


## Introduction to Electric Energy Conversion and Renewable Energy Sources ELEC-A8001 Johdatus sähköenergiajärjestelmiin

Lecturer: Jorma Kyyrä (jorma.kyyra@aalto.fi) Slides: Marko Hinkkanen

Autumn 2023

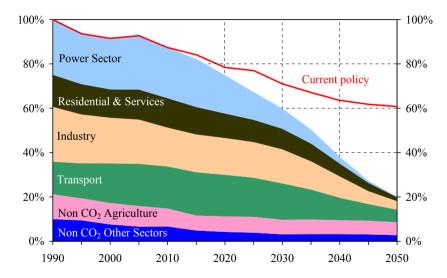


#### Outline

#### Energy Trends in European Union

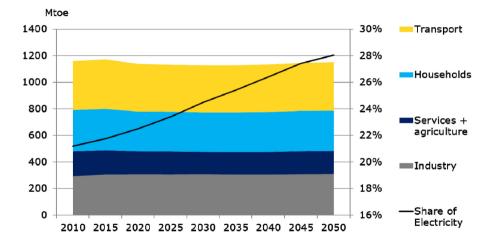
Energy Conversion

**Electric Drives** 


Renewable Energy

Wind Energy (Incl. Some More Exotic Concepts)

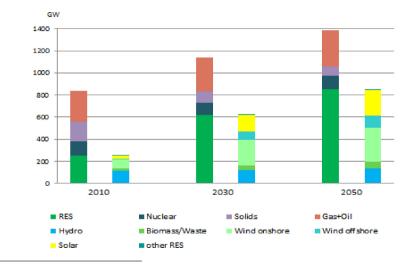
Utility-Scale Solar


Summary

#### EU 2050 Roadmap: Reduction of Green House Gas Emissions



A roadmap for moving to a competitive low carbon economy in 2050, European Commission, COM(2011) 112, 2011


#### EU Final Energy Consumption by Sector and Share of Electricity



Impact assessment, European Commission, SWD(2014) 15 final, 2014

### EU Net Power Generation Capacity

With Further Breakdown of Renewable Energy Source Capacities in Right Columns



Impact assessment, European Commission, SWD(2014) 15 final, 2014

#### Outline

Energy Trends in European Union

**Energy Conversion** 

**Electric Drives** 

Renewable Energy

Wind Energy (Incl. Some More Exotic Concepts)

Utility-Scale Solar

Summary

#### Electric Energy Is an Energy Carrier

#### Examples of energy sources

Non-renewable: Crude oil, coal, natural gas, natural uranium Renewable: Solar, wind, biomass Secondary: Hydrogen, electric energy

Secondary energy sources are also referred to as energy carriers

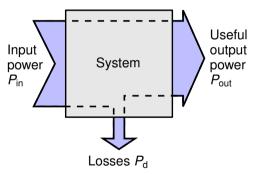
- Energy has to be converted to a useful form
- Electric energy can be flexibly and efficiently converted to other forms
- But, storing of electric energy is a problem!

#### **Conversion Efficiency**

 Power is the rate at which energy is converted

$$P = \frac{\mathrm{d}E}{\mathrm{d}t}$$

Power balance

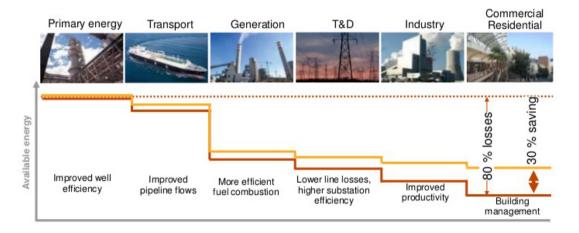

$$P_{in} = P_{out} + P_{d}$$

Conversion efficiency

$$\eta = \frac{\textit{P}_{\rm out}}{\textit{P}_{\rm in}}$$

is between 0 and 1

• In steady state, 
$$\eta = E_{\sf out}/E_{\sf ir}$$




#### Examples of Energy Conversion

| Energy conversion      | Input      | Useful output | Typical        |
|------------------------|------------|---------------|----------------|
| device                 | energy     | energy        | efficiency (%) |
| Automobile engine      | Chemical   | Mechanical    | 25             |
| Power plant boiler     | Chemical   | Thermal       | 85             |
| Steam turbine          | Thermal    | Mechanical    | 45             |
| Electric generator     | Mechanical | Electric      | 95             |
| Electric motor (large) | Electric   | Mechanical    | 90             |
| Incandescent lamp      | Electric   | Light         | 5              |
| Electric heater        | Electric   | Thermal       | 100            |
| Silicon solar cell     | Solar      | Electric      | 15             |
| Battery                | Chemical   | Electric      | 90             |

Efficiency values: http://www.ems.psu.edu/~radovic/Chapter4.pdf. Note that these values are just examples and that efficiencies depend also on the operating point.

#### Importance of Energy Efficiency



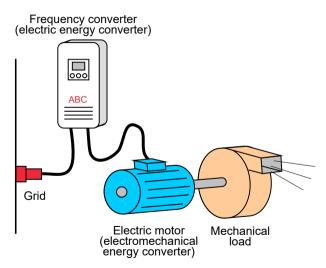
#### Outline

Energy Trends in European Union

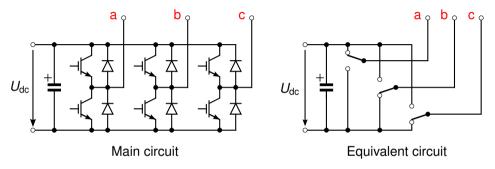
Energy Conversion

**Electric Drives** 

Renewable Energy

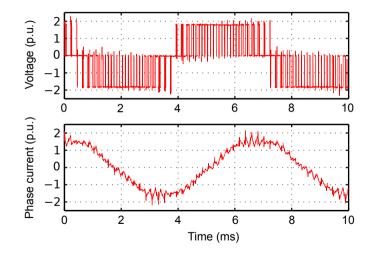

Wind Energy (Incl. Some More Exotic Concepts)

Utility-Scale Solar

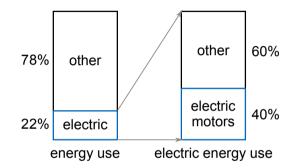

Summary

#### **Electric Drive**

- Electric drive is a system, which converts electric energy into mechanical work
- Direction of the energy flow can also be opposite
- Energy flow can be controlled by means of an electric energy converter




#### **Two-Level Converter**




- 2-level converters typical in low-voltage drives (below 1 kV)
- 3-level converters in medium-voltage drives
- Modular multi-level converters are becoming an interesting option in grid applications (> 10 kV)
- Frequency converter may consist one or two this kind of converters

#### Example: AC-Side Waveforms of a Two-Level Converter



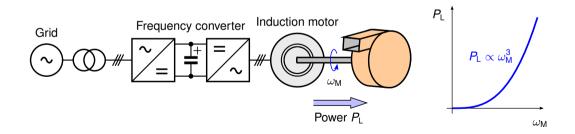
### Energy Consumption of Electric Motors in the EU



- Share of electricity in final energy use is estimated to rise up to 28% by 2050
- Electric drives and electric energy converters are important for sustainable use of energy

#### Water Pumps at Google Data Center, Hamina, Finland



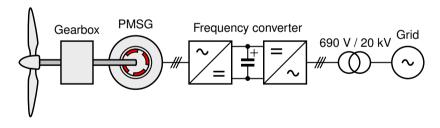

#### Heavy-Duty Industrial Centrifugal Fan

1.35-MW 690-V induction motors (most commonly used machine type)



#### Pump and Fan Drives

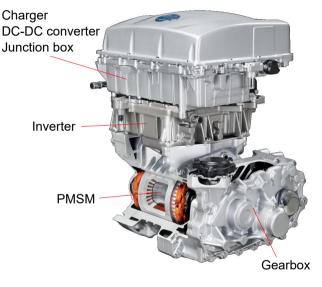
- Fluid flow is controlled by adjusting the speed  $\omega_M$  with the frequency converter
- If the fluid flow reduces to 50%, load power  $P_L$  may drop down to ~30%
- Significant energy savings are possible (in comparison with fixed-speed drives, where the flow is controlled with a valve)




#### Wind Turbine

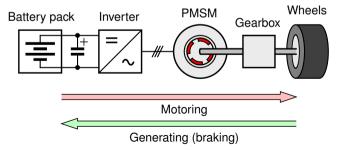


#### Wind Turbine: Permanent-Magnet Synchronous Generator


- Power levels up to 8 MW
- Typical gear ratios around 100:1 (but direct drives also exist)
- Optimal blade speed (which yields the maximum power) is controlled by the frequency converter

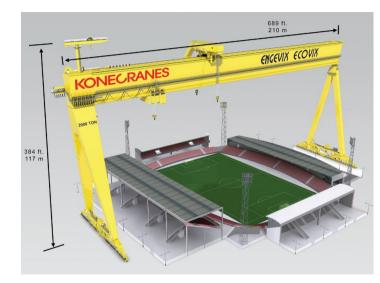


#### Battery Electric Vehicle Powertrain


- Nissan Leaf (2014)
- Maximum power 80 kW
- Maximum torque 280 Nm
- Gear ratio 8:1
- Li-ion battery pack 24 kWh






#### Battery Electric Vehicle Powertrain

- Most common motor types in electric vehicles
  - Permanent-magnet synchronous motor (PMSM)
  - Induction motor (IM)
  - Permanent-magnet-assisted synchronous reluctance motor (PM-SyRM)
- > When braking, the power flows from wheels to the battery pack
- Electric machines are capable to operate both as a motor and a generator



## **Goliath Shipyard Crane**

- Modern cranes can be semi- or fully-automated
- Constant load torque due to the gravity
- When lowering the load, the hoist motor operates as a generator
- How much power is needed to hoist mass m at speed v?



#### Why Controlled Electric Drives Are Needed?

- 1. Enabling fast and accurate motion control
  - Robotics, elevators, cranes, process automation...
- 2. Improving energy efficiency
  - Process flow is controlled by means of the motor speed
  - Pumps, fans, compressors...
- 3. Conserving braking energy
  - Transportation, cranes...

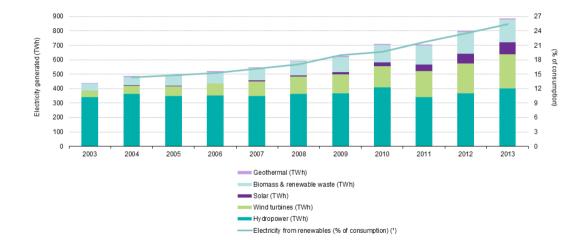
Similar technologies are applied in grid integration of renewable energy sources (wind, solar, etc.)

#### Outline

Energy Trends in European Union

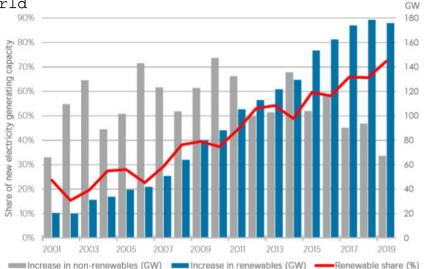
**Energy Conversion** 

**Electric Drives** 


#### Renewable Energy

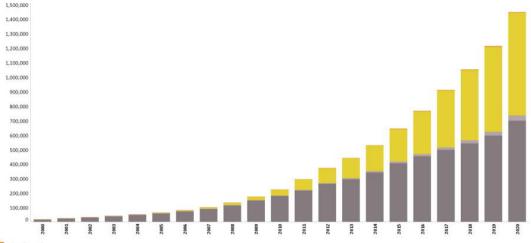
Wind Energy (Incl. Some More Exotic Concepts)

Utility-Scale Solar


#### Summary

#### Electricity From Renewable Sources in EU




# Since 2011 installed capacity on renewables has been higher than 50 %

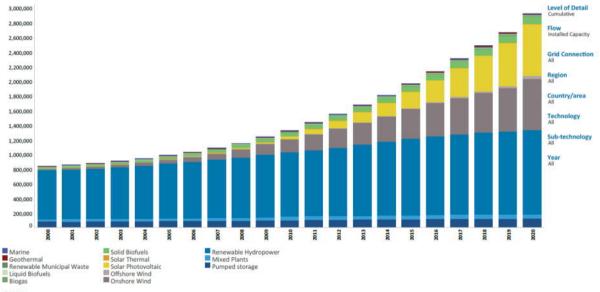
Whole World



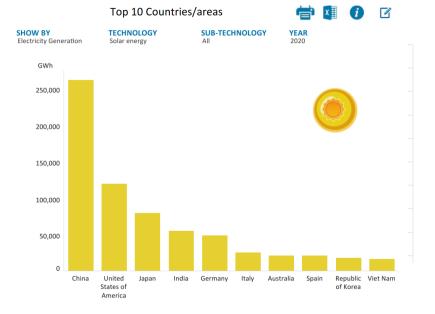
## World Installed Capacity (MW) in Wind and Solar

Installed Capacity (MW)

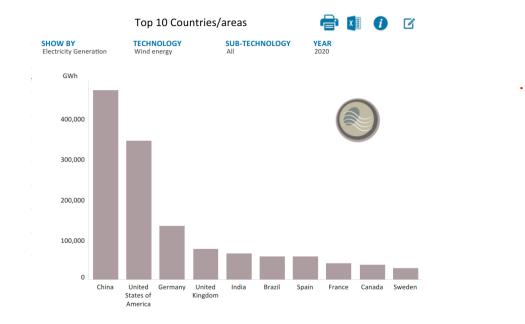


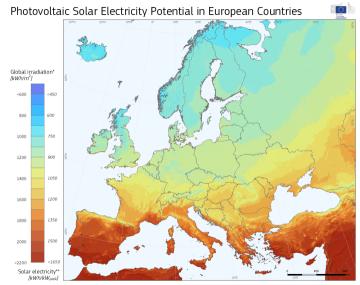

Solar Thermal

Solar Photovoltaic


Offshore Wind

Onshore Wind


## World Installed capacity in renewables




C IRENA



.





\* Yearly sum of global irradiation incident on optimally-inclined south-oriented photovoltaic modules

"Yearly sum of solar electricity generated by optimally-inclined 1kW<sub>F</sub> system with a performance ratio of 0.75 © European Union, 2012 PVGIS http://re.jrc.ec.europa.eu/pvgis/ Authors: Thomas Huld, Irene Pinedo-Pascua EC - Joint Research Centre In collaboration with: CM SAF, www.cmsof.eu

#### Outline

Energy Trends in European Union

**Energy Conversion** 

**Electric Drives** 

Renewable Energy

Wind Energy (Incl. Some More Exotic Concepts)

Utility-Scale Solar

Summary

#### Power From the Wind

• Wind energy  $E_w$  and power  $P_w$  flowing through an area A

$$E_{\rm w} = \frac{1}{2} \underbrace{\rho A v_{\rm w} t}_{m} v_{\rm w}^2 \quad \Rightarrow \quad P_{\rm w} = \frac{1}{2} \rho A v_{\rm w}^3$$

where  $\rho$  is the air density and  $v_w$  is the wind speed

Power extracted by the turbine

$$P = C_{\mathsf{p}} \cdot rac{1}{2} 
ho A_{\mathsf{b}} v_{\mathsf{w}}^3$$

where  $A_b = \pi r_b^2$  is the area swept by the blades,  $r_b$  is the blade length, and  $C_p$  is the power coefficient

### Power Coefficient Cp

- Power coefficient depends on
  - Blade design
  - Pitch angle
  - Tip speed ratio λ = r<sub>b</sub>Ω<sub>b</sub>/ν<sub>w</sub>, where Ω<sub>b</sub> is the angular speed of the rotor blades
- Theoretical limit:  $C_p < 59\%$
- In variable speed turbines, C<sub>p</sub> can be kept at its maximum (if the power and rotor speed are below their rated values)

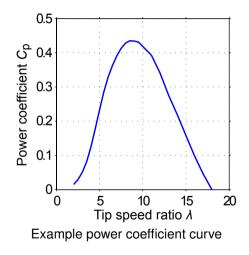


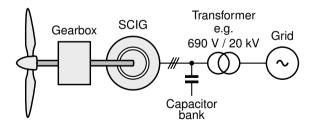

Figure (modified): Petersson, "Analysis, modeling and control of doubly-fed induction generators for wind turbines," Ph.D. dissertation, KTH, Stockholm, Sweden, 2005

#### Torque of the Blade Rotor

Blade length for a given rated power

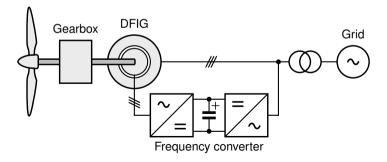
$$P = C_{\rm p} \cdot \frac{1}{2} \rho \pi r_{\rm b}^2 v_{\rm w}^3 \quad \Rightarrow \quad r_{\rm b} = \left(\frac{2P}{C_{\rm p} \rho \pi v_{\rm w}^3}\right)^{\frac{1}{2}}$$

► Blade tip speed  $v_b = r_b \Omega_b$  limited to avoid excessive mechanical forces, wear, and audible noise


$$T_{\rm b} = \frac{P}{\Omega_{\rm b}} = \frac{r_{\rm b}P}{v_{\rm b}} = \left(\frac{2}{C_{\rm p}\rho\pi v_{\rm w}^3 v_{\rm b}^2}\right)^{\frac{1}{2}} P^{\frac{3}{2}}$$

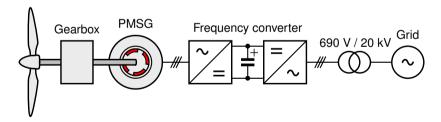
• Rated torque  $T_{\rm b} \propto P^{3/2}$  increases more than proportional to the power level

More information: Polinder et al., "Trends in wind turbine generator systems," IEEE J. Emerg. Sel. Topics Power Electron., 2013


# Squirrel-Cage Induction Generator (SCIG)

- Old concept, manufactured mainly during the last century
- Operates at (almost) constant speed
- Simple, robust, and cheap
- Power levels up to 1.5 MW
- Typically three-stage gearbox
- Power above the rated wind speed limited using the stall principle




#### Doubly-Fed Induction Generator (DFIG)

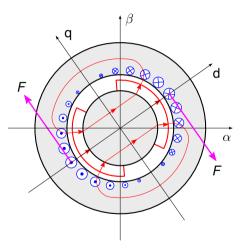
- Most popular concept nowadays (power levels up to 5 MW)
- Rotor winding is connected via slip rings to a converter
- Power rating of the converter is about 25% of the rated power (corresponds to the speed range 60%...110%)
- Optimised tip speed ratio  $\lambda \Rightarrow$  improved energy yield
- Less power fluctuations and audible noise



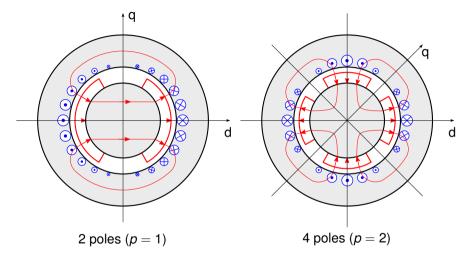
#### Permanent-Magnet Synchronous Generator (PMSG)

- Power levels up to 8 MW
- Fully rated frequency converter (expensive, more losses)
- Better grid-fault ride-through capability
- No brushes  $\Rightarrow$  less maintenance
- Is the gearbox necessary?




## 4-MW 690-V Frequency Converter

Grid-Side Converter Unit is Visible in the Figure




### **Conceptual PMSG: Operating Principle**

- Three-phase stator winding
- Permanent magnets (e.g. NdFeB or SmCo) in the rotor
- Very high efficiency
- No magnetizing supply needed
- Equal (but opposite) reaction forces affect the rotor



#### Number of Poles



• Angular rotor speed  $\Omega = \omega/p$ , where  $\omega$  is the angular supply frequency

#### **Generator Scaling**

Shear stress of active air-gap surface area

$$\tau = \frac{1}{2}\hat{B}_{g}\hat{A}_{s}\cos\gamma \qquad [N/m^{2}]$$

- Air-gap flux density  $\hat{B}_{g}$  is limited due to saturation
- Stator current loading Âs is limited due to dissipation
- Generator size roughly proportional to the (rated) torque

$$T = r_{\rm r} \left( 2\pi r_{\rm r} \ell \, \tau \right) = 2\tau \, V_{\rm r}$$

since  $V_{\rm r} = \pi r_{\rm r}^2 \ell$  is the rotor volume

Price of the generator depends on its size and materials

#### Generator Scaling: Effect of the Gear Ratio

Rated mechanical power

 $P = T\Omega = 2\tau V_{\rm r}\Omega$ 

where  $\Omega$  is the generator speed

Assumption: lossless gearbox

 $P = T_{\rm b}\Omega_{\rm b} = T\Omega$ 

 Generator size depends on the gear ratio R = Ω/Ω<sub>b</sub>

$$T=T_{\rm b}/R$$



Wind-turbine gearbox (R = 78...136)

#### Figure: GE

# 4-MW 10-rpm Direct-Drive PMSG

Rated Speed Around 10 rpm, Very High Number of Poles



Figures: http://www.eal.ei.tum.de/fileadmin/tueieal/www/courses/EAGUA/lecture/2013-S/x\_Handout\_Alan\_Jack\_new\_developments.pdf

## Future Concepts: Superconducting Direct-Drive Generators

High Temperature Superconductor (HTS), Operated at 30...50 K

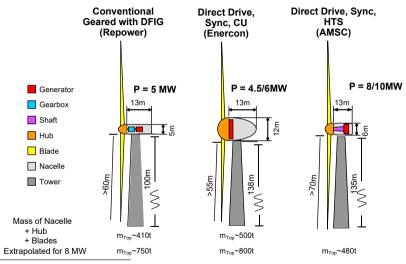
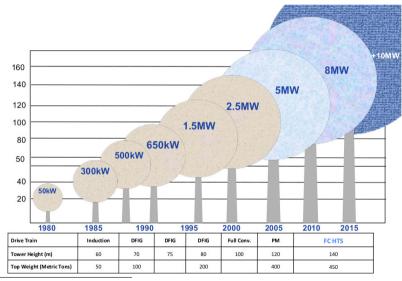
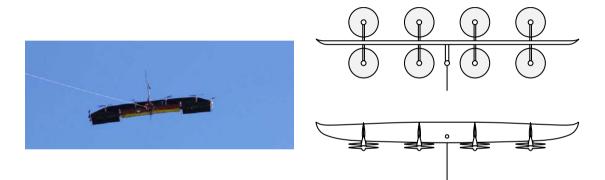
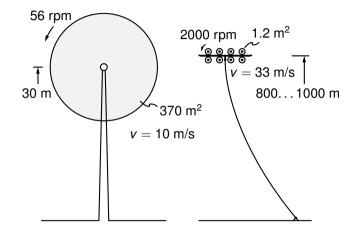



Figure (modified): D. McGahn, "Drivetrains: direct drive generators and high temperature superconductor based machines," MIT Windweek, 2009, http://web.mit.edu/windenergy/windweek/Presentations/P7%20-%20McGahn.pdf

#### Growth in Turbine Size



Figure (modified): D. McGahn, "Drivetrains: direct drive generators and high temperature superconductor based machines," MIT Windweek, 2009, http://web.mit.edu/windenergy/windweek/Presentations/P7%20-%20McGahn.pdf

#### Airborne Wind Turbine: Power Kite by Joby Energy



Figures: Kolar et al., "Conceptualization and multiobjective optimization of the electric system of an airborne wind turbine," IEEE J. Emerg. Sel. Topics Power Electron., 2013

#### Size Comparison: 100-kW Conventional and Airborne Wind Turbines



Figures (modified): Kolar et al., "Conceptualization and multiobjective optimization of the electric system of an airborne wind turbine," IEEE J. Emerg. Sel. Topics Power Electron., 2013

#### 30-kW Buoyant Airborne Turbine



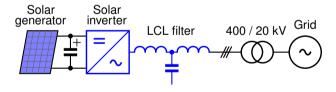
#### Outline

Energy Trends in European Union

**Energy Conversion** 

**Electric Drives** 

Renewable Energy


Wind Energy (Incl. Some More Exotic Concepts)

Utility-Scale Solar

#### Summary

#### **Utility-Scale Solar**

- Solar generator produces the DC voltage
- DC-bus voltage is adjusted for maximum power-point tracking (600...850 V)
- Additional DC/DC converter between the generator and the inverter is often used in residential-scale solar (for better maximum power-point tracking)



#### **Utility-Scale Solar Plant**

Finsterwalde I-III Solar Power Plant Cluster (Peak Capacity 83 MW)

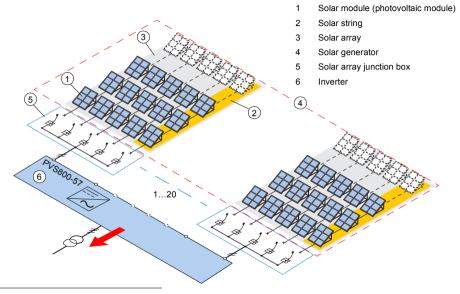



Figure: http://www.q-cells.com/consumer/power-plants/references.html

#### 2-MW Inverter Station With Two 1-MW Central Inverters



#### Central Inverter and Solar Generator



#### Outline

Energy Trends in European Union

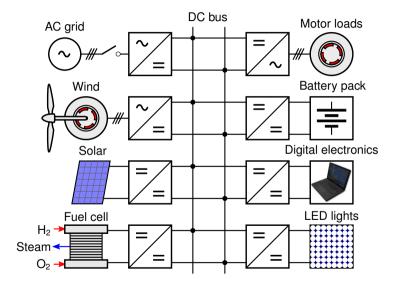
**Energy Conversion** 

**Electric Drives** 

Renewable Energy

Wind Energy (Incl. Some More Exotic Concepts)

Utility-Scale Solar


#### Summary

# Electrification Is a Key Trend

Just a Few Selected Examples Were Considered in This Lecture

- Electrified transport sector
- Renewable and distributed energy production
- Smart grids
  - DC grids (buildings, communities, HVDC)
  - Energy storages (batteries, pumped hydro)
  - Electricity, heat, transport, water, gas
- Energy and resource efficiency
  - Everywhere (from devices to systems)
  - Wide-bandgap power semiconductors (SiC, GaN)
  - Internet of things, industrial internet

#### Concept of a DC Grid: Less Conversion Stages $\Rightarrow$ Less Losses



### Methods for Mitigating the Climate Change Problems

- Eliminate coal-fired power generation (or develop CCS)
- Increase nuclear power?
- Generation of environmentally clean energy
- Electrified (mass) transport
- Smart grids (efficient generation, transmission, distribution, and utilization of electricity)
- Preserve rain forests and promote forestation
- Control human and animal population?
- Simpler lifestyle (33% of energy in the world can be saved)

Source: Bose, "Global energy scenario and impact of power electronics in 21st century," IEEE Trans. Ind. Electron., 2013