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a b s t r a c t

We study a logistics scheduling problem where a manufacturer receives raw materials

from a supplier, manufactures products in a factory, and delivers the finished products

to a customer. The supplier, factory and customer are located at three different sites. The

objective is to minimize the sum of work-in-process inventory cost and transport cost,

which includes both supply and delivery costs. For the special case of the problem where

all the jobs have identical processing times, we show that the inventory cost function

can be unified into a common expression for various batching schemes. Based on this

characteristic and other optimal properties, we develop an O(n) algorithm to solve this

case. For the general problem, we examine several special cases, identify their optimal

properties, and develop polynomial-time algorithms to solve them optimally.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

The production logistics activity of enterprises is
typically composed of three stages, namely supply,
production and distribution. In recent years, much of the
literature has studied logistics scheduling that integrates
production scheduling and job delivery to customers. For
example, the reader is referred to Lee and Chen (2001),
Chang and Lee (2004), Chen and Vairaktarakis (2005), Hall
and Potts (2005), Pundoor and Chen (2005, 2009), Chen
and Pundoor (2006), and Wang and Cheng (2007, 2009a).
This line of research focuses on optimizing the total
distribution cost and customer service level. On the other
hand, for scheduling research that takes supply and
production into consideration, Selvarajah and Steiner
(2005) presented a polynomial-time algorithm to mini-
mize the sum of total inventory holding cost and product
batch delivery cost. Qi (2005) considered a logistics
scheduling model that deals with material supply and
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job scheduling at the same time, where the objective is to
minimize the sum of work-in-process (WIP) inventory
cost and raw material supply cost.

There are research results on logistics scheduling that
deals with all the three stages of supply, production and
delivery. Hall and Potts (2003) considered multiple-
production-stage scheduling with batch delivery in an
arborescent supply chain. They analyzed the complexity of
the problems and developed some dynamic programming
algorithms. Wang and Cheng (2009b) considered a
machine scheduling problem with supply and delivery of
materials and products, where the warehouse, the factory
and the customer are located at three different sites. The
objective is to minimize the makespan. They did not take
the WIP inventory cost into consideration.

In this paper we formulate a logistics scheduling model
that considers production scheduling, raw material supply
and product delivery at the same time. We assume that
the supplier, manufacturer and customer are located at
three different sites. Transportation service is provided by
a third party, so transport vehicles are available at any
time. The manufacturer needs to pay the third party for its
service to transport materials to the factory, and deliver
products to the customer. A job may be transported from
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the supplier’s warehouse to the manufacturer’s factory at
any time just before it starts processing, and a product is
available for delivery to the customer as soon as it finishes
processing in the factory. On the other hand, since the cost
of processing all the jobs in a planning period is normally
fixed and independent of the production schedule used,
we only consider the cost of holding intermediate
inventory, which is in terms of the WIP inventory level
of the factory. The problem under study is to find an
optimal joint schedule for material supply, production
scheduling, and job delivery so that the sum of WIP
inventory cost and transport cost is minimized. This
logistics scheduling problem models the practical situa-
tion where a single dominant firm controls both upstream
and downstream stages in a supply chain. So the firm
could, in the short run, simply optimize its own opera-
tional decisions regardless of the impact of such decisions
on the other stages of the chain (see, e.g., Erengüc et al.,
1999).

The rest of the paper is organized as follows. In Section
2 we formally describe our model and present the
notation. In Section 3 we develop an optimal algorithm
for the special case of the problem where all the jobs have
identical processing times. In Section 4 we examine
several special cases of the general problem, identify their
optimal properties, and develop polynomial-time algo-
rithms to solve these cases optimally. In the last section
we conclude the paper and suggest topics for future
research.
2. Description and notation

Suppose that the manufacturer receives n orders (jobs),
N ¼ fJ1; J2; . . . ; Jng, from a customer. Here, the customer
may represent a distribution center that serves some
customers that are close to one another in a geographical
area. The n jobs are processed by a single machine
(facility) in the factory. Each job Ji has a processing time
pi. The jobs as raw materials before processing in the
factory have to be transported from the supplier’s ware-
house. We suppose that a vehicle can load at most Ks jobs
on a supply trip from the warehouse to the factory, and
the transport cost of a supply trip is ms þ xsgs, where ms is a
fixed cost for each supply trip, gs is the cost per loaded job
and xs is the number of the loaded jobs in the supply trip.
All the jobs on a supply trip constitute a supply batch. The
jobs as products after processing in the factory need to be
delivered to the customer. We suppose that a vehicle can
load at most Kd jobs on a delivery trip from the factory to
the customer, and the transport cost of a delivery trip is
md þ ydgd, where md is a fixed cost for each delivery trip, gd

is the cost per loaded job and yd is the number of the
loaded jobs in the delivery trip. All the jobs on a delivery
trip constitute a delivery batch.

By controlling the sizes of supply and delivery batches,
the arrival times of supply batches, the departure times of
delivery batches, and selecting a suitable sequence to
process the jobs in the factory, we seek to minimize the
sum of WIP inventory cost and transport cost.
The following notation will be used throughout the
paper:

Bs
k: the kth supply batch;

ts
k: the arrival time at the factory of supply batch Bs

k;
Bd

h: the hth delivery batch;
td

h: the departure time from the factory of delivery batch
Bd

h;
j ¼ ½Bs

1;B
s
2; . . . ;B

s
u�: a supply scheme that transports all the

jobs from the warehouse to the factory, where u

is the number of supply batches in a supply
scheme;

xk ¼ jB
s
kj: the number of jobs in Bs

k for k ¼ 1;2; . . . ;u;
X ¼ ðx1; x2; . . . ; xuÞ: a vector denoting the numbers of jobs

in the supply batches;
c ¼ ½Bd

1;B
d
2; . . . ;B

d
v�: a delivery scheme that transports all

the jobs from the factory to the customer, where
v is the number of delivery batches in a delivery
scheme;

yh ¼ jB
d
hj: the number of jobs in Bd

h for h ¼ 1;2; . . . ;v;
Y ¼ ðy1; y2; . . . ; yvÞ: a vector denoting the numbers of jobs

in the delivery batches;
dxe: the smallest integer that is no less than x;
bxc: the largest integer that is no larger than x.

The WIP inventory cost in the factory should in theory
be a function of the sum of the time that each job spends
in the factory. We assume that the WIP inventory cost
associated with a job Ji is ciðk;hÞ ¼ aðtd

h � ts
kÞ, if Ji 2 Bs

k and
Ji 2 Bd

h, where a(40) is the inventory cost of each job per
time unit. So the objective function is given by

Fðj;cÞ ¼ ðums þ ngsÞ þ ðvmd þ ngdÞ þ
X

Ji2Bs
k ;B

d
h

ciðk;hÞ (1)

where the three terms on the RHS represent the supply
cost, the delivery cost, and the total WIP inventory cost,
respectively.

For the problem under study, there exists an optimal
solution in which the following properties hold obviously.

Observation 1: Once a supply batch arrives at the
factory, a job in the batch begins processing.

Observation 2: Once all the jobs of a delivery batch have
finished processing, the delivery batch should depart from
the factory.

Observation 3: There should be no idle time between
the first and the last processed jobs in the factory.

Observation 4: The jobs belonging to the same supply
batch should be processed consecutively, and a delivery
batch should consist of consecutively processed jobs.

In the following discussion, we only consider solutions
that possess the properties stated in Observations 1–4.

3. Identical job processing times

In this section we first give a unified expression of the
objective function for the case where the jobs have
identical job processing times. We then prove some
optimal properties, and develop an O(n) algorithm for
this case. This case models the practical situation of a
monopolistic manufacturer that specializes in making a
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single product, or where a manufacturer dedicates the
factory to producing a single model of its products over an
extended period of time as a result of successful bidding
for a long-term, high-volume contract to supply the model
to a major customer.

Based on Observations 1–4, when the jobs have
identical processing times, in order to obtain an optimal
solution, the main tasks are obviously to determine the
numbers of supply and delivery batches, and the numbers
of jobs in each supply and delivery batch. Since job
sequence has no effect on the objective function in this
case, we assume in the following that the job sequence is
ðJ1; J2; . . . ; JnÞ.

From (1) and Observations 1–4, we see that the WIP
inventory cost function of any instance with identical job
processing times can be obtained by multiplying a
constant to that of the instance with unit job processing
times. So, without loss of generality, we assume that the
jobs have unit processing times in the sequel.

For example, there are n jobs with unit processing
times, and the supply scheme and delivery scheme are
given as j ¼ ½Bs

1;B
s
2;B

s
3;B

s
4� and c ¼ ½Bd

1;B
d
2;B

d
3;B

d
4;B

d
5�,

respectively. The numbers of jobs in individual batches
are shown in Fig. 1. For the first delivery batch, the arrival
time of its jobs is ts

1 ¼ 0 and its departure time is td
1 ¼ y1,

so each job stays in the factory for time y1. Then, the total
WIP inventory cost of jobs in the first delivery batch is ay2

1.
The WIP inventory cost function f ðX;YÞ is given by

f ðX;YÞ ¼ afy2
1 þ ðx1 � y1Þðy1 þ y2Þ þ ½ðy1 þ y2Þ � x1�

2

þ ½ðx1 þ x2Þ � ðy1 þ y2Þ�½ðy1 þ y2 þ y3Þ � x1�

þ ½ðy1 þ y2 þ y3Þ � ðx1 þ x2Þ�
2 þ ½ðx1 þ x2 þ x3Þ

� ðy1 þ y2 þ y3Þ�½ðy1 þ y2 þ y3 þ y4Þ � ðx1 þ x2Þ�

þ ½ðy1 þ y2 þ y3 þ y4Þ � ðx1 þ x2 þ x3Þ�
2

þ x4y5g (2)

Thus, the objective function is

Fðj;cÞ ¼ ð4ms þ ngsÞ þ ð5md þ ngdÞ þ f ðX;YÞ. (3)

Let the sets A1 ¼ f1;2; . . . ; t
s
2g, A2 ¼ ft

s
2 þ 1; ts

2 þ 2; . . . ; ts
3g;

. . . ;Au ¼ ft
s
u þ 1; ts

u þ 2; . . . ;ng. The departure time of a
delivery batch must belong to one of A1;A2; . . . ;Au. In the
above example, A1 ¼ f1;2; . . . ; x1g, A2 ¼ fx1 þ 1; . . . ;
x1 þ x2g, A3 ¼ fx1 þ x2 þ 1; . . . ; x1 þ x2 þ x3g and A4 ¼ fx1 þ

x2þ x3 þ 1; . . . ;ng. The numbers of delivery batches with
departure times in A1;A2;A3 and A4 are 1, 1, 1 and 2. We
define the numbers of delivery batches departing in u sets
A1;A2; . . . ;Au as a delivery batch distribution. We denote a
delivery batch distribution as D ¼ ðl1; l2; . . . ; luÞ, where
l1 þ l2 þ � � � þ lu ¼ v. If there is no delivery batch departing
from the factory in Ak, then lk ¼ 0.
From (2) and (3), for given u and v, we see that if two
solutions of the problem have the same delivery batch
distribution, then their WIP inventory cost functions may
be unified into a common expression. Different delivery
batch distributions correspond to different expressions of
the WIP inventory cost function. We may evaluate the
number of different expressions from the following
example. For example, n ¼ 2m, u ¼ v ¼ m, and there are
Cm

n�1ð¼ ðn� 1Þ!=m!ðn�m� 1Þ!42n=2�1
Þ supply schemes.

Obviously, there are at least Cm
n�1 delivery batch distribu-

tions since each supply scheme corresponds to at least a
delivery batch distribution by selecting suitable departure
times for the m� 1 delivery batches. So, there may be at
least Cm

n�1 inventory cost expressions, which is an
exponential function of n. For different expressions of
the WIP inventory cost function, we have the following
lemma.

Lemma 1. For given u and v, the inventory cost functions of

all the solutions have a unified expression.

Proof. See Appendix A.

Utilizing Lemma 1, we may obtain a unified expression
for the inventory cost function for any distribution. For a
distribution D (see Fig. 2), f ðX;YÞ is given by

f ðX;YÞ ¼ afy2
1 þ ðy1 þ y2Þy2 þ � � � þ ðy1 þ � � � þ yv�1Þyv�1

þ n½ðn� ðx2 þ � � � þ xuÞÞ � ðy1 þ � � � þ yv�1Þ�

þ x2ðx2 þ � � � þ xuÞ þ x3ðx3 þ � � � þ xuÞ

þ � � � þ xu�1ðxu�1 þ xuÞ þ x2
ug (4)

Since x1 þ � � � þ xu ¼ y1 þ � � � þ yv ¼ n, there are u� 1
and v� 1 independent integer variables in vectors X and Y,
respectively. For f ðX;YÞ in (4), we may relax the integer
variables in X and Y to be real numbers in order to search
for the optimal solution. This means that the unit
processing time may become fractional because a job
may be split by a supply batch. We denote this situation as
a relaxed problem. Thus, we have the following lemma.

Lemma 2. For the relaxed problem, the supply batches in an

optimal solution have the same batch size, and so do the

delivery batches.

Proof. For f ðX;YÞ in (4), the partial derivative of f ðX;YÞ

with respect to X (except for the variable x1) is

@f ðX;YÞ

@xk
¼ afx2 þ � � � þ xk�1 þ 2xk þ xkþ1 þ � � � þ xu � ng

for k ¼ 2; . . . ;u.
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Setting

@f ðX;YÞ

@xk
¼ afx2 þ � � � þ xk�1 þ 2xk þ xkþ1 þ � � � þ xu � ng ¼ 0

for k ¼ 2; . . . ;u,

we obtain that xk ¼ n=u for k ¼ 2; . . . ;u. Since
x1 ¼ n� ðx2 þ � � � þ xuÞ, x1 ¼ n=u.

The partial derivative of f ðX;YÞ with respect to Y (except

for the variable yv) is

@f ðX;YÞ

@yh

¼ afy1 þ � � � þ yh�1 þ 2yh þ yhþ1 þ � � � þ yv�1 � ng

for h ¼ 1; . . . ;v� 1.

Setting

@f ðX;YÞ

@yh

¼ afy1 þ � � � þ yh�1 þ 2yh þ yhþ1 þ � � � þ yv�1 � ng ¼ 0

for h ¼ 1; . . . ;v� 1,

we obtain that yh ¼ n=v for h ¼ 1; . . . ;v� 1. Since

yv ¼ n� ðy1 þ � � � þ yv�1Þ, yv ¼ n=v.

Furthermore, taking the second partial derivatives of

f ðX;YÞ with respect to X and Y (except for x1 and yv), we

obtain that the value of the Jacobian determinant of f ðX;YÞ

is uvauþv�2, which is greater than zero. Therefore, when

xk ¼ n=u for k ¼ 1;2; . . . ;u and yh ¼ n=v for h ¼ 1;2; . . . ;v,

the value of f ðX;YÞ is the smallest. Thus, we reach the

conclusion. &

We now return to the original problem where the
variables in X and Y are positive integers. For given u and v,
we have n ¼ bn=ucuþ l1 and n ¼ bn=vcvþ l2, where
0 � l1ou; 0 � l2ov. Based on Lemma 2, we can easily
obtain the following conclusion.

Lemma 3. There exists an optimal solution for the problem

in which the following conditions hold:
(1)
 The supply batch sizes are:

ðx1; . . . ; xl1 ; xl1þ1; . . . ; xuÞ

¼
n

u

j k
þ 1; . . . ;

n

u

j k
þ 1;

n

u

j k
; . . . ;

n

u

j k� �
.

(2)
 The delivery batch sizes are:

ðy1; . . . ; yl2
; yl2þ1; . . . ; yvÞ

¼
n

v

j k
þ 1; . . . ;

n

v

j k
þ 1;

n

v

j k
; . . . ;

n

v

j k� �
.

Lemma 3 shows that both supply batches and delivery
batches have almost equal batch sizes in an optimal
solution.

For given u and v, we determine the supply and
delivery batches sizes according to Lemma 3. Then, the
value of the inventory cost function (denoted as f̄ ðu;vÞ) is
calculated by (4) accordingly. We have:

f̄ ðu;vÞ ¼
1

2
n

n

u

j k
þ

n

v

j k� �
þ n� u

n

u

j k� �
1þ

n

u

j k� �n
þ n� v

n

v

j k� �
1þ

n

v

j k� �o
a. (5)
From (5), we notice that the contributions of supply
batch and delivery batches to the optimal inventory cost
are independent. Let

f̄ sðuÞ ¼
1

2
n

n

u

j k
þ n� u

n

u

j k� �
1þ

n

u

j k� �n o
a

and

f̄ dðvÞ ¼
1

2
n

n

v

j k
þ n� v

n

v

j k� �
1þ

n

v

j k� �n o
a.

Then, f̄ ðu;vÞ ¼ f̄ sðuÞ þ f̄ dðvÞ.
In the following we develop an optimal algorithm for

the case where the jobs have unit processing times.

Algorithm A1. Step 1. Calculate f̄ sðuÞ for u ¼ dn=Kse; . . . ;n
and f̄ dðvÞ for v ¼ dn=Kde; . . . ;n.

Step 2. Select u such that l�s ¼minfums þ ngs þ f̄ sðuÞju ¼

dn=Kse; . . . ;ng and let un ¼ u.

Step 3. Select v such that l�d ¼ minfvmd þ ngd þ f̄ dðvÞjv ¼

dn=Kde; . . . ;ng and let vn ¼ v.

Step 4. For u� and v�, according to Lemma 3, determine a

supply batch scheme j� and a delivery batch scheme c�.
Let Fðj�;c�Þ ¼ l�s þ l�d. Stop.

Obviously, the time complexity of Algorithm A1 is O(n).
Algorithm A1 searches all the possible values of u and v;
and for the optimal values of u and v, we can obtain the
optimal inventory cost f̄ ðu;vÞ. Hence, we have the
following conclusion.

Theorem 1. For the problem with unit job processing times,
Algorithm A1 produces an optimal solution in O(n) time.

When all the jobs (orders) have identical processing
times, our result shows that the supply scheme and the
delivery scheme can be created separately. The supply
batches have almost equal sizes, and so do the delivery
batches, in an optimal solution. The supply scheme with
almost equal batch sizes, to a certain extent, is similar the
conventional economic ordering quality (EOQ) model for
inventory management. The result is interesting because
our model not only considers material supply and WIP
inventory, but also takes product delivery into account.
The full-truck-load strategy for supply and delivery is no
more an optimal choice for the problem under study. It
may make the transport cost smaller while it will result in
higher inventory cost in the factory.

4. Special cases of the general problem

In this section we discuss some special cases of the
general problem where the processing time of each job is
a positive number. We consider the situation that the
third party offers a supply (delivery) service with a high
transport cost and a large vehicle capacity. We define an
inventory cost constant b0 as

b0 ¼max aðn� lÞ
Xl
i¼1

pijJ1; J2; . . . ; Jl are the l jobs

(

with the largest processing times for l ¼ 1;2; . . . ;n

)
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We say that the supply (delivery) cost is high if msðmdÞ � b0

and the supply (delivery) vehicle capacity is large if
KsðKdÞ � n. We also consider the situation that the third
party offers a supply (delivery) service with a low
transport cost. We say the supply (delivery) cost is low if
msðmdÞ is no larger than an inventory cost constant
b00 ¼minfapijJi 2 Ng. In the following we analyze four
special cases:

Case I: High supply cost and large supply vehicle
capacity.

Case II: High delivery cost and large delivery vehicle
capacity.

Case III: Low supply cost.
Case IV: Low delivery cost.
4.1. Case I

For this case we can easily show that there is only one
supply batch in an optimal solution because the manu-
facturer will incur a higher supply cost from increasing
the number of supply batches, although the inventory cost
may be reduced at the same time. This case models the
actual situation where the manufacturer has prepared the
materials of all the jobs for processing before a scheduling
period. Hence, we have identified an optimal property for
this case.

Lemma 4. For Case I, there exists an optimal solution that

has the following properties:
(i)
 The jobs are sequenced according to the shortest

processing time (SPT) rule.

(ii)
 In the SPT schedule ðJ1; J2; . . . ; JnÞ, if yhpy1þ���þyhþ1�

py1þ���þyhþ2 þ � � � þ py1þ���þyhþ1
and yhoKd, then job

Jy1þ���þyhþ1 should be delivered in the hth delivery batch

for h ¼ 1;2; . . . ;v� 1.
We can easily prove (i) of Lemma 4 by swapping a pair
of jobs in two adjacent delivery batches and (ii) by moving
a job to the preceding delivery batch. Lemma 4 implies
that the number of jobs in a delivery batch is no fewer
than that of the next delivery batch. Next, we propose a
solution algorithm for this case.

Algorithm A2. Step 1. Sequence the jobs according
to the SPT rule. Denote the resulting schedule as p ¼
ðJ1; J2; . . . ; JnÞ.

Step 2. Initially, let h ¼ 1 and v ¼ dn=Kde. If v ¼ 1, then

go to (4).
(1)
 Set jBd
1j ¼ dn=ve; . . . ; jBd

l2
j ¼ dn=ve; jBd

l2þ1j ¼ bn=vc; . . . ;
jBd

vj ¼ bn=vc, where l2 ¼ n� vbn=vc.

(2)
 Set h ¼ 1.

(3)
 If yhpy1þ���þyhþ1 � py1þ���þyhþ2 þ � � � þ py1þ���þyhþ1

, yhoKd

and yhþ141, then let Bd
h ¼ Bd

h [ fJy1þ���þyhþ1g, yh  yh þ

1 and Bd
hþ1 ¼ Bd

hþ1\fJy1þ���þyhþ1g, yhþ1  yhþ1 � 1, go to
(3); otherwise, h hþ 1.
If hov, then go to (3); otherwise, if yjpy1þ���þyjþ14
py1þ���þyjþ2 þ � � � þ py1þ���þyjþ1

or yj ¼ Kd, for all
j ¼ 1;2; . . . ;v� 1, go to the next step; otherwise go
to (2).
(4)
 According to (1), calculate gð1;vÞ ¼ Fðj;cÞ. If von,
then let v vþ 1 and go to (1).
Step 3. Let

Fn
ðj;cÞ ¼ min gð1;vÞjv ¼

n

Kd

� �
;

n

Kd

� �
þ 1; . . . ;n

� �
.

Stop.

Step 1 requires O(n log n) time to determine the SPT
schedule. In Step 2, the first loop of h ¼ 1 to v� 1 needs at
most n� v� bn=vc time to move jobs to the preceding
delivery batch. The second loop of h ¼ 1 to v� 2 needs at
most n� v� 2bn=vc þ 1 time to move jobs to the preced-
ing delivery batch. Similarly, the (v� 1)th loop of h ¼ 1
needs at most bn=vc or bn=vc � 1 time to move jobs to the
preceding delivery batch. So, for a fixed v, the computa-
tional effort is Oððv� 1Þðn� vÞ=2Þ. Since the algorithm can
be applied to all the possible values of Kd and the
complexity of the algorithm is dominated by Step 2, we
see that the time complexity of Algorithm A2 is Oðn3Þ.

According to (i) of Lemma 4, we can determine the
schedule of an optimal solution. Utilizing the necessary
condition for an optimal solution provided by (ii) of
Lemma 4, we search all the possible optimal delivery
batch schemes in an optimal solution and select the best
one in Algorithm A2, Therefore, we have the following
result.

Theorem 2. Algorithm A2 produces an optimal solution for

Case I in O(n3) time.
4.2. Case II

For this case we can easily show that there is only one
delivery batch in an optimal solution because the
manufacturer will incur a higher delivery cost from
increasing the number of delivery batches, although the
inventory cost may be reduced at the same time. This case
models the actual situation where the manufacturer
intends to deliver all the products to the customer after
a scheduling period ends. Since this is a symmetry case of
the case in Section 4.1, we only give the following results
and omit the proofs.

Lemma 5. For Case II, there exists an optimal solution that

has the following properties:
(i)
 The jobs are sequenced according to the longest

processing time (LPT) rule.

(ii)
 In the LPT schedule ðJ1; J2; . . . ; JnÞ, if xkþ1px1þ���þxk

�

px1þ���þxk�1þ1 þ � � � þ px1þ���þxk�1 and xkþ1oKs; then

job Jx1þ���þxk
should be delivered in the (k+1)th supply

batch for k ¼ 1;2; . . . ;u� 1.
This case can be solved by the following algorithm.
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Algorithm A3. Step 1. Sequence the jobs according to the
LPT rule. Denote the resulting schedule as p ¼
ðJ1; J2; . . . ; JnÞ.

Step 2. Initially, let k ¼ 1 and u ¼ dn=Kse. If u ¼ 1, then

go to (4).
(1)
 Set jBs
1j ¼ bn=uc; . . . ; jBs

u�l1
j ¼ bn=uc; jBs

u�l1þ1j ¼ dn=ue;

. . . ; jBs
uj ¼ dn=ue, where l1 ¼ n� ubn=uc.
(2)
 Set k ¼ 1.

(3)
 If xkþ1px1þ���þxk

� px1þ���þxk�1þ1 þ � � � þ px1þ���þxk�1, xkþ1o
Ks and xk41, then let Bs

kþ1 ¼ Bs
kþ1 [ fJx1þ���þxk

g, xkþ1  

xkþ1 þ 1 and Bs
k ¼ Bs

k\fJx1þ���þxk
g, xk  xk � 1, go to (3);

otherwise, k kþ 1.
If kou, then go to (3); otherwise, if xjþ1px1þ���þxj

4
px1þ���þxj�1þ1 þ � � � þ px1þ���þxj�1 or xjþ1 ¼ Ks for all
j ¼ 1;2; . . . ;u� 1, go to the next step; otherwise go
to (2).
(4)
 According to (1), calculate gðu;1Þ ¼ Fðj;cÞ. If uon,
then let u uþ 1 and go to (1).
Step 3. Let

F�ðj;cÞ ¼ min gðu;1Þju ¼
n

Ks

� �
;

n

Ks

� �
þ 1; . . . ;n

� �
.

Stop.

Theorem 3. Algorithm A3 produces an optimal solution for

Case II in O(n3) time.

4.3. Case III

For this case each supply batch contains only one job
since the inventory cost of any job is no less than the cost
of a supply trip from the warehouse to the factory. This
means that each job in an optimal solution should arrive
at the factory just when it is about to begin processing.

For a given v, we can convert the case into a v-parallel
identical machine scheduling problem to minimize the
total earliness, where the due dates of all the jobs are
unbounded and common. So, we have the following
algorithm for this case.

Algorithm A4. Step 1. Sequence the jobs as an order set
p ¼ ðJ1; J2; . . . ; JnÞ such that p1 � p2 � � � � � pn.

Step 2. For v ¼ dn=Kde to n, repeat (1) and (2).
(1)
 Beginning with J1, assign in turn the jobs in p to one of
the v machines in such a way that the job has the
smallest earliness and the number of the assigned jobs
on the machine is no larger than Kd.
(2)
 The jobs being processed on the same machine are
taken as a delivery batch. The delivery batches
Bd

1;B
d
2; . . . ;B

d
v are sequenced randomly and there is

no idle time between them. Supposing that

pj1
� pj2

� � � � � pjyh
for jobs Jj1

; Jj2
; . . . ; Jjyh

2 Bd
h and

h ¼ 1;2; . . . ;v, calculate the objective function:

gðn;vÞ ¼ nðms þ gsÞ þ ðvmd þ ngdÞ þ a
Xv

h¼1

X
Jjl
2Bd

h

lpj‘
.

Step 3. Let
Fn
ðj;cÞ ¼min gðn;vÞjv ¼

n

Kd

� �
;

n

Kd

� �
þ 1; . . . ;n

� �
.

Stop.

Step 1 requires O(n log n) time. In Step 2, for a given v,
the corresponding v-parallel machine total earliness
scheduling problem can be solved in O(n) time. The
algorithm is applied to all the possible values of Kd. Hence,
the time complexity of the algorithm is O(n2). Obviously,
we have the following result.

Theorem 4. Algorithm A4 produces an optimal solution for

Case III in O(n2) time.

4.4. Case IV

For this case each delivery batch contains only one job
since the inventory cost of any job is no less than the
transport cost of a delivery trip from the factory to the
customer. This means that each job in an optimal solution
should depart from the factory once it finishes processing.

This case is similar to the problem studied by Qi
(2005), which can be solved optimally by converting the
case into (n� dn=Kse þ 1) parallel-machine scheduling
problems to minimize the total completion time. The
computational complexity of this case is O(n2) time.

5. Conclusions

In this paper we studied a logistics scheduling problem
with material supply and product delivery considerations.
The objective is to minimize the sum of the WIP inventory
cost and transport cost. When all the jobs have identical
processing times, we showed that the expression of the
WIP inventory cost function can be unified, and we
proposed an O(n) optimal algorithm to solve this case.
We also examined several special cases of the general
problem, identified their optimal properties, and devel-
oped polynomial-time optimal algorithms to solve them.

As for future logistics scheduling research, researchers
need to build a scheduling model that integrates the three
stages, i.e., supply, production and distribution, of the
typical logistics activity. Such a model has very different
characteristics from those of the two-stage models found
in the existing literature that consider only production
and distribution, or supply and production. Consideration
of various machine processing environments and objec-
tives for a three-stage logistics scheduling model is
worthy of future study, too.
Acknowledgments

We are grateful for two anonymous referees for their
constructive comments on an earlier version of our paper.
This research was supported in part by The Hong Kong
Polytechnic University under a grant from the Area of

Strategic Development in China Business Services and the
Logistics Research Centre, and the National Natural



ARTICLE IN PRESS

X. Wang, T.C.E. Cheng / Int. J. Production Economics 121 (2009) 266–273272
Science Foundation of China under Grant number
70871059.

Appendix A. Proof of Lemma 1
Proof. We notice that any two distributions can be
transformed into each other by a procedure of changing
in turn the departure times of some delivery batches from
Ak to Ak�1 or Akþ1. So, we will focus on discussing the
effects on the WIP inventory cost function expressions for
the following three types of transformation between two
distributions.
(i)
 For two distributions D1 ¼ ðl1; . . . ; lk�1; lk; lkþ1; lkþ2;

. . . ; luÞ and D2 ¼ ðl1; . . . ; lk�1; lk � 1; lkþ1 þ 1; lkþ2; . . . ;

luÞ, where lk, lkþ141.

(ii)
 For two distributions D1 ¼ ðl1; . . . ; lk�1;1; lkþ1; . . . ; luÞ

and D2 ¼ ðl1; . . . ; lk�1;0; lkþ1 þ 1; lkþ2; . . . ; luÞ.

(iii)
 For two distributions D1 ¼ ðl1; . . . ; lk�1; lk;1; lkþ2; . . . ; luÞ

and D2 ¼ ðl1; . . . ; lk�1; lk þ 1;0; lkþ2; . . . ; luÞ.
For (i), we set the inventory cost functions of D1 and D2

as f 1ðX;YÞ and f 2ðX;YÞ, respectively. Without loss of the

generality, we assume that the arrival time to the factory

of the ‘1th supply batch for D1 is the same as that of D2 for

‘1 ¼ 1;2; . . . ;u, and the departure time from the factory of

the ‘2th delivery batch for D1 is the same as that of D2 for

‘2 ¼ 1;2; . . . ;h� 1;hþ 1; . . . ;v. We also assume that the

departure times of the hth delivery batch for D1 and D2 are

just before and after time ts
kþ1, respectively. It is obvious
yyh−1y1

yh−1y1

ssss
tktk−1t2t1

dd
th−1t1

xkxk−1x1

s
k

sss
ttk−1t2t1

xkxk−1x1

dd
th−1t1

Fig. 3. (a) Distribution D1 in (i) an
that the inventory costs before time point td
h�1 and after

time point td
hþ1 are the same for D1 and D2. So, we set

them as f̄ ðX;YÞ. Now, for D1, we have (see Fig. 3(a)),

f 1ðX;YÞ ¼ f̄ ðX;YÞ þ afyh½ðy1 þ � � � þ yhÞ � ðx1 þ � � � þ xk�1Þ�

þ ½ðx1 þ � � � þ xkÞ � ðy1 þ � � � þ yhÞ�

� ½ðy1 þ � � � þ yhþ1Þ � ðx1 þ � � � þ xk�1Þ�

þ ½ðy1 þ � � � þ yhþ1Þ � ðx1 þ � � � þ xkÞ�
2g

¼ f̄ ðX;YÞ þ afðyh þ yhþ1 � xkÞ

� ½ðy1 þ � � � þ yh�1Þ � ðx1 þ � � � þ xk�1Þ�

þ ðx2
k þ y2

h þ y2
hþ1 � xkyh � xkyhþ1 þ yhyhþ1Þg. (6)

For D2, we have (see Fig. 3(b)),

f 2ðX;YÞ ¼ f̄ ðX;YÞ þ af½ðx1 þ � � � þ xkÞ � ðy1 þ � � � þ yh�1Þ�

� ½ðy1 þ � � � þ yhÞ � ðx1 þ � � � þ xk�1Þ�

þ ½ðy1 þ � � � þ yhÞ � ðx1 þ � � � þ xkÞ�
2

þ yhþ1½ðy1 þ � � � þ yhþ1Þ � ðx1 þ � � � þ xkÞ�g

¼ f̄ ðX;YÞ þ afðyh þ yhþ1 � xkÞ

� ½ðy1 þ � � � þ yh�1Þ � ðx1 þ � � � þ xk�1Þ�

þ ðx2
k þ y2

h þ y2
hþ1 � xkyh � xkyhþ1 þ yhyhþ1Þg. (7)

Comparing (6) with (7), we can see that the expressions

of f 1ðX;YÞ and f 2ðX;YÞ are identical.

Similar to (i), we can also prove that transformations

between distributions D1 and D2 of types (ii) and (iii) do

not change the expression of the inventory cost function.

In fact, for given u and v, any one distribution can be

transformed into another distribution by proceeding with

a series of transformation of types (i)–(iii). Hence, we

reach the conclusion. &
yh+1h

yh+1yh

sss
tutk+2tk+1

ddd
tvth+1th

xuxk+1

sss
tutk+2tk+1

xuxk+1

ddd
tvth+1th

d (b) distribution D2 in (i).
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