and 
is equal to Mu/C in equation (24). 
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D i r e c t  
S i m u l a t i o n  

TABLE 2. Probabilistic Characteristics of Basic Variables 

Basic Variable Mean COV Distribution 

C o n d i t i o n a l  Exp. & 
A n t i t h e t i c  V a r i a t e s  

1 

Linear Formulation 
R 22.2 tons/in2 .071 Normal 
Q 2,696 tons/in2 539 Weibul (k = 1) 

Y 22.2 tons/in2 .061 Normal 
C 5,700 in2 ft .0379 Log-Normal 

Mo 7,080 ft-tons - Deterministic 
Mw 8,290 ft-tons 1 .O Weibul (k = 1) 

Nonlinear Formulation 

~ 

Next a more complicated nonlinear form of equation 
(24) is used. This form separates the wave and still-water 
bending moments, M, and M, respectively; and Z is ex- 
pressed in units of bending moment: 

Z = YC-Mo-Mw (26) 

The basic variables for each form are shown in Table 2 
along with their respective statistical properties. 

FIRST MOMENT METHOD 

As described earlier this method only makes use of 
the mean of nominal values of the basic variables. Since 
the two forms of the limit-state equation are mechani- 
cally equivalent one would expect the factor of safety 
based on mean values to be the same for both forms. 
This, in fact, holds true as shown below: 

F.S. = R/Q = (22.2 tons/in2) /( ) 7,080 + 8,290 
5,700 

= 8.23 
or 

L i n e a r  
Equa t ion  

z = R - Q  

No n - L i n ea I 
Equa t ion  

z = YC-Mo-MI L 

F.S. = YC / (M, + M,) = (22.2 x 5,700) / (7,080 + 8,290) 
= 8.23 

(Note: The values used above are mean values; nominal 
values were not available.) 

These results, along with the results from the other 
methods, are shown in Table 3. 

The weakness of this method in demonstrated by the 
value 8.23. What does it mean? Is this factor of safety 
unusually large? Factors of safety can really only be 
used to compare similar systems under similar loadings. 
In the case of ships, what could be an adequate factor of 
safety for a 3,000-ton frigate might be totally inade- 
quate for a 360,000-DWT tanker. 

SECOND MOMENT METHOD 

These methods are considered semiprobabilistic for 
the reasons stated earlier. Because they do consider the 
basic variables to have a degree of uncertainty associ- 
ated with them, an extensive study must be carried out 
to determine that uncertainty before these methods can 
be used. 

The strength uncertainties were evaluated in Refer- 
ences [6, 11, 221. In those studies the total coefficient of 
variation of the strength term in equation (25) was eval- 
uated using equation (5b). For the nonlinear case in this 
investigation, we will separate those uncertainties asso- 
ciated with the material properties and those associated 
with the configurations, structural geometries, and con- 
struction. The former is applied to Y in equation (26) 
and the latter to the C in the same equation. The distri- 
bution of Y has been shown in the literature [ 11, 221 to 
be approximated well by a normal distribution. For the 
section modulus, the central limit theorem suggests that 

TABLE 3. Example Problem Results 

F i r s t  Moment F i r s t  Order Advanced Kansour and 
Hethod Second Moment Second Moment Faul kner  11 

p*= 9.09 
z 10-20 

F.S. = 8 . 2 3  

Pf  - 

Normal 
,.f3 = 9.09 

pf 
10-20 5*% 4 .465  

Pf = 4 ~ 1 0 - ~  No n - Norma 1 
= 4.75 

Pf  2 . 9 7 ~ 1 0 - ~  

I f i * =  9.03 

Norma 1 
B = 9.48 

Normal 1- P f  10 -20 

** 

I COV = .9174 

**Nf = 0 for these cases 
***Solution format from Ref. [ 111 does not fit nonlinear limit-state equation form 
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for multiplicative models such as C, a log-normal distri- 
bution should be adopted. 

The statistics and distributions of the load variables 
M, and M, are estimated by the approach used by Man- 
sour [lo] and adopted by many since [ l l ,  13, 20, 221. 
This technique involves utilizing either strip-theory ship 
motions computer programs or extensive model testing 
to generate bending moment response amplitude op- 
erators (RAO). then using the principle of superposi- 
tion (a linear assumption) to obtain a bending moment 
spectrum and thus an RMS value of bending moment. 
This allows the calculation of the expected value of the 
extreme bending moment for long periods or for the en- 
tire vessel life. The approach is limited by the number of 
linearizing assumptions made and the imperfect knowl- 
edge of the vessel’s actual lifetime voyage pattern. 

FIRST ORDER SECOND MOMENT 

For the simple linear case given by equation (25), a 
solution can be quickly obtained by rearranging equa- 
tions (4 to 7) into the following [12]: 

where R, Q are the mean values of the strength and the 
load; UR, UQ are the standard - -  deviations of the strength 
and the load; 8 is equal to R/Q; VR, VQ are the coeffi- 
cients of variation of the strength and the load. Thus 
equation (25) yields: 

LL. I 
2.696-1 

f(8.23)’ (.071)’ + (.539)’ = 9.09 
p* = 

Pf = 1 - 9 (p*) = 1 0 2 0  

For the nonlinear case equations (4) through (7) must be 
followed more directly: 

(22.2 s) (5,700 in2 ft) - (7,080 ft-tons) - (8,290 ft- 

tons) 

111,170 ft-tons 

[uy2 ( E l 2  + u2 (Y)2 + 02m, + &,I 
[(22.2 x .061)2 (5,700)2 + (5,700 x .0374)2 (22.2)2 
+ 0 + (8,290 x 1)2] 

12,300.67 ft-tons 

1 - 9 (p*) = 10” 

ADVANCED SECOND MOMENT 

In order to test the effects of including the distribu- 
tion types on the solution, two cases were examined for 
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each of the equations (25) and (26). The first case is to 
assume all variables are normally distributed, as is the 
case in the first order method. The second case is to in- 
clude the form of the distribution as shown in Table 2. 

A computer program was written to facilitate the so- 
lution of each equation type. The programs are not dif- 
ficult to code, but there are enough differences between 
the solution algorithms to necessitate separate pro- 
grams. The solutions of the four trials are shown in 
Table 3. As expected the solution of the case for normal 
distributions is identical to the one using the first order 
second moment method (FOSM) for a linear limit-state 
equation. For the nonlinear equation the normal results 
again reflect the similarity in results with FOSM. 

The non-normal results for both limit-state equations 
show marked differences with the first order method. 
Obviously, this is due to including the knowledge of the 
distribution type. 

DIRECT SIMULATION 

Again, to compare the effects of distribution upon 
the probability of failure two cases were investigated for 
each type of limit-state equation. In all cases it is ob- 
vious from earlier results that the probability of failure 
is small, consequently the number of simulation cycles 
will be exceptionally large. The large number of simula- 
tion cycles required in all cases made finding solutions 
by this method unrealistic. As a result no solution was 
obtained using this method. 

CONDITIONAL EXPECTATION AND 
ANTITHETIC VARIATES VRT 

Solving either equation (25) or (26) is accomplished 
using the same fairly simple computer program. The 
primary steps involved are: 

Step 1) 

Step 2) 

Step 3) 

Step 4) 

Step 5) 

Step 6) 

Step 7) 

Step 8) 
Step 9) 

Identify the basic variable with the most vari- 
ability in the limit-state equation 
Condition the variable in step 1 with respect to 
all the remaining variables in the limit-state 
equation. 
Generate a uniformly distributed random 
deviate for each of the conditional variables. 
Generate a second uniformly distributed ran- 
dom deviate which is negatively correlated to 
the one from step 3. 
Using the inverse transform method produce a 
random variable for each deviate from step 4. 
Calculate the probability of failure using the 
probabilistic characteristics of the variable iden- 
tified in step 1 for each set of random variables. 
Find the average probability of failure for the 
two Pf‘s in step 6. 
Repeat steps 3 to 7 N times. 
Calculate the statistics of the N number of 
probabilities of failure thus generated. 

The results are shown in Table 3 for 2,000 simulation 
cycles. Figures 7 and 8 show how the simulation scheme 
converges on a solution with increasing N. 
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1.1 1 

0.80 o-o 400 NUMBER 800 OF SIMULATION CYCLES 1200 
1600 

Figure 7. Probability of failure vs. number of simulations 
using variance reduction techniques. 

DISCUSSION 

The example problem highlights some of the impor- 
tant characteristics of each of the reliability methods 
discussed. 

The conventional factor of safety method is not really 
a reliability method. The results do not indicate any- 
thing more than a means of ranking exactly similar sys- 
tems under identical conditions. Such a tool may be use- 
ful in testing equipment on an assembly line but is not 
really beneficial in ship construction. The principal 
problems with the approach are that 1) there is no way 
to relate factor of safety to an actual probability of fail- 
ure; 2) there is no way to include uncertainties in load or 
resistance; and 3) the method can just as easily lead to 
an unsafe design when attempting to use it on some un- 
conventional structure. 

The first order second moment method (FOSM) is a 
useful tool in cases where the basic variables are linearly 
related and can be considered normally distributed. As 
was shown in Table 3, the method breaks down rather 
badly when either of those conditions is not met. 

Because of the potentially different results when using 
the two different, but equal, limit-state equations one 
must be careful in using the p* value for comparing dif- 
ferent systems. It is very important to not only specify 
the value of p* but also the form of the limit-state equa- 
tion used. 

The advanced second moment method overcomes 
many of the problems with the FOSM method and is an 
efficient routine. For the example problems investi- 
gated, the method quickly came up with solutions which 
were later verified by the simulation methods. The 
method is capable of handling very complex problems, 
but, as the level of complexity increases, the uncertainty 
in the solution increases. In the case of highly nonlinear 
limit-state equations, as pointed out earlier, it is very 
possible to converge on a local minimum solution rather 
than on the system minimum. That difficulty, along with 

o’20d 

400 BOO 1200 1600 

NUMBER OF S I M U L A T I O N  CYCLES 

‘igure 8. COV of probability of failure vs. number of simu- 
lations using variance reduction techniques. 

the fact that it is extremely difficult to develop a general 
program for the solution of any form of limit-state equa- 
tion, somewhat dims the usefulness of this approach. 

The fully probabilistic approach by Mansour and 
Faulkner is somewhat limited in scope. Any change in 
the form of the limit-state equation or change in the as- 
sumed distribution types will require changes in equa- 
tions (15) to (17). So, while the method is fine for the 
special cases investigated, a considerable amount of ef- 
fort would be required to make a more general and use- 
ful solution system. Even if this was achieved the pro- 
cess would not be capable of dealing with problems 
where there is coupling of failure modes. 

The results of the direct simulation method clearly 
show why a number of investigators in structural relia- 
bility consider that ‘‘Monte Carlo methods should be 
avoided if at all possible” [14]. Because of the small size 
of the probability of failure the method was unable to 
come up with a solution in a large number of simulation 
cycles (= 500,000 simulation cycles). This enormous use 
of computer resources cannot be justified when other 
less expensive methods are available. 

Simulation using variance reduction techniques is 
much more efficient. The results in Table 3 are based on 
2,000 simulation cycles. Figures 7 and 8 show how the 
method converges on a solution. It is interesting to note 
that in as few as 50 simulation cycles the coefficient of 
variation of the solution is less than 10% and the solu- 
tion is correct to .1 x 106. Notice also in Table 3 the 
similarity of the solutions with the advanced second mo- 
ment method for both normal and non-normal basic 
variables. One advantage of the simulation with VRT is 
that the same computer program can be used for both 
types of limit-state equations and normal or non-normal 
basic variables. The limitation on simulation methods is 
the accuracy of the algorithm used to generate the ran- 
dom variables. As the probability of failure becomes 
smaller it is increasingly important for the simulation 
algorithm to correctly generate deviates in the tails of 
the distributions. 
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CONCLUSIONS 

The purpose of the investigation on which this paper 
reports was to determine which reliability method is the 
most suitable for use with ship structures. It should be 
obvious from Table 3 that the choice comes down to 
either the advanced second moment method or simula- 
tion method using VRT. The strong points of each have 
already been discussed. Based on the discussion pre- 
sented the authors believe the simulation method using 
VRT to be the most suitable. 

The major factor behind this decision is that the 
method is easily capable of handling complex problems, 
such as cases involving load combinations or coupling 
of failure mechanisms. Admittedly, as the complexity of 
the problem increases, the amount of computer time re- 
quired will also increase. Fifteen or twenty years ago 
the large amount of computer time required would 
make such an analysis cost prohibitive. Today, any 
number of smaller computer systems could adequately 
handle such a program, only the execution time would 
increase. The authors see this vast change in computer 
technology as an invitation to use simulation methods 
on problems which have heretofore been considered un- 
manageable. 

It is the intent of the authors to use the investigation 
in this report as groundwork for developing a simula- 
tion algorithm for investigating the ultimate strength of 
ship structures. Eventually, a system which will allow 
the designer to quickly investigate alternative configura- 
tions and materials and their effects on the whole struc- 
ture will be developed. 
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