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Introduction 

     STPA is a new hazard analysis technique based on systems thinking and a new model of accident 
causation based on systems theory rather than reliability theory.  Although STPA has been published 
and evaluated in many academic papers, it was not possible in those papers to provide a tutorial on 
STPA. STPA was also described in a book, Engineering a Safer World (abbreviated ESW in this primer), by 
Nancy Leveson. Since then, there have been many requests for a tutorial description of this analysis 
technique that includes lessons learned from practical applications, updates since the book went to 
print, and answers to common questions asked in classes and workshops.  This STPA primer is our 
attempt to do so. It contains a detailed tutorial on how to use STPA, answers to frequently asked 
questions, and lots of real-life examples of its use. 

     This primer is not stand-alone, however. Users need to read Engineering a Safer World first to 
understand the foundations of STPA, the principles for analyzing organizational, human, and technical 
components of sociotechnical systems, the effective integration of STPA into system engineering 
processes, and other practical lessons. Throughout this primer, an attempt is made not to duplicate 
what is in Leveson’s book but to explain it further. References back to the book are made when 
something has already been thoroughly discussed there.  

     Because STPA is relatively new, we and others are still learning from our experience using it, 
extending it, and applying it to other system properties, such as security. Rather than waiting many 
years to produce this primer, it will instead serve as a “living book” in the sense that it will be 
periodically updated with new material and better descriptions as more experience is obtained.  We will 
identify when the updates are made and which sections have been significantly changed. 

     Few of the traditional hazard analysis techniques, which mostly date from more than 50 years ago, 
have actually been scientifically evaluated. In fact, there is much evidence that these techniques are not 
cost-effective, but unfortunately there have been few alternatives. Many experimental comparisons 
between STPA and traditional techniques have been done as well as less formal comparisons on industry 
projects. A chapter in the primer is devoted to these results so far and more results will be added in the 
future.   

     To provide a more active learning environment, we have inserted exercises and questions for the 
reader throughout. Our solutions to exercises are provided at the end of the book. Some exercises 
involve applying the ideas to a system with which you are familiar. In those cases, we have tried to 
provide some ways you can evaluate your own answers in terms of common mistakes and other 
evaluation methods and questions. Some questions are inserted just to help you think carefully about 
the material being presented. In an interactive classroom setting, these are the questions we would ask 
students to ensure they understand what is being presented. The answers are not provided as that 
would be impractical. We have also scattered answers to frequently asked questions throughout the 
primer as we often hear the same questions many times or find many people making the same mistake. 

     We would appreciate feedback on the primer, such as what is clear, what is not so clear, and what 
needs to be added. We will use the feedback to improve future versions of this document and to include 
additional “frequently asked questions” in the primer. Also, there are many papers, reports, 
dissertations, etc.  including full examples on the PSAS website: http://psas.scripts.mit.edu/home/ 

http://psas.scripts.mit.edu/home/
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Chapter 1: What is STPA? 
Nancy Leveson 

(First version: 9/2013 
Change history:  ) 
 

     STPA, or Systems-Theoretic Process Analysis, is a new hazard analysis technique with the same goals 
as any other hazard analysis technique, that is, to identify scenarios leading to identified hazards and 
thus to losses so they can be eliminated or controlled. STPA, however, has a very different theoretical 
basis or accident causality model. As stated in the introduction, STPA is based on systems theory while 
traditional hazard analysis techniques have reliability theory at their foundation. As explained in 
Engineering a Safer World, STPA results in identifying a larger set of causes, many of them not involving 
failures or unreliability. While traditional techniques were designed to prevent component failure 
accidents (accidents caused by one or more components that fail), STPA was designed to also address 
increasingly common component interaction accidents, which can result from design flaws or unsafe 
interactions among non-failing (operational) components. In fact, the causes identified using STPA are a 
superset of those identified by other techniques. Many of these additional causes are related to new 
types of technology (such as computers and digital systems) and higher levels of complexity in the 
systems we are building today compared to those built 50 years ago when most of the traditional 
techniques were developed. Chapter 4 contains data from real projects and experimental comparisons 
to substantiate this claim of the greater power of STPA. But the claim can also be substantiated 
theoretically by understanding more about accident causality models. 
 

What is an Accident Causality Model?1 

     All hazard analysis is based on some conception by the analyst (and built into the analysis technique) 
of how and why accidents occur. If accidents were totally random events involving complex and random 
interactions of various events and conditions, then it would not be possible to proactively identify 
specific sets of scenarios leading to losses before they occur. 

      In fact, the idea of random causality is the basis of the epidemiological approach to safety, first 
suggested by Gordon in the 1940s [Gordon 1954, Thygerson 1977].  While epidemiology is usually 
applied to disease, Gordon suggested that it could also be applied to accidents and to the injuries that 
resulted. This epidemiological model of accidents and injury assumes that accidents result from random 
interactions among an agent (physical energy), the environment, and the host (victim). As in classical 
epidemiology, this assumption leads to a reactive approach to accident analysis. In descriptive 
epidemiology, the incident, prevalence, and mortality rates for accidents in large population groups are 
collected and general characteristics such as age, sex, and geographical area are identified. Investigative 
epidemiology uses a different approach where the specific causes of injuries and deaths are collected in 
order to devise feasible countermeasures.  

     While this after-the-fact epidemiological model of accident causation assumes some common factors 
in accidents, they can only be determined by statistical evaluation of accident data. On the positive side, 

                                                           
1
 The reader who is not interested in the philosophy behind STPA can skip to the next section on chain-of-event 

causality models. 
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because specific relationships between causal factors are not assumed, previously unrecognized 
relationships can be discovered. In addition, determinant as opposed to chance relationships can be 
distinguished through statistical techniques. 

Question: What are some examples of systems or conditions in which this epidemiological 
approach might be particularly useful? 

     The alternative to an assumption of total randomness is to posit that there is a pattern to accidents 
that can be used proactively to identify potential causes for accidents in specific system designs. 
Epidemiologists work with large populations and natural (undesigned) systems. Safety engineers are 
more likely to be involved in human-designed systems where the structure and relationships in the 
system are known and, in fact, are designed and documented. Proactive approaches to accident 
prevention can be created that exploit common patterns in accidents by analyzing a specific system 
structure for patterns that might lead to a loss. 

     To identify possible patterns in accidents, the definition of a cause needs to be considered.      
  

What is a cause? 

     Philosophers have debated the notion of causality for centuries. John Stuart Mill (1806-1873) defined 
a cause as a set of sufficient conditions. “The cause is the sum total of the conditions, positive and 
negative, taken together, the whole of the contingencies of every description, which being realized, the 
consequence invariably follows” [222].  

     As an example, combustion requires a flammable material, a source of ignition, and oxygen. Each of 
these conditions is necessary, but only together are they sufficient. The cause, then, is all three 
conditions, not one of them alone. The distinction between sufficient and necessary is important 
[Lewycky 1987]. An event may be caused by five conditions, but conditions 1 and 2 together may be able 
to produce the effect, while conditions 3, 4, and 5 may also be able to do so. Therefore, there are two 
sets of causes (sets of conditions sufficient for the event to occur). Both of the causes (called causal 
scenarios in this document) have a set of necessary conditions. 

 Question: What are some necessary and sufficient conditions for an accident in your industry? 

     The phrase “necessary and sufficient” implies direct causality and linear relationships. A causes B 
implies that if A occurs, then B will occur and that B will not occur unless A does. But there are lots of 
situations where indirect causality is important, that is, where the relationship is neither necessary nor 
sufficient. These factors may be labeled as systemic causal factors.  

     As an example, consider drunk driving. Drunk driving is said to “cause” accidents, but being drunk 
while driving a car does not always lead to an accident. And accidents occur without drivers being drunk. 
The similar indirect relationship holds between smoking and lung cancer. The Tobacco Institute 
exploited this distinction for years by arguing that not all smokers get lung cancer and non-smokers also 
get lung cancer so there cannot be a causal relationship. The answer is that there is a relationship, as 
most people now agree, but it is not a direct one. The factors involved in the indirect relationship may 
be well understood (as in drunk driving) or they may be less well established or understood (as in 
smoking and lung cancer).  An indirect causal relationship is one in which X exerts a causal impact on Y 
but only through a third variable Z. In more complex relationships, the nature of the relationship 
between X and Y may even vary over time, depending on the value of Z. 

 Exercise:  What are some other examples of indirect causation? 

 Why does my definition of cause matter? 

 You may be asking, what does all this philosophy have to do with me? I just want to build and operate 
safer systems. The answer is that the underlying accident causality model or assumptions you are using 
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will determine the success of your efforts. An accident model underlies all our efforts to prevent 
accidents and to perform hazard analysis. You may not be aware that you are using an accident causality 
model, but you are. Whether you consider accidents as an unfortunate but unavoidable result of 
random events (as in the epidemiological models), as a result of individual component failures, or as a 
result of dysfunctional interactions and inadequately controlled processes in the system, these 
assumptions will determine the types of accidents you can analyze and prevent in your system.  

     Hazard analysis can be described as “investigating an accident before it happens.” To do that 
hypothetical investigation, some assumptions about the cause of accidents are required.  An important 
assumption is whether the accident model includes only direct causality or whether it includes systemic 
or indirect causality. One example is that the safety of nuclear power plants rests to a large degree on 
the safety system, whose operation is required to be independent of the non-safety systems in the 
plant. If a hazard analysis technique is used that identifies only direct relationships, then indirect 
dependencies may not be identified and independence may be assumed to exist when it does not. 

Question: Do the systems on which you work contain assumptions about independence of 
components or functions that might be compromised by indirect causal relationships? 

     A hazard analysis method based on systemic causality can identify non-direct dependencies and 
relationships. A systemic cause may be one of a number of multiple causes, may require some special 
conditions, may be indirect by working through a network of more direct causes, or may require a 
feedback mechanism [Hall 1997, Korzybski 1933, Lakoff 2012, Senge 1990]. Systemic causality is 
especially important when studying ecosystems, biological systems, economic systems, and social 
systems. Our engineered systems used to be simple enough that considering only direct linear causality 
was adequate. But complexity has grown to the point where systemic causality must be considered for 
us to adequately engineer for safety. The traditional model of accidents as chains of direct causal events 
is no longer adequate. 

  

Traditional Chain-of-Failure-Event Causality Models      

         The traditional assumptions about and pattern used to explain accidents (the accident causation 
model) underlying almost all of the traditional hazard analysis method is the chain-of-events model. 
Accidents are seen as being caused by a chain of failure events over time, each event directly leading 
(being necessary and sufficient) to cause the following event. Eventually a loss occurs. For example, the 
brakes fail, which leads to the car not stopping in time, which leads to the car hitting the car in front of 
it. The events considered are almost always hardware failures, human errors, software “failures”, or 
energy-related such as an explosion. In HAZOP, deviations of system parameters are considered instead 
of or in addition to failures but direct causality is still assumed. As example of a chain of events 
description of an accident is shown in Figure 2.4 on page 17 of ESW. 

     Using this model, the reasonable approach to hazard analysis is to create plausible chains of failure 
events that can lead to the accident being prevented. These plausible chains can be used to create 
changes to the system design or operations in order to prevent the failures. As the events involve 
failures, human errors or uncontrolled energy, it makes sense to try to prevent accidents by increasing 
the reliability of the system components to prevent the failures and stop the chain from occurring, for 
example, to increase the reliability of the brakes in the car.  Note that reliability of the component 
behavior, i.e., the prevention of failure events, is the foundation of such an accident causation model. 
Failures are considered to be random, and therefore it is reasonable to assign a probability to such 
failure events.   

     In some industries, primarily the process industry, the standard approach to designing for safety is to 
put barriers between the events, especially the energy related events, to prevent the chain from 
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propagating even though the failure events may occur, for example, using a containment vessel to 
“contain” the inadvertent release of some chemical or radioactive materials before it affects a victim or 
a shield to protect someone from the inadvertent release of energy. The events considered then are the 
failure of the barriers and not necessarily the basic component failure events. The problem becomes 
one of reducing the probability of the barriers failing, which is again considered to be random.  

     In other industries, more general types of prevention measures may be used such as sophisticated 
fault-tolerant and fail-safe design techniques. The events in Figure 2.5 on page 18 of ESW are annotated 
with a variety of common design techniques, such as building the tank using a non-corrosive material to 
eliminate the possibility of corrosion. 

     Formal chain-of-failure-event models (rather than just implicit models) date back to the 1930s and 
Heinrich’s Domino Model (Figure 1.1) [Heinrich 1931], which focused on operator error as the cause of 
accidents. As greater understanding of additional factors in accidents started to accumulate, people 
added new factors into the domino (event) chain, particularly in the 1970s, such as lack of control by 
management, supervisor behavior, management and organizational structure, and substandard 
practices. Examples are extensions to the Domino Model by Adams (1976) and by Bird and Loftus 
(1976).  

 
 

Figure 1.1. The original Domino Model. Notice the focus on direct causality and human error 
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Figure 1.2.  One version of the Swiss Cheese Model 

 
     In 1990, Reason created the popular Swiss Cheese Model. There are many graphical depictions of his 
model, with common factor being Swiss cheese slices with accident trajectories shown as an arrow 
through the holes in the cheese. Different labels may be placed on the slices. A common version is 
shown in Figure1.2. 

     The only significant difference between the Swiss Cheese Model and the previous models by Heinrich, 
Adams, Bird and Loftus, and others was the substitution of Swiss cheese slices for dominoes or other 
graphics. The holes represent failed or absent barriers or defenses. In an accident scenario, they are 
considered to line up randomly, which assumes that each slice is independent, which is highly unlikely in 
any real system. The need to align the holes (failure events) for an accident to occur also implies a 
precedence requirement for the failure events. The organizational influences must precede (and 
presumably “cause”) unsafe supervision which causes the preconditions for unsafe acts and then finally 
the unsafe acts and the mishaps. Note the emphasis on human error again, although some versions of 
the Swiss cheese model do not necessarily use the same labels on the failure events. 

     The prevailing chain-of-failure-events model provides the basis for almost all of today’s hazard 
analysis techniques (Fault Trees, Event Trees, HAZOP, and FMEA and FMECA) and the probabilistic risk 
assessment based on them. It also underlies most of our reliability enhancing design techniques, such as 
redundancy, barriers, safety margins and overdesign, fail-safe design, etc. All of these analysis and 
design techniques are based on system component failures and thus reliability theory. 

 Exercise: Where is the chain of events found in a fault tree, an event tree, HAZOP, and FMEA? 

     This model and the engineering approaches based on it include assumptions that were reasonable at 
the time when the traditional hazard analysis techniques were created, primarily in the 1960s, although 
FMEA goes back farther than that. At that time, systems were composed of pure electromechanical 
components, which could be effectively decoupled and analyzed independently, resulting in relatively 
simple interactions among the components. System design errors could, for the most part, be identified 
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and eliminated by testing. What remained after development were primarily random hardware failures.  
At the same time, operational procedures were simpler and could be completely specified, and operator 
error mostly involved skipping a step or performing a step incorrectly.   

     Reliability and safety were, therefore, closely related in these relatively simple designs, and the chain-
of-failure-events causality model was an adequate simplification of how accidents occurred.  

     The situation has now changed. The use of computers and other new technology has allowed 
increasingly complex designs that no longer can be exhaustively tested. Critical design errors (usually 
reflected in requirements flaws) are being identified only during operational use. While software design 
errors may exist that result in the software not implementing the stated requirements, the role of 
software in accidents and safety-related incidents is much more likely to result from inadequate 
software requirements. The software can be perfectly reliable (it does the same thing continually given 
the same inputs) and perfectly implement its requirements, but it may still be unsafe if the behavior 
specified by the requirements is unsafe. 

     The problems are similar for human operators. Assumptions about the role of human operators in 
safety have always been oversimplified. Most human factors experts now accept the fact that behavior 
is affected by the context in which it occurs and humans do not “fail” in a random fashion [see, for 
example, Dekker 2006, Flach 1995, Norman 2002, Rasmussen 1997]. The oversimplification has become 
less applicable to modern systems as operators increasingly assume supervisory roles over automation, 
which requires cognitively complex decision making where mistakes can no longer be effectively treated 
as simple random failures. The design of systems today is leading to new types of operator errors, such 
as mode confusion, that stem from system design and not from random errors on the part of the 
operator.   

     The basic problem is complexity. Complexity has increased in current advanced engineering systems 
to the point where all the potential interactions among system components cannot be anticipated, 
identified, and guarded against in design and operations. Component interaction accidents (as opposed 
to component failure accidents) are occurring where no components have “failed” but a system design 
error results in accidents caused by previously unidentified, unsafe component interactions and 
component requirements specification errors. Hazard analysis techniques based on reliability theory and 
assumptions that accidents are caused by component failures do not apply to component interaction 
accidents.     

     There are other limitations of the traditional accident causation models that limit their effectiveness 
in understanding and preventing accidents. For example, no account is made for common causes of the 
failures of the barriers or the other types of events in the chains. These “systemic” accident causes can 
defeat multiple barriers and other design techniques that are assumed to be independent. In addition, 
no account is taken of Rasmussen’s observation that major accidents are not usually the result of simple 
chains of random events or random failures but instead represent the systematic migration of the 
system to states of higher risk. At some point in time, an accident becomes inevitable or, as people 
often observe in hindsight, an accident “waiting to happen.” This migration occurs due to competitive or 
financial pressures that force people to cut corners or to behave in more risky ways [Rasmussen 1997].  
     As an example, consider the Bhopal accident. None of the safety devices, for example, the vent 
scrubber, flare tower, water spouts, refrigeration system, alarms, and monitoring instruments worked. 
At first glance, the failure of all these devices at the same time appears to be an event of extremely 
small probability or likelihood. But these “failure” events were far from independent. Financial and 
other pressures led to reduced maintenance of the safety devices, turning off safety devices such as 
refrigeration to save money, hiring less qualified staff, and taking short cuts to increase productivity. An 
audit two years before the accident noted many of the factors involved, such as nonoperational safety 
devices and unsafe practices, but nothing was done to fix them.  
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     This accident was not just a bunch of holes randomly lining up in Swiss cheese slices but the result of 
a common cause of all the failures of the Swiss cheese slices and systematic degradation of all the 
protection devices. One can envision the financial pressures at Bhopal as undermining all the barriers 
over time: think of a mouse eating the cheese slices until the holes are so large that the slices disappear 
and almost any event will set off a disaster. There was nothing random about the causes of this accident 
and about the lack of protection provided by all the safety devices. If only the proximate events to the 
loss are considered, the events can appear random. But if a longer time line and more causal factors 
(including systemic or indirect ones) are considered, the appearance of randomness disappears. One of 
the problems is that these models consider the failure events as the cause but do not look at the 
reasons the failures occurred so only a limited set of causes is considered.2 They also assume direct 
causality and therefore indirect and nonlinear relationships among the events are not considered. 
 Exercise: What are some systemic causes of accidents in systems with which you are familiar? 
  

     STPA is based on a different paradigm called systems thinking and systems theory, that is, systemic 
causality. As such, it includes not only the basic types of accidents that were handled in the past but also 
new causes of accidents not included in the traditional accident causation models. 

What is Systems Theory? 

     Systems theory is described in Leveson’s book (Chapter 3), so only a short summary is included here.  
Until the 1940s and 1950s, scientists and engineers used analytical reduction to cope with complexity.  
In analytic reduction, physical complexity is handled by dividing the system into separate physical 
components, while behavioral complexity is simplified by considering only separate events over time. 
The assumptions underlying analytical reduction include assuming that the division into parts does not 
distort the phenomenon and that the interactions among the subsystems and events are simple and 
direct.  

     Alternatively, some systems can be conceived as a structureless mass with interchangeable parts. The 
law of large numbers is used to describe behavior in terms of averages. The assumption here is that the 
components are sufficiently regular and random in their behavior that they can be studied statistically.  

     Unfortunately, most of our safety-critical systems today are too complex for complete analysis and 
too organized for statistics. 

     Systems theory was developed to deal with these modern systems. It forms the basis for system 
engineering, where the whole is considered to be more than the sum of the parts and top-down analysis 
and development is used. Systems theory deals with properties (called emergent properties) that can 
only be handled adequately holistically, taking into account all the technical and social aspects. These 
properties arise in the relationships and interactions among system components or behavioral events. 
That is, systems theory treats systems as a whole and not the components and events separately.  

          In systems theory, instead of breaking systems into interacting components, systems are viewed 
(modeled) as a hierarchy of organizational levels. At the lowest level of road traffic, there are the 
individual vehicles, such as cars and trucks. At the next level there is the design of the roads, which 
controls the movement of the individual vehicles and their interactions.  At a higher level, one can 
conceive of the entire highway system including the roads but also the rules and policies imposed on the 
drivers of the vehicles.  

                                                           
2
 Many accident reports start with recounting the chain of events that led to the loss. But the reports usually go on 

to describe the reasons why the events occurred, although often in a limited way. Traditional hazard analysis 
methods, however, stop after identifying the chain of events and rarely get to the complex causes behind these 
events. 
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     The levels of the hierarchy are characterized by emergent properties. These properties are irreducible 
in terms of not being able to be defined solely in terms of properties of the individual components. The 
interaction of individual system components results in emergent behavior.  Consider the emergent 
property of highways called gridlock. By looking only at the individual cars, determining whether they 
will be involved in gridlock is not possible. Only by looking at all the cars together, their relationships and 
distances from each other, and the characteristics of other parts of the highway system such as the 
physical structure of the roads, etc., can it be predicted when and how gridlock will occur. Gridlock is an 
emergent, system property for highway systems.  

 Exercise: What are some other examples of emergent properties? 

      Safety is an emergent property. By examining the components of a nuclear power plant, for example, 
the individual valves and pipes and wires and containment vessels, it is not possible to determine 
whether the nuclear power plant will be safe. That requires understanding how the individual 
components are connected and interact, that is, the entire system design. There may possibly be some 
local safety properties of the individual components, such as sharp edges that could cut anyone who 
comes in contact with them, but the hazard of “uncontrolled release of radioactive material” cannot be 
evaluated by looking at the individual components alone without understanding the overall system 
design (physical and logical connections) and how the components can interact.  

     In systems theory, each hierarchical level of a system controls the relationships between the 
components at the next lower level. That is, the levels impose constraints on the degree of freedom of 
the behavior of the components beneath them. This concept of constraints on behavior plays an 
important role in STAMP. Safety properties are controlled by imposing constraints on the behavior and 
interaction of system components. As an example, in an air traffic control system, one safety constraint 
is that there must always be a minimum distance between airborne aircraft. By definition, then, 
accidents occur when the safety constraints are not enforced. 

Exercise: What are some of the safety constraints in the systems in your industry? How are they 
enforced or controlled? 

    The concept of control is important. Each hierarchical level of a system imposes constraints on and 
controls the behavior of the level beneath it. One can envision a feedback control loop between the 
components at any level of the system model and the component(s) at the next higher level of 
abstraction.  

     By using systems theory, we can get beyond simple direct relationships among components and 
consider indirect and nonlinear relationships as well as types of control such as feedforward and 
feedback control.  These more complex relationships between components and events cannot be 
described easily using only boxes with arrows between them, which naturally imply direct causality. That 
makes it, unfortunately, impossible to graphically describe the cause of an accident using boxes and 
arrows without losing important information and relationships.  STAMP has been criticized because it 
does not lead to nice graphical models of the causes of an accident, especially one that fits on one page. 
We agree that simple, graphical models are very powerful, but they lose important information when 
they show only direct relationships.3 At best, multiple types of graphical models (such as system 
dynamic models to show the dynamics and STAMP type models to show the static structure) will be 
needed along with natural language to adequately describe the causes of an accident.  

                                                           
3
 System dynamic models are one type of graphical model of the dynamics of a system but they also omit 

important information, such as the static structure of the system. In fact, system dynamics and STAMP have been 
applied in combination in the past. See, for example, “Demonstration of a New Dynamic Approach to Risk Analysis 
for NASA's Constellation Program” by Dulac et al. 
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What is Systems Thinking?       

     Systems thinking is a term that denotes processes and ways of thinking that follow the principles of 
systems theory and incorporate systemic causality. Senge (1990) writes: 

[Systems thinking] shifts thinking from blaming a single individual or department, to recognizing 
that sometimes the problem or fault lies in the entire system and that everybody plays a significant 
role. Causation becomes multi-causal. 
      In mastering systems thinking, we give up the assumption that there must be an individual, or 
individual agent, responsible. The feedback perspective suggests that everyone shares 
responsibility for problems generated in a system. 
     With systemic thinking, we recognize that "the cause" frequently lies in the very structure and 
organization of the system. Such structural awareness enables us to ask, what are the over-arching 
structures that hold the system together? [Senge 1990, p. 78] 

 

 
 

Figure 1.3. Using systems thinking will provide the leverage we need to get beyond 
simple event-based thinking and reduce accidents in complex systems [Young, 2012] 

 
     Engineering a safer world requires not only solving immediate problems but constructing a system 
that learns and improves over time. “"It is not enough to see a particular structure underlying a 
particular problem ... This can lead to solving a problem, but it will not change the thinking that 
produced the problem in the first place." (Senge 1990 p. 95) 

     By applying systems thinking to safety engineering, we will be able to handle more complexity and 
more causal factors in safety engineering (Figure 1.3). 
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STAMP 

     STAMP (Systems-Theoretic Accident Model and Processes) is a new type of accident model based on 
systems theory rather than the traditional analytic reduction and reliability theory. In the STAMP model 
of accident causation, safety is an emergent property that arises when system components interact with 
each other within a larger environment. There is a set of safety constraints related to the system 
components—physical, human, and social—that enforces the safety property. Accidents occur when the 
interactions violate the safety constraints, that is, appropriate constraints are not imposed on the 
interactions. 

     The goal of safety engineering, then, is to control the behavior of the components and system as a 
whole so as to ensure that the safety constraints are enforced. To date, I have not been able to devise a 
simple graphic, like dominos or Swiss cheese slices, that illustrates STAMP. The problem is that indirect 
and systemic causality is much harder to depict than simple direct relationships and that STAMP is a 
total paradigm change from the prevailing accident models today. Figure 1.4 shows my best attempt at 
creating a graphic to date.  

. 

  
 

Figure 1.4.  Accidents occur when the system gets into a hazardous state, which in turn occurs because 
of inadequate control in the form of enforcement of the safety constraints on the system behavior 

      

     In STAMP, accidents involve a complex, dynamic process. They are not simply chains of component 
failure events. Safety then can be treated as a dynamic control problem, rather than a component 
reliability problem. For example, the O-ring in the Challenger Space Shuttle did not control propellant 
gas release by sealing a gap in the field joint. Yes, the O-ring failed, but the larger problem was not just 
that failure itself but that the failure led to a violation of a system safety constraint. In other examples, 
the software did not adequately control the descent speed of the Mars Polar Lander, the Texas City oil 
refinery design and operations did not adequately control the level of liquid in the ISOM tower, and the 
problem at the Macondo Well in the Deepwater Horizon fire and oil spill was a similar lack of control 
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over the pressure in the well. Non-engineered systems can be included, e.g., the financial system did not 
adequately control the use of financial instruments in our recent financial crisis.  

Exercise:  For your industry or for a system with which you are familiar, what “process” is being 
controlled? How is it controlled? What are some typical safety constraints that must be 
enforced? 

      The example accidents in the previous paragraph often did include component failures. The point is 
that they included more than just component failures. Unless the accident model defines causality as 
more than a chain of failure events, other types of factors are missed such as system design errors, 
software requirements flaws, mistakes in human decision making, migration of the overall system 
toward states of higher risk, etc.  A causality model based on control includes both the failure to control 
the component failures or their effects and instances where the interactions among components (the 
overall system design) was the problem and not component failures. STAMP therefore extends the 
classic model by including it as a subset.  

    To understand the “why” behind accidents, we need to look beyond just the events to the reasons 
those events occurred. In essence, STAMP results in a change in emphasis from prevent failures to 
enforce safety constraints on system behavior (which includes prevent failures but also includes more). 
    STAMP has three basic concepts: safety constraints, hierarchical safety control structures, and process 
models. Safety constraints have been discussed. Safety control structures and process models are 
described briefly here but more details are provided in the next chapter on STPA. 
 

Hierarchical Safety Control Structures 

     A hierarchical safety control structure is an instance of the more general system theory concept of 
hierarchical control structure. The goal of the safety control structure (sometimes called the safety 
management system) is to enforce safety constraints and therefore eliminate or reduce losses. 

      Figure 1.5 shows an example for a typical regulated industry in the U.S. Only the operations and 
development control structure are included. Later examples will show other aspects of this structure. 
Between each level there is a feedback control loop as defined in system theory. Higher level controllers 
may provide overall safety policy, standards, and procedures, and get feedback about their effects in 
various types of reports, including incident and accident reports. Lower levels implement those policies 
and procedures. Feedback provides the ability to learn and to improve the effectiveness of the safety 
controls. 

     There are two basic hierarchical control structures in Figure 1.5—one for system development (on 
the left) and one for system operation (on the right)—with interactions between them. An aircraft 
manufacturer, for example, might only have system development under its immediate control, but 
safety involves both development and operational use of the aircraft and neither can be accomplished 
successfully in isolation: safety must be designed into the aircraft, and safety during operation depends 
partly on the original design and partly on effective control over operations. Manufacturers must 
communicate to their customers the assumptions about the operational environment in which the 
original safety analysis was based, for example, maintenance quality and procedures, as well as 
information about safe aircraft operating procedures. The operational environment, in turn, provides 
feedback to the manufacturer about the performance of the system during operations.  

     Additional control structures might be included that have responsibility over a different aspect of 
system, such as a control structure to protect the public (control public health) by providing emergency 
response to violation of safety constraints that can lead to health or environmental consequences. 
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Figure 1.5. An example safety control structure for a regulated industry 

      
     Each component in the hierarchical safety control structure has responsibilities for enforcing safety 
constraints appropriate for that component, and together these responsibilities should result in 
enforcement of the overall system safety constraint.   Part of defining the safety control structure is a 
specification of the expectations, responsibilities, authority, and accountability with respect to enforcing 
safety constraints of every component at every level. These responsibilities, authority, etc. taken 
together must enforce the system safety constraints in the physical design, operations, management, 
and the social interactions and culture.   
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     Lots of examples of safety control structures can be found in ESW. Figure 1.6 shows a safety control 
structure (from the Deepwater Horizon accident) that spans companies. One of the problems in that 
case, as reflected in the finger pointing after the accident, was that the responsibilities were not clearly 
delineated for all the actors in the system and gaping holes in responsibilities existed. 

      Control is being used here in a broad sense. Component failures and unsafe interactions may be 
controlled through design, such as classical redundancy, interlocks, and fail-safe design or more specific 
types of controls geared to protect against a particular type of behavior. They may also be controlled 
through process, including developmental, manufacturing, maintenance, and operational processes. 

     Finally, they may be controlled through various types of social controls. While social controls are 
usually conceived as being governmental or regulatory, they may also be cultural, insurance, legal, or 
even individual self-interest. In fact, the most effective way to control behavior is to design (or redesign) 
a system such that people behave in the desired way because it is in their best interest to do so. 
 

 Process models 

     Control loops exist between every level of the safety control structure, even those at the 
management and organizational level. Every controller contains an algorithm for deciding what control 
actions to provide. That algorithm uses a model of the current state of the system it is controlling to help 
make this decision. Figure 1.7 shows a very simple feedback control loop. The controller is assigned 
requirements to enforce on the controlled process behavior, which it does by issuing control actions to 
change the state of the controlled process.  For controllers in a safety control structure, the assigned 
requirements must ensure that the safety constraints are maintained in the controlled process. 

      

 
Figure 1.7.  Every controller contains a model of the process it is controlling 
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Figure 1.6. The safety control structure over the Macondo well during the Deepwater Horizon accident 
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     In an air traffic control system, for example, the air traffic controller may be assigned responsibility 
for maintaining safe separation between aircraft. The controller issues advisories to the aircraft to 
ensure that a loss of minimum separation hazard does not occur.  

     The control algorithm uses information about the process state (contained in the process model) to 
generate those control actions that will cause the process to achieve the requirements (that is, maintain 
the safety constraints) assigned to that particular controller.  In a human controller, the process model is 
usually called a “mental model.” This process model or mental model includes assumptions about how 
the controlled process operates and the current state of the controlled process.  

     For example, if a simple thermostat is controlling the temperature in a room, it will determine 
whether the temperature of the room is at a commanded set point. If not, the controller generates 
control. One way an accident can occur in such a system is that the controller’s process model becomes 
inconsistent with the real state of the controlled process and the controller provides an unsafe control 

action to the process. When there are multiple controllers providing control instructions to the 
same process (including the case where the multiple controllers may be a mixture of humans 
and computers), accidents can also result when conflicting control actions are provided, 
perhaps due to inconsistencies between the individual controller’s process models. Part of the 
challenge in designing an effective safety control structure is to provide the feedback and 
inputs necessary to keep the controllers’ models consistent with the actual state of the 
controlled process and with each other. 

     There are four general types of unsafe control action: 

1. An unsafe control action is provided that creates a hazard (e.g., an air traffic controller issues an 
advisory that leads to loss of separation that would not otherwise have occurred) 

2. A required control action is not provided to avoid a hazard (e.g., the air traffic controller does 
not issue an advisory required to maintain safe separation) 

3. A potentially safe control action is provided too late, too early, or in the wrong order 
4. A continuous safe control action is provided too long or is stopped too soon (e.g., the pilot 

executes a required ascent maneuver but continues it past the assigned flight level) 

There is a fifth scenario where a control action required to enforce a safety constraint (avoid a hazard) is 
provided but not followed. The cause of this fifth scenario will involve inadequate behavior (perhaps a 
failure or a delay) in a part of the control loop beside the controller, for example, the actuator, the 
controller process, the sensors, or the communication links.   

     These five scenarios are a much better model of accident causes related to actions by a human or a 
computer than is simply a model that says they “failed” with no other information about why. Without 
understanding the causes of the “failures,” options for eliminating or reducing them are limited.  STPA 
uses the four types of unsafe control actions along with the fifth reason for unsafe control to identify 
potential causes of hazardous behavior, including that involving software or humans. The identified 
scenarios (hazard causes) can then be used to eliminate the causes from the system or, if that is not 
possible or practical, to mitigate them. Mitigation might involve changing any part of the control loop 
(the assigned responsibilities, the design of the controlled process, the control algorithm, the process 
model, the control actions, designed feedback, a communication link, etc.).  

     If STPA is used early in the system creation and design process, the results of the analysis can be used 
to generate the system and subsystem requirements and to create a safer design from the start so that 
changes do not have to be made late in the design and development process. 

     Figure 1.8 shows a more detailed (and realistic) model, where a process is being controlled by an 
automated controller, which, in turn, is being controlled by a human operator (controller).        
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Figure 1.8. A more detailed model of control. 
      
     Information about the controlled process state (feedback) is provided by sensors and control actions 
are implemented on the controlled process by actuators. An automated controller often mediates 
between human controllers and the controlled process. The human may have direct access to the 
actuators but more commonly issues instructions to the automated controller through physical or 
electronic controls. The automated process may also mediate feedback and provide it to the human 
controller through various types of displays. The dotted lines indicate whether the human controller has 
direct access to the actuators and sensors or whether all information and control actions must go 
through an automated device. In a few fully automated systems, there is no human controller directly 
controlling the physical process although there are humans at higher levels of the control structure.  

     The control algorithm in the automated controller (which is predesigned and changed infrequently) 
uses its information about the current state of the controlled process to determine if any control action 
is needed to be sent to the actuators in order to implement the control requirements, in our case, to 
enforce the safety constraints.  This algorithm is created by a human (not shown in the figure for 
simplicity) using a process model of what he or she thinks will be the operating states of the controlled 
process. Unsafe automated control algorithms may result if the designer of that algorithm has an 
incorrect understanding (process model) of the required behavior of the automated controller.  

     The process model in the automated controller is updated periodically by feedback from the 
controlled process that is communicated via sensors and read by the automated controller’s control 
algorithm and used to change the internal process model.  

      Unlike the automated controller, the human has a control-action generator rather than a fixed 
control algorithm. Humans may be provided with rules or procedures to follow, but one advantage of 
having a human in the loop is the flexibility to change procedures or create new ones in a situation that 
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had not been predicted or to improve the control algorithm without having to go through a long design 
and implementation process. 

          One oversimplification in Figure 1.8 is that there is only one controller and one controlled process 
while there actually may be many of each. Multiple controllers over the same process or processes need 
some way of coordinating their control actions to avoid a hazardous system state. The control 
algorithms must be coordinated as well as consistent models of the controlled process state maintained 
for each controller. Consider a collision between two aircraft that occurred over southern Germany in 
2002. Figure 1.9 illustrates the problem that occurred. 

 

 
Figure 1.9. The unsafe interactions in the Uberlingen accident. 

 
     The ground air traffic controller told one plane to ascend and the other to descend, which would have 
averted the accident. At the same time, an automated controller (called TCAS or Traffic Alert and 
Collision Avoidance System) in the two aircraft gave the opposite ascend and descend instructions that 
the ground controller provided. Again, if both planes had followed the automated controller’s 
instructions, no loss would have occurred. The problem was that one crew followed the air traffic 
controller’s instructions while the other followed the air traffic controller’s instructions. As a result, both 
aircraft descended and collided. 
 

Summary 

     To summarize, using the STAMP accident causation model, accidents occur when the safety control 
structure does not enforce the system safety constraints and hazardous states occur due to  

1. Unhandled environmental disturbances or conditions 
2. Unhandled or uncontrolled component failures 
3. Unsafe interactions among components 
4. Inadequately coordinated control actions by multiple controllers 
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The potential for unsafe control may exist in the original design of the safety control structure or the 
safety control structure and its controls may degrade over time, allowing the system to move to states 
of increasing risk. 

     STAMP is only an accident causation model, it is not itself an engineering technique. By using STAMP 
as a theoretical foundation, however, new and more powerful tools and processes can be constructed. 
Figure 1.10 shows some of these tools and processes that we have been working on or plan to in the 
future.  

 

 
 

Figure 1.10.  Tools and processes can be built upon the STAMP foundation.



22 
 

 

Chapter 2: How to Use STPA for Hazard Analysis 
Nancy Leveson 

(Version 1: September 2013 
Change history: ) 
 

     STPA is a hazard analysis technique that embodies the STAMP accident causality model. As such, it is 
based on control and system theory rather than the reliability theory underlying most existing hazard 
analysis techniques. STPA has the same goals as any hazard analysis technique, that is, to accumulate 
information about how hazards can occur (scenarios). This information can then be used to eliminate, 
reduce, and control hazards in system design, development, manufacturing, and operations. 

     STPA does not generate a probability number related to the hazard. The only way to generate such a 
probability of an accident for complex systems is to omit important causal factors that are not stochastic 
or for which probabilistic information does not exist (particularly new designs for which historical 
information is not available). Producing probabilistic analyses that do not accurately reflect the true risk 
can be dangerously misleading and can lead to complacency and not fixing design flaws that lead to 
accidents because they are not considered or are unrealistically discounted in importance. 

     In contrast to the traditional hazard analysis techniques, however, STPA is more powerful in terms of 
identifying more causal factors and hazardous scenarios, particularly those related to software, system 
design, and human behavior. This claim can be supported both by theoretical argument and by the 
experience with its use on a large variety of systems. A few careful comparisons of the results of using 
the various types of hazard analysis that have been done by us and by others are presented in Chapter 4 
of this primer. STPA also provides more support in doing the analysis than most other techniques. Parts 
can be automated. 

     Because STPA is a top-down, system engineering approach to system safety, it can be used early in 
the system development process to generate high-level safety requirements and constraints. These 
high-level requirements can be refined using STPA to guide the system design process and generate 
detailed safety requirements on the individual components. In safety-guided design: 

 The hazard analysis influences and shapes early design decisions  and  

 The hazard analysis is iterated and refined as the design evolves. 

This safety-guided design process is extremely useful as the cost of rework when design flaws are found 
late is enormous. When hazard analysis can be done early and in concert with the design decisions, the 
cost becomes negligible. Note that because STPA can be performed early, it can be used to perform a 
Preliminary Hazard Analysis. An example is shown later.  

     STPA can, of course, like the other techniques be used on a completed design or an existing system. 
As a special case, STPA can be used (like other hazard analysis techniques) in the investigation of 
accidents in order to generate causal scenarios that can be evaluated for their relevance to the actual 
events that occurred. 

     There are some other unique features of STPA. Because it works on the hierarchical safety control 
structure, it can be used both on technical design and on organizational design. For example, the effect 
of management decision-making and behavior on accidents can be identified. It also can and has been 
used on classic project risk analysis and other types of risk analysis.  
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    This chapter first describes the basic STPA process including exercises for the reader and frequently 
asked questions. Then the use of STPA in special ways (PHA, management and project risk analysis) is 
described. The chapter concludes with some new extensions that allow incorporating sophisticated 
human factors concepts into STPA causal scenario generation. 

How to do an STPA (The STPA Process) 

     STPA supports and builds on top-down system engineering. This fact should not be a surprise as 
systems theory provides a common theoretical foundation for both. The process can be separated into 
four parts, although the various activities could be intertwined and, in the most effective uses, STPA 
becomes an iterative process with detail added as the system design evolves :  

1. Establish the system engineering foundation for the analysis and for the system development 
2. Identify potentially unsafe control actions  
3. Use the identified unsafe control actions to create safety requirements and constraints 
4. Determine how each potentially hazardous control action could occur. 

 

Establishing the System Engineering Foundation 
      STPA starts from the basic early system engineering activities associated with safety:  defining what 
accidents or losses will be considered in development, identifying the hazards associated with these 
accidents, and specifying safety requirements (constraints). After this foundational information is 
specified, a special STPA process is added: drawing the preliminary (high-level) functional control 
structure. The actual STPA analysis will use this control structure.  
 

Accidents 

     Accidents can be defined very narrowly, for example, involving death of humans, or more broadly to 
include other types of losses. A broad definition will allow the application of safety engineering 
techniques on a larger variety of problems. 

An accident is an undesired and unplanned event that results in a loss, including a loss of human 
life or human injury, property damage, environmental pollution, mission loss, financial loss, etc. 

     The term mishap has been used, particularly in the defense realm, to reflect this larger definition. In 
order to avoid a proliferation of terms for no good reason, we use the more common term accident and 
define it to be inclusive. Because what will be considered an accident is the first step in any safety 
engineering effort, nothing is lost by having only one definition and perhaps it will encourage more 
broad use of safety engineering techniques. 

      The determination of what is to be considered as a loss or accident in a particular system has to be 
made by those assigned such responsibility because it involves the allocation of resources and effort, 
and these things are never unlimited. For some types of extremely dangerous systems, such as nuclear 
weapons, the government usually makes this determination. In some industries where safety is critical 
to the survival of the industry, such as commercial aviation, often the decision is made by national or 
international associations.  Alternatively, the decision may simply be local to a particular company, it 
may be a requirement imposed by insurance companies, or it may result from liability concerns. 

     In any case, the definition of what is to be considered an accident or unacceptable loss in a system 
must be made before any safety efforts begin because it determines the goals and scope of the efforts.  
Examples of what are commonly considered to be accidents in various types of systems are shown in 
Table 1. 
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     Table 1: Examples of accidents and hazards. 

 
 
     Once a decision about the losses to be considered is made, the hazards associated with those losses 
can be identified.    
 

Hazards 

     As in traditional System Safety, everything starts from hazards. This term is often used differently in 
different industries, so a definition of what is meant here is necessary. Where the concept of a hazard is 
not used or is simply equated to a “failure,” then safety is not being adequately addressed and reliability 
is being substituted for safety. Neither of these two different system qualities implies the other so the 
substitution means that safety is not being addressed, as discussed in great detail in Engineering a Safer 
World. 

     Additional definitions of the term “hazard” exist. Many are vague and not workable, such as “A 
hazard is a condition that is a prerequisite to [or could lead to] an accident or incident” [FAA ATO SMS, 
MIL-STD-882C]. The drawback of that definition is that there are a very large if not infinite number of 
conditions that precede an accident. Aircraft being in controlled airspace is prerequisite to an accident 
or incident, but we cannot eliminate that condition from an air traffic control system, i.e., not allow any 

System Accident Hazard Examples 

ACC Two vehicles collide Inadequate distance between vehicle and  
one in front or in back 

Chemical Plant People die or are injured due to  
exposure to chemicals 

Chemicals in air or ground after release from 
plant 

Train door 
controller 

Passenger falls out of train 1. Door is open when train starts  

2. Door is open while train is moving 

3. Door cannot be opened during an emergency 

4. Door closing while someone is in the doorway 

Unmanned 
Spacecraft 

Loss of mission 

Pollution of another planet 

1. Mission scientific data is not available to 
researchers at end of mission  

2. Planet has biological contamination of Earth 
origin 

3. Other space missions unable to use shared 
infrastructure to collect, return or use data 

4. Toxins, radioactivity, or dangerously high 
energy levels on Earth or near the ISS after 
launch of the spacecraft. 
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planes in the airspace. Similarly, a prerequisite for (or a condition that could lead to) a collision between 
two automobiles is that more than one automobile is on the highway at the same time. 

      The definition used in STPA restricts hazards to be conditions or states that nobody ever wants to 
occur, such as a violation of minimum separate standards between aircraft in controlled airspace or 
inadequate braking distance between automobiles in a cruise control system. These conditions, once 
they are identified, can be eliminated or controlled in the system design and operations. All 
prerequisites to an accident cannot be considered (and do not need to be) as they include almost all 
conditions that occur during normal operations. 

      In practice, we suspect that the actual hazards identified in any hazard identification process will be 
satisfy the more limited definition used for STPA. Otherwise, generating a list of hazards would be 
impossible.  

     STPA uses the following definition in order to be clearer about what to include in the list of hazards: 

Hazard: A system state or set of conditions that together with a worst-case set of environmental 
conditions, will lead to an accident (loss).  

     There are two important aspects of this definition. The first is that a hazard should be within the 
system boundaries over which we have control. For example, a hazard for an aircraft is not a mountain 
or weather because the designer of the aircraft or the air traffic control system has no control over the 
weather or the placement of a mountain. Instead, the hazard may be the aircraft getting too close to the 
mountain or the aircraft being in an area of bad weather. Both of these definitions provide potential 
ways to avoid the hazard when we are designing our system.  Another way of saying this is that the 
hazard must be in the design space of those engineering the system or in the operational space of those 
operating it. 

      The second part of the definition is that there must be some worst-case set of conditions in the 
environment that will lead to a loss. If there is no set of worst case conditions outside or inside the 
system boundary that will combine with the hazard to lead to a loss, then there is no need to consider it 
in a hazard analysis. Even if two aircraft violate minimum separation, the pilots may see each other and 
avoid a collision, but there are also worst case conditions under which the accident may not be avoided 
such as low visibility, lack of attention by the flight crew, and angles where the other aircraft cannot be 
seen. Therefore, it is a hazard. 

Exercise:  For your industry or for a system with which you are familiar, what “process” is being 
controlled? How is it controlled? What are some typical hazards that must be handled? What 
are some safety constraints that must be enforced? 

      If a hazard in your list includes the word “failure,” it is almost certainly wrong. First a “failure” is an 
event; it is not a system state. A failure could lead to a hazardous system state, but it is a possible cause 
of a hazardous state, not the state or hazard itself. Separating hazards and their causes is important for 
reasons to be explained later. 

     In general, words like “failure” and “error” should be avoided, even as causes, because they provide 
very little information and are often used to avoid having to provide more information or to think hard 
about the cause. That information is needed to eliminate or control the problem effectively. “Operator 
error” is much less informative, for example, than “operator thinks the alarm is spurious and ignores it.” 
Even “brakes fail” is less useful than “brakes do not operate when the brake pedal is depressed” or 
“brakes do not stop the car within the standard braking distance” which could both be effects of failures 
or of design flaws. We tend to use the words “fail,” “failure,” and “error” too often as a way of not 
providing any real information about what happened.  

     A system hazard is a system-level state. Any mention of subsystems (such as subsystem failure) is not 
a system state, although it can lead to one (be a cause). At the time the hazards are identified, no 
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detailed design, including the components exists. For example, “brakes or throttle operate spuriously” is 
not a hazard (using our definition) for a cruise control system although uncommanded acceleration or 
deceleration is. Spurious component operation would then be identified in later steps as one potential 
causes of that hazard. The STPA process includes refining hazards by breaking them down and assigning 
them to the various components.  

     Even if an analysis is being done after the design or even the system already exists, starting by 
specifying the system-level hazards (and not the hazardous behavior associated with the subsystems) is 
important. Changes may need to be made in the design, including changing the components or their 
responsibilities. If the analysis starts from hazards specified in terms of the components of the system, 
changes involving other components are much less likely to be considered by those trying to eliminate 
the problem. 

Exercise:  Identify the system-level hazard(s) for the batch reactor shown on Page 9 of ESW. 

 In your solution to the exercise, was the software controller or the reflux condenser mentioned? They 
should not have been as they are system components. In fact, the control over the valves might be 
assigned to the human controllers or another way of maintaining a safe reaction temperature could be 
used besides a reflux condenser. The analysis will get to that level of detail later. For example, if the high 
level hazard mentions the reflux condenser, the solution space may be limited to fixing the design of the 
reflux condenser rather than considering other more effective ways of controlling the temperature in 
the reactor vessel that do not involve a reflux condenser at all. 

     The hazard should be a statement about the system as a whole, so the subject should be the batch 
reactor. The condition or state in the hazard should be a property of the system, so it could refer to the 
temperature being too hot, the pressure being too high, the reaction being uncontrolled, or the release 
of toxic chemicals. In fact, systems often have more than one hazard so you may have defined other 
system states that are dangerous and must be avoided. Also be sure the hazards are things that are 
controlled by the design of the batch reactor. If the hazards refer to things like the wind speed and 
direction, the nearby population, or other environmental factors then it is probably not a hazard for the 
batch reactor system. 

      The list of hazards should be very small, less than 10 and certainly less than 20. If you have more 
than that in your list, then you are starting at too low a level of abstraction. In system engineering, the 
goal is to start at a high-level of abstraction and then refine each level into a more detailed level. That 
way you are less likely to miss something or to have gaps or redundancies in your list. 

 

FAQ: What is a small number of hazards? Why do I need to limit the number I 
consider? 

     Why not start with a long list of hazards, that is, by just generating every potentially unsafe 
system state and cause one can think of?  This is often the strategy used, but it is then difficult 
(and perhaps impossible) to determine whether anything has been missed—the list is too long 
and at too many different levels of abstraction. One of the most powerful ways human minds 
deal with complexity is by using hierarchical abstraction and refinement. By starting at a high 
level of abstraction with a small list and then refining that list with a more detailed list at each 
step (working top down), one can be more confident about completeness because each of the 
longer lists of causes (refined hazards or causes) can be traced to one or more of the small 
starting list (and vice versa).  

     With traceability, it is also easier for human reviewers to find any incompleteness. We say 
"more confident" because such a list can never be proven to be complete—there is no formal 
(mathematical) model of the entire system and how it will operate. Human participation in the 
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analysis and human review of the results will always be required and, therefore, incompleteness 
will always be possible. But structuring the process in a way that optimizes human processing 
and review will reduce any potential incompleteness. 
 

System Safety Constraints/Requirements 

     Once the high-level system hazards are identified, they can be translated into safety requirements or 
constraints. This process is very simple but important because it translates the hazards into the 
requirements and constraints engineers and system designers need in their standard engineering 
processes.   
     Examples are shown in Table 2. 
  
Table 2: Examples of hazards and their related safety constraints. 

Hazard Safety Constraint (Requirement) 

Inadequate distance between vehicle and one 
in front or in back 

Vehicles must never violate minimum 
separation requirements 

Chemicals in air after release from plant Chemicals must never be released 
inadvertently from plant 

Door is open when train starts Train must never start while door is open 

Door is open while train moving Train must never open while train is moving 

TCAS causes or contributes to a near miss 
collision (NMAC) 

TCAS must provide effective warnings and 
appropriate collision avoidance guidance 
about potentially dangerous threats and do so 
while there is time to avoid the threat 

 

FAQ: What is the difference between a requirement and constraint and why do you 
seem to use the terms interchangeably?  

     There are actually several reasons for using both terms. One simple reason is that constraint 
is the term used in systems theory and STAMP, while requirement is more commonly used in 
engineering so the tie to safety of those things labeled as constraints is explicit. 

     One often useful distinction is to use requirement to mean the behavior required to satisfy 
the system’s mission or goals while constraints describe limitations on how the mission goals 
can be achieved. Safety can be involved in both when part of the goal or mission of the system is 
to maintain safety, such as air traffic control. In other systems, the mission goals and safety 
constraints do not overlap. In a chemical plant, for example, the mission and mission 
requirements involve producing chemicals while safety constraints limit the way that the 
chemicals can be produced. Conflicts between goals and constraints can more easily be 
identified and resolved if they are distinguished.  

     Another factor is that some government agencies do not allow negative requirements 
(because they are not testable). At the same time, some safety constraints cannot effectively be 
changed into a positive “shall” statement. For example, in TCAS, one of the constraints is that 
TCAS does not interfere with the ground air traffic control system. There is no easy way to state 
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that constraint as a positive requirement that does not include the word “not.” (Try it.) Auditors 
for system requirements in these cases do not seem to be bothered by the fact that there are 
things called “System Constraints” that contain “must not” as long as the shall statements listed 
as “Requirements” do not contain that forbidden word.  Because negative requirements, or 
“must not” statements, cannot be verified using testing (which is the reason for forbidding 
them), other types of verification techniques (such as formal analysis) must be used. Making this 
required difference in the validation process explicit by using a different label is also sometimes 
helpful. 

 
Functional Control Structure   

      The effort described so far—identifying accidents, hazards, and high-level safety requirements— is 
common to all safety engineering efforts (or should be) no matter what type of accident causation 
model or hazard analysis technique is used. STPA unique efforts start at this point. Generating the safety 
control structure is not part of STPA; it is a system documentation effort needed to perform STPA. While 
many of the aspects involved in creating the functional control structure will involve standard system 
engineering activities, such as allocating system requirements to the system components, the use of a 
functional control diagram to document these decisions is not standard. 

     Many people have found that the safety control structure provides excellent documentation and a 
nice graphical depiction of the functional design of the system. Most complex systems have detailed 
physical design descriptions and documentation but information about the functional behavior of the 
system is at best scattered throughout the documentation and sometimes is difficult to understand. The 
functional control model provides a concise, graphical specification of the functional design.  

We have found it easiest for people to understand and to produce functional control diagrams by 
starting with a very simple, high-level model and then adding detail (refining the model) in steps. The 
first step may only contain a controller and a controlled process or perhaps a couple of levels of 
controller (human and automated).  For example, a new procedure for allowing one aircraft to pass 
another over the Atlantic has been designed called In-Trail Procedure (ITP). The pilot first checks that 
the criteria for performing an ITP (passing) maneuver are satisfied and then asks air traffic control (ATC) 
for permission to execute the maneuver. The first step in designing or drawing the control structure for 
ITP might be to identify the main components: 

 
 

Next, determine who controls who or what. 

ATC    Pilot Aircraft 
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Once the basic structure has been identified, detail can be added such as the control actions and 
feedback:  

 
Pilot responsibilities might include: 

• Assess whether ITP appropriate 
• Check if ITP criteria are met 
• Request ITP 
• Receive ITP approval 
• Recheck criteria 
• Execute flight level change 
• Confirm new flight level to ATC 

The pilot’s process model might need to contain: 
• Own ship climb and descend capability 
•  ADS-B data for nearby aircraft (velocity, position, orientation) 
• ITP criteria (speed, distance, relative attitude, similar track, data quality) 
• State of ITP request/approval 
• etc. 

Figure 2.2 shows a more detailed control structure for the ITP procedure. 

ATC 

 

  Pilot 

Aircraft 

A/C status, position, etc. 

Clearance to pass 
(to execute ITP) 

Requests, 
Acknowledgements 

Execute ITP Maneuver 

ATC 

 

  Pilot 

Aircraft 
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Figure 2.2.  ITP Control Structure 

  

     For systems where the entire control structure cannot fit on one page, breaking it up into chunks with 
a high-level model of how the chunks interrelate is very helpful. Figure X is the high-level control 
structure for the docking of a Japanese spacecraft called the H-II Transfer Vehicle or HTV for short with 
the International Space Station (ISS).   



31 
 

 
 

Figure2.3. The high-level control structure for the docking operation of the  

HTV with the International Space Station ISS). 

 

Figure 2.4 shows a picture of this operation. 

 
Figure 2.4. A picture of the HTV docking with the ISS. 

 

Five components are shown in Figure 2.3. The ISS, the HTV, the NASA ground station at the Johnson 
Space Center in Houston, the JAXA ground station at Tsukuba Space Center and TDRS (Tracking and Data  
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Relay Satellite). The TDRS serves as a backup communications system. The possible control actions and 
feedback are shown on the diagram.  

 

 
Figure 2.5. A more detailed view of the ISS control structure for HTV docking. 

 

Each of the components in Figure 2.3 can be refined further. For example, Figure 2.5 shows the control 
structure for the ISS when the HTV is captured by the robot arm (SSRMS). The ISS crew uses the HCP 
(Hardware Control Panel) to provide instructions to computer software (PROX C&DH) and receive 
feedback from the computer via a computer display.  

     When we were analyzing the safety of an important component of a nuclear power plant design for 
an NRC research project, we were only going to perform STPA on the safety system, but we needed to 
understand the context within which the safety system existed in order to find indirect and previously 
unidentified interactions between the non-safety and safety systems. So we started with a high-level 
control structure of the entire plant.  

 

Visual information HTV 
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Figure 2.6 shows a refined view of the part outlined by a dotted red line above. 
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Figure 2.6. More detailed view of the safety system. 
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     Another example involves radiation therapy and a machine called the Gantry 2 that uses protons to 
treat patients. Figure 2.7 shows a picture of the treatment facility that a patient sees. Figure 2.8 shows 
the high-level control structure for the system as a whole, including the people involved in creating the 
treatment plan for the patient and those involved in delivering the treatment.  

 

 
 

Figure 2.7. The Gantry 2 Treatment Facility
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Figure 2.8 : High-Level Control Structure 
 
 
     Each component here can be decomposed. Having multiple levels of abstraction not only assists in 
creating the control structure but also assists others in understanding it. 
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Figure 2.9. Zooming into Treatment Definition 
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Figure 2.10. Zooming into treatment delivery. 
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Figure 2.11. A more detailed view of Treatment Delivery
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     Once the basic structure is defined, the additional details about the control structure need to be added, 
that is, the responsibilities and process model for each controller, the control actions, and the feedback. 
The responsibilities are the basic high-level requirements for the components. As the analysis progresses, 
the controller safety-related responsibilities and requirements will be identified. There may also be 
communication between controllers, and this communication needs to be shown. Figure 2.12 shows a 
more complete control structure for an automated train door controller. 

 

 
 

Figure 2.12. Simple Safety Control Loop for a Train Door Controller  

 
In our experience modeling and doing STPA analyses, we have often found copious documentation on the 
physical structure of a system but much less about the functional design. In all these cases, the 
documentation of the functional control structure we created was greatly appreciated by others working 
on the system. 
 

Exercise: Create the functional safety control structure for the batch reactor system shown on page 
9 of ESW. What is an accident in this system? What is the system-level safety constraint involved in 
the accident? 

 



41 
 

FAQ: Does the control structure always have to be hierarchically linear, like a ladder? 
      No. The control structures in this primer are only examples from various applications, and yours 
may be different. Although some control structures look like a ladder, like the generic operations 
and development structure shown in Figure 1.5 or the simple Aircraft -> Pilots -> ATC structure for 
the NextGen ITP example in Figure 2.2, this is not always the case. For example, the high-level 
control structure for the Gantry 2 radiation therapy machine shown in Figure 2.9 shows how 
control and feedback paths can skip across levels in the control structure. Also, the detailed control 
structures for the same system show how multiple controllers can operate at the same level, as 
with the medical team and the local operator in Figure 2.11. There is no fixed structure that must 
be used for all systems. 

 

Identifying Unsafe Control Actions (STPA Step 1) 
     While it is convenient to separate STPA into two steps, first identifying the unsafe control actions and 
then the causes of the unsafe control actions, this separation is not necessary. The two steps could be 
integrated in various ways, for example, identifying an unsafe control action and immediately looking for its 
causes. 

     The four types of unsafe control action described in Chapter 1 are: 

•  A control action required for safety is not provided  
• An unsafe control action is provided that leads to a hazard 
• A potentially safe control action provided too late, too early, or out of sequence 
• A safe control action is stopped too soon or applied too long (for a continuous or non-discrete 

control action) 

There is a fifth way that safety can be compromised—a required control action is provided but is not 
followed— but that fifth possibility will be handled in STPA Step 2. 

   We have found that a table is a convenient way to document the specific unsafe control actions but any 
format could be used. The general form of the table that we use is: 
 

Control Action Not providing causes 
hazard 

Providing causes 
hazard 

Too early/too late, 
wrong order causes 
hazard 

Stopping too 
soon/applying too 
long causes hazard 

 
 

    

 
 
     Continuing with ITP as the example and using the hazard “Loss of minimum separation,” Table 3 might 
be the result for the flight crew unsafe control actions. If there are multiple hazards being analyzed, either 
different tables might be used or the entries in the table might indicate (point to) the hazard or hazards 
involved. If a box in the table is empty, then that control action cannot be unsafe.  We have found that 
there may be duplicates entries in the table in the sense that they are semantically equivalent. For 
example, in Table 3, “ITP executed with incorrect final attitude” in row 1, column 3 is the same as the 
entries in the last column in that row. Either the duplications can be omitted or they can be left and only 
one of the duplicates used in the following steps of the analysis. STPA Step 1 is only a part of the process; it 
is not the final answer.  
     Notice that the identified unsafe control actions in the tables all have conditions or context associated 
with them. If executing the control action is always unsafe, then it would make no sense to include it in the 
system design. Almost always, there are only some conditions under which the control actions will be 
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unsafe, and the goal of Step 1 is to identify those. Executing an ITP is not always unsafe; it is only unsafe 
when the ITP execution has not been approved by ATC, when the criteria are not satisfied, etc. 
 
Table 3: Unsafe flight crew control actions for the hazard Loss of Minimum Separation for ITP 

Hazard: Loss of minimum separation 

Control Action 

Not Providing 
CA Causes 
Hazard Providing CA Causes Hazard 

Wrong  
Timing/Order of 
CA Causes 
Hazard 

CA Stopped Too 
Soon/Applied Too 
Long 

Execute ITP  

ITP executed when not 
approved 
ITP executed when ITP 
criteria are not satisfied 
 
ITP executed with incorrect 
climb rate, final altitude, etc. 
 

ITP executed too 
soon before 
approval 
 
ITP executed too 
late after 
reassessment 

ITP aircraft levels off 
above requested FL 
 
ITP aircraft levels off 
below requested FL 

Abnormal 
Termination of 
ITP 

FC continues 
with maneuver 
in dangerous 
situation 

FC aborts unnecessarily 
 
FC does not follow regional 
contingency procedures 
while aborting 

   

 
 
 
Table 4: Unsafe control actions for the air traffic controller. 

Hazard: Loss of minimum separation 

Control Action 
Not Providing CA 
Causes Hazard 

Providing CA Causes 
Hazard 

Wrong 
Timing/Order of 
CA Causes 
Hazard 

CA Stopped Too 
Soon or Applied 
Too Long 

Approve ITP 
request 

 Approval given 
when criteria are 
not met 
 
Approval given to 
incorrect aircraft 

Approval given 
too early 
 
Approval given 
too late 

 

Deny ITP 
request 

     

Abnormal 
Termination 
Instruction 

Aircraft should 
abort but 
instruction 

 not given 

Abort instruction 
given when abort is 
not necessary 

Abort instruction 
given too late 
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     The entries in the table can be translated into safety constraints/requirements on the component 
considered in the table. For example, the safety constraints the flight crew must implement are: 

SC-FC.1   The flight crew must not execute the ITP when it has not been approved by ATC. 

SC-FC.2   The flight crew must not execute an ITP when the ITP criteria are not satisfied. 

     SC-FC.3    The flight crew must execute the ITP with correct climb rate, flight levels, Mach number,  
                       and other associated performance criteria. 

SC-FC.4    The flight crew must not continue the ITP maneuver when it would be dangerous to do so. 

SC-FC.5    The flight crew must not abort the ITP unnecessarily.  (Rationale: An abort may violate 
                  separation minimums) 

SC-FC.6    When performing an abort, the flight crew must follow regional contingency procedures. 

SC-FC.7    The flight crew must not execute the ITP before approval by ATC. 

SC-FC.8    The flight crew must execute the ITP immediately when approved unless it would be 
                  dangerous to do so. 

SC-FC.9    The crew shall be given positive notification of arrival at the requested FL 

     Similar safety constraints on ATC can be generated from Table 4. Notice what has occurred here. The 
very high-level safety constraint/requirement derived from the loss of separation hazard, i.e., “The ITP 
maneuver must never result in a loss of safe separation between aircraft,” has now been refined and 
allocated to the system components. STPA Step 2 will refine and add additional component safety 
requirements. As the design process proceeds and more detailed design decisions are made, STPA is used 
to create even more detailed requirements. 

     STPA is a top-down, system engineering process to create a safe system design and not just an after-the-
fact method to analyze a completed design. As such, STPA can be started very early in the system 
engineering life cycle, even in the concept development stage. Most other existing hazard analysis methods 
require that a concrete design exists before they can be used. Finding out that designs have safety flaws in 
them late in the review process can lead to extremely costly rework, especially if the requirements turn out 
to be wrong, which is almost always the case for software that is involved in accidents. The cost of adding 
STPA from the start to the system engineering process is negligible. 

Exercise:  Take the control structure you created for the batch reactor in an earlier exercise and 
create the Step 1 tables. Then change the entries into requirements for the operator and the 
computer software. 

      

On the next few pages, two examples of Step 1 tables (and different potential formats) are shown, the HTV 
docking procedure and closing a critical valve in the nuclear power plant example. 
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# Control Action
Not Providing

Causes Hazard

Providing

Causes Hazard

Wrong Timing/Order

Causes Hazard

Stopping Too Soon

/Applying Too Long

Causes Hazard

1
FRGF Separation 

Enable

[UCA1] FRGF separation is not 

enabled when ready for capture

[UCA2] FRGF separation is 

enabled when not necessary 

(e.g. after successful capture)

EARLY: [UCA3] FRGF separation 

is enabled while not ready for 

immediate capture

EARLY: [UCA6] HTV is 

deactivated while not ready for 

immediate capture

LATE: [UCA7] HTV is not 

deactivated for a long time 

while FRGF separation is enabled

EARLY: [UCA11] Capture is 

executed before HTV is 

deactivated

LATE: [UCA12] Capture is not 

executed within a certain 

amount of time

3
FRGF Separation 

Inhibit

[UCA14] FRGF separation is not 

inhibited after successful 

capture

[UCA15] FRGF separation is 

inhibited when must be enabled 

(e.g., when capture is 

attempted)

LATE: [UCA16] FRGF separation 

is inhibited too late after 

successful capture

Abort

Retreat

Hold

[UCA17] Abort/Retreat/Hold is 

not executed when necessary 

(e.g., when HTV is drifting to ISS 

while uncontrolled)

[UCA18] Abort/Retreat/Hold is 

executed when not appropriate 

(e.g. after successful capture)

LATE: [UCA19] 

Abort/Retreat/Hold is executed 

too late when immediately 

necessary (e.g., when HTV is 

drifting to ISS while 

uncontrolled)

FRGF Separation

[UCA20] FRGF separation is not 

executed when necessary (e.g., 

when HTV is grappled unsafely)

[UCA21] FRGF separation is 

executed when not necessary 

(e.g., after successful capture)

LATE: [UCA22] FRGF separation 

is executed too late when 

immediately necessary (e.g., 

when HTV is grappled unsafely)

O
ff

-N
o

m
in

al

Free Drift

(Deactivation)

[UCA4] HTV is not deactivated 

when ready for capture

[UCA5] HTV is deactivated when 

not appropriate (e.g., while still 

approaching ISS)

2

C Execute Capture

[UCA8] Capture is not executed 

while HTV is deactivated

[UCA9] Capture is attempted 

when HTV is not deactivated

[UCA10] SSRMS hits HTV 

inadvertently

[UCA13] Capture operation is 

stopped halfway and not 

completed

 

 



45 
 

UCA

H1

HTV is drifting to ISS while uncontrolled 

(deactivated) 5, 6, 8, 12, 17, 19

H2

HTV is unintendedly separated from SSRMS 

after successful capture 2, 14, 16, 21

H3

HTV provides unintended attitude control in 

proximity to SSRMS 4, 9, 11

H4

HTV is inclined by a large angle in proximity 

to SSRMS 10

H5

HTV cannot be separated immediately when 

grappled unsafely (e.g., windmill) 1, 13, 15, 20, 22

H6

HTV provides thrust while captured by 

SSRMS 18, 20, 22

A3 Loss of HTV mission H7

FRGF is unintendedly separated from HTV 

before or during capture 2, 3, 7, 21

Accident Hazard

A2

Collision with ISSA1

Damage to SSRMS
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Control 

Action 

Unsafe Control Actions 

Not Providing 
Causes Hazard 

Providing Causes 
Hazard 

Wrong Timing or Order 
Causes Hazard 

Stopped Too 
Soon or Applied 

Too Long 

Close MSIV Close MSIV not 

provided when 

there is a rupture 

in the SG tube, 

leak in main 

feedwater, or leak 

in main steam line 

[H-2, H-1, H-3] 

Close MSIV 

provided when there 

is no rupture or leak 

[H-4] 

 

Close MSIV 

provided when there 

is a rupture or leak 

while other support 

systems are 

inadequate [H-1, H-

2, H-3] 

 

 

Close MSIV provided too 

early (while SG pressure is 

high): SG pressure may 

rise, trigger relief valve, 

abrupt steam expansion [H-

2, H-3] 

 

Close MSIV provided too 

late after SGTR: 

contaminated coolant 

released into secondary 

loop, loss of primary 

coolant through secondary 

system [H-1, H-2, H-3] 

 

Close MSIV provided too 

late after main feedwater or 

main steam line leak [H-1, 

H-2, H-3, H-4] 

N/A 

 

Hazard Related Accident 

H-1: Release of radioactive materials A-1, A-2 

H-2: Reactor temperature too high  A-1, A-2, A-3, A-4 

H-3: Equipment operated beyond limits A-3, A-4 

H-4: Reactor shut down A-4 

 
 

FAQ: How do I know if the entries in the tables are complete? 

     When we first started generating these tables, we relied on expert review to identify missing or 
incorrect entries. Using the tables helped with this review process. Since that time, John Thomas 
created a formal process for generating the tables (described in Chapter 3). When we went back 
and applied it to earlier tables, we invariably found missing entries.  
     In general, within itself, the Thomas process can be shown to be complete, that is, it will identify 
all the unsafe control actions for the conditions considered. However, it will not be complete if the 
engineers omit from consideration (either purposely or accidentally) some conditions that are in 
fact important or the humans err in making a final determination of whether the control action 
under those conditions is unsafe or not. The first case is less likely than the second. One of the 
advantages of the Thomas method for generating the unsafe control actions is that much of it can 
be automated. Chapter 3 contains more information about the Thomas method and how to use it.  
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FAQ: Why aren’t there any component failures in these tables? Does that mean STPA ignores 

failures? 
     These tables are only Step 1 of STPA. They describe unsafe behavior (in terms of unsafe control 
actions) in the system. Potential causes of this behavior, which could include physical failures, 
human error, design errors, or requirements flaws, are part of STPA Step 2 and are not included in 
these Step 1 tables. This two-step process helps ensure that the STPA analysis is efficient and no 
time is wasted considering failures or errors that lead to safe behavior or have no effect, as in a 
FMECA. 

 
     Stopping after Step 1 can lead to omissions in the requirements and unsafe design. Step 2, which 
identifies the causes of the unsafe control actions and also the causes of why required control actions might 
be implemented correctly, identifies more requirements and provides assistance to the engineer in 
identifying changes in the design to eliminate or mitigate unsafe control.       

Identifying the Causes of the Unsafe Control Actions (STPA Step 2) 

     Once the safety control actions are identified (or once any of the unsafe control actions are identified, 
i.e., the process does not have to be completely serial), the second and final step in STPA is to identify the 
potential causes of (scenarios leading to) unsafe control. Here is where the fifth type of scenario, 
inadequate execution of a control action required for safety, is considered. 

     Step 2 requires the most thought and prior experience by the analyst and there is, so far, much less help 
provided compared to Step 1. Therefore, we have found that sometimes STPA is stopped after Step 1. Step 
2 is critical, however, as you will see in the first exercise. Step 2 identifies additional safety requirements 
both on the controller in the loop being analyzed and on the overall system. It is also where information is 
generated to assist the designers in eliminating or mitigating the potential causes of the hazards. The most 
important reason to do a hazard analysis at all is to get the causal information generated by Step 2. 

      Basically, the Step 2 process involves examining the control loop and its parts and identifying how they 
could lead to unsafe control. Figure 2.13 shows things that can go wrong in the control loop. Each of these 
is discussed in Chapter 4 of ESW.  

      Care should be taken here to not turn this step into a form of FMEA by simply looking at each of the 
“guidewords” in Figure 2.13 and seeing whether they lead to the hazard. The goal is not to find just failures 
or inadequate operation of individual components in the control loop, but to find scenarios and 
combinations of problems that could lead to unsafe control. The process should be to start with the unsafe 
control actions and determine how they could occur as well as how actions required for safety might not be 
executed correctly.  
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Figure 2.13 Things that can go wrong in the control loop 

 
     Because there are common flaws that lead to accidents, we hope to provide more assistance for Step 2 
in the future, some of which might be able to be supported by automation. Step 2 is a good place for small 
groups of engineers to work together brainstorming causes. Step 1 can be accomplished by a single person 
with later review by others. But identifying causes is enhanced by having multiple people participating. 

     Usually the cause of the generation of an unsafe control action can be found in the right side of the loop 
while the cause of not executing a control action or not executing it adequately is in the left side but this 
rule is not always true.  See Figure 2.14. 
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Figure 2.14. Potential control flaws related to parts of the control loop. 

 

     Delays in the loop are an important consideration in the causal analysis. Loop delays can lead to process 
models being (temporarily) inconsistent with the process and thus to the controller providing unsafe 
control. There may also be problems in updating the process model. Chapter 9 of ESW provides some 
common design flaws that can be considered in Step 2. I am a little concerned about making a “checklist” of 
things to consider, however, as that can cause more problems than it solves by limiting what is considered 
during the causal analysis. Checklists tend to limit consideration to those things that are in the checklist. 
Even the guidewords in Figure X tend to focus attention on them to the exclusion of other, perhaps more 
obscure or less common factors. 

Exercise: Take your Step 1 table that you generated for the batch chemical reactor and identify causal 
scenarios for the unsafe control actions. At the least, 

 Identify some causes of the hazardous control action: Open catalyst valve when water valve is 
not open. HINT: Consider how controller’s process model could identify that the water valve is 
open when it is not. 

 What are some causes for a required control action (e.g., open water valve) being given by the 
software but not executed? 

 What design features (controls) might you use to protect the system from the scenarios you 
found? 

     We usually use a table, lists, or annotated control loop diagrams to document the Step 2 results. 
Understanding the scenarios by providing graphical depictions of the states of the system leading up to the 
hazard has also been helpful. For example, the relative positions of aircraft might be shown preceding and 
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leading up to a hazardous state (e.g., loss of minimum separation) at each critical point in the scenario for 
the hazard. 

 

 
 Figure15 

(a)  

Figure15 (b) 

 
Figure 15 (c) 

Figure 2.15. Example Scenario for Loss of Separation (UCA.6.S) 

 

 Industry-specific (and perhaps application-specific) tools to help depict the scenarios could be immensely 
useful to designers. 

     The following Table shows a small part of the causal analysis (associated with a process model flaw) for 
an unsafe control action in a separation assurance task (GIM-S) for an air traffic control system. The system 
includes a human controller and an automated Traffic Flow Manager (TFM), i.e., two controllers over the 
same process. Only one unsafe control action is considered in the table: Air Traffic Controller providing a 
speed modification to an aircraft too late after a different clearance has been executed by the same or a 
different aircraft (AC) by the flight crew (FC). Also, only the process model flaws leading to the unsafe 
control action are included here and not other causes. 

 

UCA: Air Traffic Controller provides a speed modification to an aircraft too late after a different 
clearance has been executed by the same or a different aircraft (AC) 

Scenario Associated Causal Factors Rationale/Notes 

[Process Model Flaw: Aircraft / 
FC Model] 

ATC is unaware of another 
clearance the Aircraft/FC is 
executing or has requested. 

FC or AC not flying the flight plan 
visible to the ATC 

FC and AC will require their 
own detailed hazard 
analysis.  

Aircraft has recently been passed to 
a new controller (sector or shift 
change) and the in-process 
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UCA: Air Traffic Controller provides a speed modification to an aircraft too late after a different 
clearance has been executed by the same or a different aircraft (AC) 

Scenario Associated Causal Factors Rationale/Notes 

 clearance was not conveyed 

Other clearance for same aircraft 
was not entered into TFM 
automation upon issuance or 
execution 

Another ATC issues a 
clearance on that is not part 
of GIM-S and thus not given 
to the automation 

Center TFM update rate is too slow, 
new trajectory is not computed until 
after different clearance is issued 
(external input flaw) 

Computation of new 
advisory takes too long, or 
specified refresh rate is too 
slow 

Signal gets jammed, corrupted This could be corruption of 
signal between TFM and 
ATC or between ATC and FC 

AC position or speed is incorrect due 
to surveillance delay so ATC is not 
aware of mismatch 

 

[Process Model Flaw: Airspace] 

ATC is unaware a clearance 
being issued to another 
aircraft.  
 

Clearance for another aircraft was 
not entered into TFM automation 
[process model not updated 
correctly] 

Another ATC accepted an 
advisory but did not 
indicate so in the TFM 
automation. OR ATC issued 
an advisory not from 
automation without 
updating flight plan 

[Process Model Flaw: Airspace 
– predicted separation] 

TFM and/or ATC is not aware 
of how changing 
environmental conditions 
affect prior clearances 

Trajectory information is incorrect 
because dead-reckoning or other 
predictive strategy has incorrect or 
insufficient wind data 

 

Strategies and trajectories are 
modified due to the presence or 
prediction of convective weather 

TFM automation receives 
weather data that ATC does 
not see or have access to 

ATC or FC ‘sees’ convective 
weather that does not go 
into TFM model 

[Process Model Flaw: Airspace 
– sequence & flow] 

ATC prioritizes issuing 
clearance to another aircraft 

Conflict involving the other aircraft 
is imminent and requires immediate 
action  

Conflict receives priority 
(correctly) 

Clearance in conflict with onboard 
RA 

TCAS or other advisory is 
different than clearance 
provided for GIM-S 

Process Model Flaw: Model of 
TFM Automation] 
 

TFM model of airspace is different 
than ATC model due to missing 
feedback or input 

Lack of surveillance 
information for TFM, no 
ADS-B or mixed equipage 
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UCA: Air Traffic Controller provides a speed modification to an aircraft too late after a different 
clearance has been executed by the same or a different aircraft (AC) 

Scenario Associated Causal Factors Rationale/Notes 

ATC or other entity does 
not update flight plans (see 
previous casual factors) 

Modified flight plans are not input 
into TFM trajectory model 

Flight plans might be 
modified by operators prior 
to flight or during flight, 
and mods are simply not 
given 

Flight plans are input incorrectly into 
TFM automation 

Incorrect format or updated 
too late 

 
Another potential format for the causal scenario information follows. 

 

Unsafe Control Action for EnRoute ATC: Provide a speed modification to an a/c too late after a different 
clearance has been executed by same or other a/c. 

Scenario 1: ATC is unaware of another clearance the AC/FC is executing or has requested [ATC process 
model of AC/FC incorrect] 

a)  FC/AC not flying flight plan visible to ATC 

b)  AC/FC has recently passed to a new controller (sector or shift change) and in-process 

clearance was not conveyed. 

c)  Other clearance for same aircraft was not entered into TFM automation upon issuance or 

execution. 

d)  Center TFM update rate too slow. New trajectory is not computed until after different 

clearance is issued. 

e)  Signal gets corrupted or jammed. 

f)  AC position/speed is incorrect due to surveillance delay so ATC is not aware of mismatch. 

     

    Scenario 2: ATC is unaware of clearance being issued to another aircraft because clearance not  

    entered into TFM. 

a)  Another ATC accepted an advisory but did not indicate so in TFM. 

b)  ATC issued an advisory not provided by the automation and did not update the flight plan. 
     
    Scenario 3: Airspace predicted separation is incorrect in ATC or AFM. 

a) Trajectory information is incorrect because dead reckoning or other predictive strategy has 

incorrect or insufficient wind data. 

b) Strategies and trajectories are modified due to presence or prediction of convective 

weather.  

i. TFM automation receives weather data that ATC does not see or have access to.  

ii. ATC or FC “sees” convective weather that does not go into TFM. 
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     Once the causal scenarios are identified, they can be used to provide detailed requirements for the 
designers in order to avoid the hazard. The table below shows a small part of a table showing the scenario, 
the associated causal factors along with requirements generated to eliminate or mitigate the causal factors 
as well as the system component to which the requirements will be allocated. 

 

Scenario Associated Causal 
Factors 

Requirement Allocated To Rationale 

STPA-F.14M.1 
[Process Model Flaw: 
Aircraft / FC Model] 
ATC believes that FC is 
(or will be) flying a 
different speed, 
therefore ATC assumes 
that separation 
requirements will be 
met, and/or issues 
other clearances based 
on this assumption. 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

STPA-F.14M.1.1 
Incorrect aircraft ID 
on radar or flight 
strip 

  

  

  

  

  

  

  

  

STPA-F.14M.1.1.1 
Modified flight plans or new 
clearances must be sent to 
FIM automation within TBD 
seconds for all aircraft in 
sector 

Operators, 
Controllers 

Modified plan 
in fleet by 
operator 

STPA-F.14M.1.1.2 
The design of user interfaces 
must minimize incorrect 
inputs. 

ERAM,  
FIM 
Automation, 
Other ATC or 
Operator 
Interfaces 

Incorrect 
input into 
display by 
either ATC, 
FC, or 
operator 

STPA-F.14M.1.1.3 
User interfaces must 
provide a clear, consistent 
means for entering aircraft 
data. 

ERAM,  
FIM 
Automation, 
Other ATC or 
Operator 
Interfaces 

  

STPA-F.14M.1.1.4 
Airline operator must verify 
that the registration/call 
sign matches the associated 
aircraft data file 

Airline 
operators 
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As an example of another possible format, the following shows part of the causal analysis and possible 
controls that might be used for the Gantry 2 proton radiation therapy system (Figures  2.7 through 2.12): 

 Scenario 1: Operator was expecting patient to have been positioned, but table positioning was 
delayed compared to plan because of 

– Delays in patient preparation 

– Delays in patient transfer to treatment area 

– Unexpected delays in beam availability 

– Technical issues being processed by other personnel without proper communication with 
operator 

– … 

Controls: 

 Provide operator with direct visual feedback to the gantry coupling point and require check 
that patient has been positioned before starting treatment 

 Provide a physical interlock that prevents beam on unless table positioned according to the 
plan 

 

 Scenario 2: Operator is asked to turn the beam on outside of a treatment sequence because 

– Design team wants to trouble shoot a problem 

– … 

but inadvertently starts treatment and does not realize that the facility proceeds with reading the 
treatment plan. 

Controls: 

 Reduce the likelihood that non-treatment activities have access to treatment related input 
by creating a non-treatment mode to be used for QA and experiments, during which the 
facility does not read treatment plans that may have been previously loaded; 

 Make procedures to start treatment sufficiently different from non-treatment beam-on 
procedures that the confusion is unlikely. 

 

 

FAQ: If STPA is an iterative, refinement process, how do I know when I can stop or do I 
have to go on forever? 

     In the top-down STPA analysis approach, the analyst can stop refining causes at the point where 
an effective mitigation can be identified and not go down any further in detail. The analyst only has 
to continue refining causes if an acceptable mitigation cannot be designed. That is the major 
difference between STPA and bottom-up techniques like FMEA and one reason why FMEA takes 
more effort and resources for a complex system than does STPA.  
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Using STPA for Preliminary Hazard Analysis (PHA): Cody Fleming 
    To be completed in the future. 
 

Applying STPA to Management, Social Systems, and Project Risk Analysis: 
John Helferich 

    To be completed in the future. 

 
Extensions to STPA to Include Advanced Human Factors Concepts 
     The STPA process provides more information to system designers and evaluators about the role of 
human errors in hazard causation by going beyond treating human error as random failure. In STPA as now 
defined, human error is treated in a similar way as software error. This makes sense as most software is 
introduced to replace human operators, but there are important differences in how a human behaves and 
how computers behave and we are exploring how to incorporate these into STPA. When we are confident 
that our procedures are effective and useful, we will provide detailed information in this chapter. 
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Chapter 3: Formal Tools to Support STPA 
John Thomas 

(First version: September 2013 
Change history:  ) 
 
     This chapter describes a more systematic method for performing STPA Step 1 and identifying Unsafe 
Control Actions (UCAs). The systematic method has been useful as a way to provide more guidance to 
people who are new to STPA, to ensure consistency in the way UCAs are written, and as a way to help 
identify any UCAs that might have been overlooked using ad-hoc methods. This chapter summarizes the 
systematic method, but for a more in-depth discussion and more detailed examples see the recent Ph.D. 
dissertation by John Thomas [Thomas 2013]. The dissertation also provides more information about 
automating parts of the process as well as requirements generation directly from the results of this 
analysis. 

 

The Main Elements of an Unsafe Control Action 
     Recall that control actions are commands that are sent by a controller to control some process. When 
control actions are inadequate and lead to a hazard, they are considered Unsafe Control Actions. The key to 
using the systematic method for STPA Step 1 is to recognize that a control action is not hazardous by itself. 
For example, consider a train door controller for the Boston subway system. Is the control action open train 
doors safe or unsafe? The answer is that it depends. To figure out whether an action is safe or unsafe, we 
need to define the context. Open train doors while train is moving would be an unsafe control action, but 
open train doors while stopped at a platform is not only a safe control action, it is one that is required for 
proper system behavior. 

     Notice in this example that the context is really part of the controller’s process model4. This is by 
necessity because the controller cannot make safe decisions unless the controller can somehow distinguish 
between safe and unsafe contexts for the control actions. This is true for software control actions as well as 
for human control actions, and in fact the door controller could be implemented either way. Because STPA 
is a functional analysis, implementation details like these do not need to be known immediately in order to 
get useful results. In fact, the most efficient way to use STPA and the systematic method in this chapter is to 
apply them in parallel with the design process. Each iteration of STPA produces more refined requirements 
to drive the design and each iteration of the design produces information that refines the STPA analysis. 

      In the train door example, the contexts mentioned above could be expressed in a more familiar format 
as process model variables: 

 

                                                           
4
 As you may recall, the controller’s process model or mental model essentially captures the controller’s beliefs about 

the outside world. The model is updated by feedback and it is used by the controller to help decide what control 
actions are needed. 
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Train motion 

- Moving 

- Stopped 

Train location 

- At a platform 

- Not at a platform 

 

     Obviously there are other control actions and process model variables for the train door controller, but 
the point here is to show that the context of UCAs must be included in the controller’s process model, and 
both define the information the controller needs in order to make safe decisions.  

     Figure 3.1 defines four elements that make up a UCA. The first element is the Source, which is the 
controller providing the action and can be obtained from the control structure. The second element is the 
Type, which could be provided or not provided—either of which may be hazardous in different contexts. 
The third element is the name of the control action itself and can be obtained from the control structure. 
The last element is the context. The systematic method essentially identifies each potential element from 
the control structure and other sources and then considers how multiple elements can combine to form 
UCAs.  

 

Figure 3.1: The Structure of an Unsafe Control Action 

 

The Systematic Method 
     The systematic method starts by selecting a controller and control action from the control structure and 
constructing a context table as shown in Table 3.1. The first column indicates that this table analyzes the 
control action Door Open. The next three columns correspond to the process model variables for the 
selected control action. Each row is populated with a unique combination of process model values, i.e., a 
unique context.  

     There are two parts to the systematic method, and each part can be performed independently of the 
other. The first part analyzes control actions that are provided under conditions that make the action 
hazardous. The second part analyzes control actions that are not provided under conditions that make 
inaction hazardous.  

     The simplified train example analyzes the train door control loop, including the door controller. The 
process is applicable to early development phases before any detailed design information exists, and the 
identified hazardous control actions apply whether the door controller is ultimately implemented as a 
human operator or as an automated software program. The hazards for the example train door controller 
are as follows: 
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H-1: Doors close on a person in the doorway 

H-2: Doors open when the train is moving or not in a station 

H-3: Passengers/staff are unable to exit during an emergency 

 The example control structure used to introduce the procedure is shown in Figure 3.2.  

 

 

 
Figure 3.2: Partial control structure for simplified train door controller 

 

Part 1: Control actions provided in a state for which the action is hazardous 

     The first part of the procedure is to select the controller and the associated control actions from the 
control structure. In the train example above, the door controller can provide four control actions: open 
doors, stop opening doors, close doors, or stop closing doors.5 Although the open door command is analyzed 
in the following examples, the same procedure can be applied to the other control actions. 

     Next, the controller’s process model is defined to determine the environmental and system states that 
affect the safety of the control actions. The required variables in the process model can be derived from the 
system hazards defined at the start of an STPA analysis, from the required feedback in the control 
structure, and from other knowledge of the environmental and process states. For example, hazard H-1 in 
the train door example indicates that the state of the doorway (whether it is clear or not) is an important 
environmental variable in deciding whether to close the doors. Figure 3.3 shows the control structure 
including the required process model for the door controller. 

                                                           
5
 Note that when the controller has the ability to command the stopping of some process, that command is also a 

control action and must be analyzed. In this way, continuous hazardous control actions related to “stopped too soon” 
and “applied too long” are explicitly covered by this procedure. In other words, the functional commands themselves 
are analyzed independently of whether they are ultimately implemented as continuous or discrete signals. 
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Figure 3.3: Augmented control structure with the door controller’s process model 

 

 
Exercise: Identify the process model variables for the software controller in the batch reactor 
system from the previous chapter. 

 

     Once the process model variables have been identified, unsafe control actions can be identified by 
examining each combination of process model values and determining whether issuing the control action in 
that state will be hazardous. For example, one possible context for the open door command consists of the 
values: the train is stopped, there is no emergency, and the train is not aligned with a platform. Providing 
the open door command in this context is an unsafe control action. 

     Each row in Table 3.1 specifies a different context for the open door command. Context here is defined 
as a combination of values of the process model variables. Each context can be evaluated to determine 
whether the control action is hazardous in that context, and the result is recorded in the three columns on 
the right. The two right-most columns incorporate timing information as well. For example, providing an 
open door command in the context of an emergency while the train is stopped is not hazardous; in fact, 
that’s exactly what should happen for evacuation purposes. However, providing the open door command 
too late in that context is certainly hazardous. 
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Table 3.1: Context table for the open door control action 

Control 

Action 
Train Motion Emergency Train Position 

Hazardous control action? 

If provided 

any time in 

this context 

If provided 

too early in 

this context 

If provided 

too late in 

this context 

Door open 

command 

provided  

Train is moving No emergency (doesn’t matter) Yes (H-2) Yes (H-2) Yes (H-2) 

Door open 

command 

provided  

Train is moving Emergency exists (doesn’t matter) Yes
6
(H-2) Yes (H-2) Yes (H-2) 

Door open 

command 

provided  

Train is stopped Emergency exists (doesn’t matter) No No Yes (H-3) 

Door open 

command 

provided  

Train is stopped No emergency 
Not aligned 

with platform 
Yes (H-2) Yes (H-2) Yes (H-2) 

Door open 

command 

provided 

Train is stopped No emergency 
Aligned with 

platform 
No No No 

 

 

Exercise: Using the process model variables you identified for the batch reactor software, create a 
context table like Table 3.1 for the Open Catalyst Valve control action. 

 

     Note that during this process, some combinations of conditions may expose conflicts in the design that 
need to be considered. For example, is it hazardous to provide the open door command during a fire (an 
emergency) while the train is in motion? In other words, is it safer to keep the doors closed and trap the 
passengers inside or is it better to open the doors and risk physical injury because the train is moving? 
These questions can and should prompt exploration outside the automated door controller. For example, 
the issue might be addressed in the design by providing a way for passengers to exit to nearby train cars 
when there is an emergency and the train is moving. In addition, the braking system controller can be 
designed to apply the brakes in that context (emergency and train is moving) to minimize the duration of 
that hazardous situation. This is an example of how STPA can be applied during early design phases to help 
engineers uncover and resolve conflicts as early as possible when the most important design decisions are 
not yet set in stone.  

Part 2: Control actions not provided in a state that makes inaction hazardous 

     It is also necessary to consider potential contexts in which the lack of a control action is hazardous. The 
same basic process is used: identify the corresponding process model variables and the potential values, 
create contexts for the action using combinations of values, and then consider whether an absence of the 
specified control action would be hazardous in the given context. Table 3.2 shows the identification of 
unsafe control actions for the door open command not being provided. 

                                                           
6
 This row is an example of a conflict; see chapter 4 for more information.  
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Table 3.2: Context table for the lack of an open door control action 

Control 

Action 
Train Motion Emergency Train Position Door State 

Hazardous if 

not provided in 

this context? 

Door open 

command not 

provided 

Train is stopped No emergency 
Aligned with 

platform 

Person not in 

doorway 
No

7
 

Door open 

command not 

provided 

Train is stopped No emergency 
Not aligned 

with platform 

Person not in 

doorway 
No 

Door open 

command not 

provided 

Train is stopped No emergency 
Aligned with 

platform 

Person in 

doorway 
Yes (H-1) 

Door open 

command not 

provided 

Train is stopped No emergency 
Not aligned 

with platform 

Person in 

doorway 
No

8
 

Door open 

command not 

provided 

Train is stopped 
Emergency 

exists 
(doesn’t matter) (doesn’t matter) Yes (H-3) 

Door open 

command not 

provided 

Train is moving (doesn’t matter) (doesn’t matter) (doesn’t matter) No 

 

 

Exercise: Using the process model variables you identified for the batch reactor software, create a 
context table like Table 3.2 for the lack of an Open Catalyst Valve control action. 

     Again, some combinations of conditions are uncovered that expose potential conflicts and need to be 
considered in the design. For example, is it hazardous to provide the open door command when the train is 
stopped away from a platform and a person is in the doorway? Although every effort should be made to 
prevent this context from happening, it may still be conceivable; for example, perhaps the train can leave 
the platform after a door closes on a person or their belongings. If a person is trapped away from a 
platform, is it safer to open the door or keep it closed? These questions can lead to exploration outside the 
automated door controller; for example, this issue might be addressed by ensuring a crew member will be 
alerted to assist the passenger. In terms of the door controller, for the purpose of this simple 
demonstration it is assumed that it is best to keep the door closed to prevent a potentially trapped 
passenger from falling out of the train before assistance arrives. 

 

FAQ: Some of the contexts are hazardous by themselves, like a person in the doorway while the 
train is moving. Should the final column always be marked hazardous in these cases? 

     No. Contexts that are already hazardous by themselves should of course be avoided or made 
impossible by design, but that is not always feasible. If the system ever gets into a hazardous state, 
the controllers must provide appropriate control actions to return the system to a safe state. 

                                                           
7
 This row is not hazardous because it does not lead to any of the system-level hazards (see H-1,H-2,H-3 in the 

previous section). If the hazards and accidents included in the safety analysis were extended to include inconvenience 
to the passengers, then this row would describe a hazardous control action. 
8
 For the purpose of this analysis it is assumed that in this case it is best to keep the door closed and alert a crew 

member to assist the potentially trapped passenger. 
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Therefore, even if the context is already hazardous by itself, these tables need to define whether 
the action will keep the system in a hazardous state or will return the system to a safe state. 

 

     The resulting hazardous control actions can be summarized in a table based on the four types of 
hazardous control actions defined in STAMP, as shown in Table 3.3. 

 

Table 3.3: Hazardous control actions for the Part 1 and Part 2 context tables 

Control 

Action 

Hazardous Control Actions 

Not Providing 

Causes 

Hazard 

Providing 

Causes Hazard 

Wrong Timing or 

Order Causes Hazard 

Stopped Too 

Soon or 

Applied Too 

Long 

Open train 

doors 

Door open 

command not 

provided when 

train is stopped 

at platform and 

person in 

doorway (H-1) 

 

Door open 

command not 

provided when 

train is stopped 

and emergency 

exists (H-3) 

Door open 

command 

provided when 

train is moving 

and there is no 

emergency (H-2) 

 

Door open 

command 

provided when 

train is moving 

and there is an 

emergency
9
 (H-

2) 

 

Door open 

command 

provided when 

train is stopped 

unaligned with 

platform and 

there is no 

emergency (H-2) 

Door open command is 

provided more than X 

seconds after train 

stops during an 

emergency (H-3) 

N/A 

 

     Notice that this approach documents traceability from each UCA back up to the system-level hazards 
defined at the start. When requirements are generated, this ensures that each refinement is traceable all 
the way from the highest level requirement down to the lowest level. 

 

                                                           
9
 To resolve this conflict, a design decision could be made to allow passengers to evacuate to other train cars in this 

situation while ensuring that the brakes are applied so that evacuation from the train will soon be possible. 
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Manual and automated techniques for complex applications 

     The procedures described here represent a “brute-force” approach and, although it is relatively easy to 
follow and provides a more systematic approach with more guidance, it can be time consuming when 
applied to low-level contexts with many variables and values. To address this issue, there are a number of 
automated algorithms that can be used to assist in the analysis as well as both manual and automated 
techniques that can be employed to reduce the amount of effort required to analyze extremely complex 
systems. These topics are discussed in this section, and several tools are currently in development based on 
these techniques. 

Abstraction and hierarchy 

     The first technique—abstraction and hierarchy—is commonly used to help people deal with complexity. 
STPA is a top-down approach and makes extensive use of abstraction and hierarchy in developing and 
analyzing hazards, safety constraints, and control structures. Abstraction can also be applied to control 
actions to allow high-level analyses that can later be refined. Problems that are solved at high levels of 
abstraction may not need to be analyzed at lower levels of analysis, thereby reducing the total analysis 
effort. For example, when analyzing new aviation procedures for pilots, the control action “pilots execute 
passing maneuver” can be analyzed to identify problems and solutions at that high level as opposed to first 
considering the various lower level control actions—like entering information into autopilot systems or 
communicating with copilots—that together make up the passing maneuver. This control action abstraction 
can significantly reduce the number of context tables that need to be created to complete STPA Step 1 and 
to begin identifying new procedures, requirements, and causal factors in STPA Step 2. 

     More important, the use of abstraction is essential in defining the columns for the context tables. For 
example, the train door example used one column labeled “emergency”. Clearly there are many different 
kinds of emergencies that could occur—fire, smoke, toxic gases, etc. The context table could be created 
with separate columns for each of these cases, however the table would quickly grow and become much 
more complex than is necessary at this stage. For the purpose of determining high-level door controller 
behavior, the exact type of emergency is not what matters; what matters is that an evacuation is required. 
Therefore, “emergency” is defined in the context table as any condition that requires passenger evacuation. 
Further analysis can and should eventually identify and define all the types of emergencies that might 
require evacuation so that design efforts can be made to prevent those occurrences. However, the analysis 
of the door controller—including the context tables—can be performed at a higher level of abstraction in a 
top-down fashion before that level of detail is defined. 

     In fact, an important goal of this approach is to help during early phases of design when very little is 
known about the system. In these cases, abstraction is natural because most details have not yet been 
defined, and the analysis can be used to drive the design and determine which details may need to be 
defined or developed first.  

Logical simplification 

     The second technique—logical simplification—was already employed when introducing the context 
tables for the train door. In this example, the four columns of variables each with two possible values would 
really require a 16 row table. However, the context table in Table 3.2  only required six rows. By reducing 
similar rows with “doesn’t matter” terms, the table can be drastically simplified. For example, the last row 
in Table 3.2 represents eight unique contexts. This simplification is possible because if the train is moving, 
then the specific value of the other variables don’t matter – keeping the door closed is not hazardous. 

     Automated tools can help perform this reduction automatically or assist the user in identifying and 
specifying these simplifications, as discussed later in this Chapter. 
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Continuous process model variables 

     The context table examples provided above describe a number of continuous process variables. For 
example, train motion is a continuous variable with an infinite number of possible values. However, it is not 
necessary to consider an infinite number of values or even a large number of values. What is important for 
the purpose of analyzing door commands that cause a system hazard is simply whether the train is stopped 
(velocity equals zero) or moving (velocity not equal to zero). Through careful discretization of process 
variables based on the system hazards, the complexity of the context tables and subsequent analysis can be 
significantly reduced. In addition, automated tools discussed later in this section can provide ways to easily 
expand or simplify the defined values during the analysis as necessary (e.g. to split “train is moving” into 
“train is moving slow” and “train is moving fast”). The tools in this section can also automatically identify 
whether the set of values in a finished context table can be further reduced, which can significantly simplify 
subsequent steps in the hazard analysis. 

     It is important to note that the set of values defined for each variable does not necessarily need to be 
detailed, but they must be complete so that every possibility is included. For example, the set train is 
moving and train is stopped is complete because the set includes every possibility. Analyzing the set of 
values—even at high levels of abstraction during early development stages—can lead to important insights. 
For example, the set door open and door closed may appear complete at first, but upon closer inspection 
the continuous nature of the variable can immediately reveal a potentially critical state—partially open—
that must be accounted for in the analysis.  

Defining rules to quickly create and evaluate large tables 

     Although the first three techniques can be particularly useful during early stages of development, it is 
also possible to work with larger and more detailed context tables during later stages of development. 
Although most of the context table can be generated automatically given information in the control 
structure, the final column must still be defined manually in most cases. When faced with this task, it can 
be more efficient to define a set of rules such that automated tools can fill out the table. For example, a 
rule might be defined that states that opening the doors while the train is moving will always lead to H-2, 
and the tool can automatically populate the final column for those 8 rows of the context table with the 
hazard H-2.  

     The rule-based approach applies only to a completely enumerated set of rows—each of which are 
mutually exclusive and collectively exhaustive—and can produce much more complex tables while 
requiring less effort than a brute force approach. One advantage is that overlapping rules can be quickly 
defined from basic principles. Once the rules are defined, automated methods can then generate the table, 
apply logical simplification, detect whether overlapping rules conflict, and detect whether there are any 
rows for which no rules apply (indicating a potentially incomplete set of rules).  

     Although these concepts are primarily intended to help guide early stages of development, this rule-
based approach has been used successfully to define tables with hundreds of rows using only a few well-
understood and easy to evaluate rules. Larger tables are also possible, although the technique that follows 
is a much more practical way to include such low levels of detail. 

Automatically generating low-level tables 

Because STPA is a top-down approach, higher levels of behavior are analyzed before more detailed lower 
levels of behavior. It should be possible, therefore, to leverage information and analysis that has already 
been performed at higher levels to derive lower-level context tables. The following is a technique that can 
be used to generate extremely detailed context tables from more abstract tables and information. 
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     Consider the high-level context table for the train door controller, reproduced in Table 3.4. This context 
table defines the effect of a control action (hazardous, nonhazardous) given variables in the first level of the 
process model hierarchy (train motion, emergency, etc.). Although lower-level tables could be defined by 
repeating the whole process with lower level process model variables, doing so can be tedious and 
inefficient because it does not leverage the information already in this table. What kind of information is 
needed in addition to Table 3.4 to define the same table at a lower level of detail? The new information 
needed is the precise relationship between the first and second levels of variables in the process model 
hierarchy. 

 

Table 3.4: Context table for the open door control action 

Control 

Action 
Train Motion Emergency Train Position Door State 

Hazardous if 

not provided in 

this context? 

Door open 

command not 

provided 

Train is stopped No emergency 
Aligned with 

platform 

Person not in 

doorway 
No

10
 

Door open 

command not 

provided 

Train is stopped No emergency 
Not aligned 

with platform 

Person not in 

doorway 
No 

Door open 

command not 

provided 

Train is stopped No emergency 
Aligned with 

platform 

Person in 

doorway 
Yes 

Door open 

command not 

provided 

Train is stopped No emergency 
Not aligned 

with platform 

Person in 

doorway 
No

11
 

Door open 

command not 

provided 

Train is stopped 
Emergency 

exists 
(doesn’t matter) (doesn’t matter) Yes 

Door open 

command not 

provided 

Train is moving (doesn’t matter) (doesn’t matter) (doesn’t matter) No 

 

An example process model hierarchy for the train door controller can be constructed as follows: 

                                                           
10

 This row is not hazardous because it does not lead to any of the system-level hazards (see H-1,H-2,H-3 in the 
previous section). If the hazards and accidents included in the safety analysis were extended to include inconvenience 
to the passengers, then this row would describe a hazardous control action. 
11

 For the purpose of this analysis it is assumed that in this case it is best to keep the door closed and alert a crew 
member to assist the potentially trapped passenger. 
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Example process model hierarchy for train door controller: 

 Door obstructed {obstructed, not obstructed} 

o Light curtain reading {blocked, not blocked} 

o Door force sensor reading {normal, door pushed open} 

 Train motion {moving, stopped} 

o Speed sensor #1 status {continuous speed} 

o Speed sensor #2 status {continuous speed} 

o Speed sensor #3 status {continuous speed} 

 Train platform alignment {aligned, not aligned} 

o Left platform sensor {aligned, not aligned} 

o Right platform sensor {aligned, not aligned} 

 Emergency {no emergency, evacuation required} 

o Fire present {normal, fire detected} 

 Engine compartment fire sensor {normal, fire detected} 

 Passenger compartment fire sensor {normal, fire detected} 

o Smoke present {normal, smoke detected} 

 Ionization smoke sensor {normal, smoke detected} 

 Optical smoke sensor {normal, smoke detected} 

o Toxic gas sensor {normal, toxic gas detected} 

 

To define the precise relationship between the first and second levels of process model variables, the 
SpecTRM-RL tables in Figure 3.4 could be defined. SpecTRM-RL tables (also known as AND/OR tables) are a 
disjoint form of Boolean logic. They are read with the rows using AND logic and the columns using OR logic. 
In other words, the box to the left contains expressions while the narrow vertical columns show the 
conditions under which the expression about the table is true. If any one of the vertical columns is true, 
then the statement about the whole table is true.  In the first example below, the Door_obstructed variable 
is inferred to have the value obstructed when the light curtain is blocked or the door force sensor shows 
that the door has been pushed open. The Door_obstructed variable is inferred to have the value not 
obstructed if the light curtain is not blocked and the door force sensor shows a normal value. 
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Figure 3.4: Example SpecTRM-RL tables defining the relationships between process model variables 

 

     From this basic information, more detailed context tables can be automatically generated by substituting 
each process model variable in the high-level context table with the set of lower level process model 
variables defined in Figure 3.4.  Table 3.5 shows the first part of the automatically generated low-level 
context table for the train door controller. The table is quite large and only part can be reproduced here. 
Although it would be unreasonable to ask engineers to read this table and perform analysis on it, a formal 
black-box model of the system can be constructed from this information using automated techniques and 
reduced into a form that can be understood and evaluated. 
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Table 3.5: Partial low-level generated context table for train door controller 

Light 

curtain 

Door 

force 

sensor 

Speed 

sensor #1 

Speed 

sensor #2 

Speed 

sensor #3 

Left 

platform 

sensor 

Right 

platform 

sensor 

Fire 

present 

Smoke 

present 

Toxic gas 

sensor 

Hazardous if 

not provided? 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Aligned 

Fire 

detected 
Normal Normal Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Aligned 

Fire 

detected 
Normal 

Toxic gas 

detected 
Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Aligned 

Fire 

detected 

Smoke 

detected 
Normal Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Aligned 

Fire 

detected 

Smoke 

detected 

Toxic gas 

detected 
Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Not aligned Normal Normal Normal No 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Not aligned Normal Normal 

Toxic gas 

detected 
Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Not aligned Normal 

Smoke 

detected 
Normal Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Not aligned Normal 

Smoke 

detected 

Toxic gas 

detected 
Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Not aligned 

Fire 

detected 
Normal Normal Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Not aligned 

Fire 

detected 
Normal 

Toxic gas 

detected 
Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Not aligned 

Fire 

detected 

Smoke 

detected 
Normal Yes 

Blocked Normal Stopped Stopped Stopped 
Not 

aligned 
Not aligned 

Fire 

detected 

Smoke 

detected 

Toxic gas 

detected 
Yes 

Blocked Normal Stopped Stopped Moving Aligned Aligned Normal Normal Normal No 

Blocked Normal Stopped Stopped Moving Aligned Aligned Normal Normal 
Toxic gas 

detected 
No 

Blocked Normal Stopped Stopped Moving Aligned Aligned Normal 
Smoke 

detected 
Normal No 

Blocked Normal Stopped Stopped Moving Aligned Aligned Normal 
Smoke 

detected 

Toxic gas 

detected 
No 

… … … … … … … … … … … 
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     Detailed requirements and control algorithms can be generated from the low-level context tables 
using automated methods. By applying logical simplification techniques, requirements even for larger 
tables as in Table 3.5 can be automatically reduced to an equivalent but much smaller form. Figure 3.5 
shows the logically simplified SpecTRM-RL table that is generated based on the high-level context tables 
(as in Table 3.5) and defined relationships between process model variables (as in Figure 3.4). 

 

 

Figure 3.5: Logically simplified low-level SpecTRM-RL table  

generated for the train door controller example 

 

Automated Tools 

     The techniques described above offer several opportunities for the development of automated tools 
to assist users performing the analysis. Because the methods are based on formal structures, even parts 
of the analysis that cannot be automated can still benefit from tools that can restructure the problem in 
new ways and perform user-directed low-level tasks to improve efficiency, reduce repetition, and 
leverage results from earlier parts of the analysis. A number of tools are possible, some of which are 
currently being developed. 

     Given an existing context table, automated tools can help with logical simplification by identifying the 
areas that can be simplified to reduce the size of the table. For incomplete tables being developed, tools 
can assist the user in identifying and specifying these simplifications. For example, a user could highlight 
multiple rows and ask the tool to expand or reduce the set of contexts by inserting or removing “doesn’t 
matter” cells. 

     Tools can also help users create and modify the process model variables. For example, if it is 
discovered that the train door controller behavior depends on whether the train is moving forward or 
backward, tools could allow the user to select a “train is moving” cell and split it into two sub-cases. 
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Another possibility is to help users understand how important a process model variable is, for example, 
by identifying which hazards could result from a specific process model flaw or which process model 
variables have no affect and can be removed from columns in the context table. Tools can help users 
understand which process model variables are the most important by prioritizing them based on the 
severity of the hazards that each process model flaw can lead to. The process model values can also be 
analyzed to determine whether the values for a given variable can be further simplified or reduced 
without losing information in the context table. For example, if the set of values for a process model 
variable includes (high, normal, low), then tools can analyze the context table to automatically 
determine whether a smaller set such as (high, not high) contains all the necessary information relevant 
to that table. 

     A promising tool currently in development automatically applies a set of rules to generate larger 
context tables. The tool allows users to specify any number of rules and can detect when rules conflict 
with each other or when the set of rules is incomplete. The tool can also be used to quickly modify 
existing tables, for example, to reflect design changes or controller re-use in new systems and 
environments.  

     Finally, tools can help users define the process model hierarchy and the relationship between levels 
in the hierarchy, permitting automatic generation of low-level context tables and detailed requirements. 
The generated requirements could then be represented in SpecTRM-RL and executed or imported into a 
requirements or systems engineering framework such as Intent Specifications and existing software 
tools like SpecTRM that help document traceability and document rationale behind decisions.  
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Chapter 4: Evaluation of STPA on Real Systems 
Nancy Leveson 

[Because more experience is being obtained about the use of STPA on various types of systems and 
additional comparative studies conducted, this chapter will be updated as we get more information.] 
 

     Because STAMP extends current accident models and thus includes component failure accidents, 
STPA can identify the hazard scenarios identified by fault tree, event tree, and other traditional hazard 
analysis methods, but it also can find those factors not included or poorly handled in these traditional 
methods such as software requirements errors, component interaction accidents, complex human 
errors (mistakes vs. slips), inadequate coordination among multiple control agents, and unsafe 
management and regulatory decision making.  

     While this comparison of STPA and the traditional hazard analysis methods shows STPA to be 
theoretically more powerful, does STPA actually identify more causal scenarios when used on real 
systems? There have been a lot of real-world comparisons made and in each of these STPA 
outperformed the traditional hazard analysis methods.  

         One of the first industrial uses of STPA, in 2003, was on the new U.S. Missile Defense System in 
order to assess the risk associated with the hazard of inadvertent launch [Pereira 2006]. The system had 
been subjected to standard hazard analysis methods, but one more additional analysis was required 
before the system could be deployed and field tested. STPA found so many flaws during just a limited 
three month analysis by two people that deployment was delayed for six months to fix the newly 
identified hazardous scenarios. In many of these newly identified scenarios, all the components were 
operating exactly as intended, but the complexity of the component interactions led to unanticipated 
system behavior. These unidentified scenarios included things like missing cases in software 
requirements and subtle timing errors in communication (sending and receiving messages) between the 
system components. STPA also identified component failures in the system that could cause hazards. 
Most traditional hazard analysis methods consider only these types of component failure events. 

     The Japanese Aerospace Exploration Agency (JAXA) used STPA experimentally on their unmanned 
spacecraft, called the HTV, which delivers cargo to the International Space Station. STPA found 
everything identified in the HTV fault tree analysis (required by NASA) plus it found additional hazardous 
scenarios, mostly related to system design flaws and to software but also related to hazardous 
interactions among the multiple HTV control agents (astronauts, HTV software, NASA mission controllers 
and JAXA mission controllers) [Ishimatsu 2013].  

     Experimental application of STPA to the NextGen In-Trail Procedure (ITP) in a recent MIT research 
project identified more scenarios than the fault tree and event tree mixture used in the official ITP 
safety analysis and documented in DO-312 [Fleming, 2013]. STPA identified all the hazard causes 
produced by the official analysis, but found many more that had been omitted. Using STPA, more safety-
related requirements for ITP were generated than are listed in the official RTCA requirements document 
[8]. The official fault tree/event tree analysis produced a probabilistic risk number for an accident—
which was almost certainly not accurate as it omitted many cases in the analysis—while STPA instead 
identified the potential safety weaknesses in the system so they could be fixed or mitigated. 
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     EPRI (Electric Power Research Institute) ran a comparative evaluation of fault trees, event trees, 
HAZOP, FMEA, and a few other traditional techniques as well as STPA on a real nuclear power plant 
design. Each hazard analysis technique was applied by experts on the techniques. STPA was the only one 
that found a scenario for a real accident that had occurred on that plant design (which, of course, the 
analysts did not know about).  

     The original FMEA for a blood gas analyzer (a medical device) that had been recalled by the FDA 
because of a serious adverse event took a team of people a year to perform and found 75 hazardous 
scenarios. It did not find the scenario leading to the recall. STPA performed by one person in two weeks 
found 175 scenarios including 9 leading to the hazardous behavior involved in the recall [Balgos 2012].  

     To evaluate usefulness and learnability for subject matter experts and system designers, two one-day 
workshops have been held to teach the technique in the morning and then have the experts apply it to 
their own system in the afternoon. In both cases, the engineers, even though they had just learned 
STPA, identified safety design flaws in the systems they were designing or evaluating that they had not 
noticed before. One typical comment was “We never realized that [system design feature] was 
important for safety or could lead to an accident.” In these two informal evaluations, one resulted in a 
recommendation to adopt STPA (for use on a radiation therapy device) and the other to conduct a larger 
controlled comparison (for U.S. Air Force mission assurance).   

     There have been many more successful uses of STPA in most every type of industry. What was most 
surprising was not just that it found more causes of hazards (which could have been predicted from a 
theoretical comparison), but that STPA took much less time and fewer resources to perform.   
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Chapter 5: STPA used for Security 
William Young 

Adam Williams 
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Chapter 6: Advanced Topics and Future Extensions 
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Answers to Exercises 
 

Exercise:  What are some other examples of indirect causation? 

 There are a very large number of general examples that might have been listed. Examples of the 
types of things that might be listed with respect to safety: Promoting productivity over safety, cutting 
budgets or personnel, relaxing safety standards.   

Exercise: Where is the chain of events found in a fault tree, an event tree, HAZOP, and FMEA? 

 Fault tree: The chains of events are the leaf nodes of the tree, i.e., the cut sets or sets of events that 
lead to the hazard at the root of the tree. (The intermediate events between the root and leaf nodes 
are “pseudo events” that just used in the refinement of the top level hazard into the leaf nodes.) 

Event tree: The chain of events is listed at the top of the event tree. 

HAZOP: Each deviation for each component in the tree is traced to both possible causes, which are 
the predecessor events and possible consequences, which are the following events. So although the 
chain is not identified directly (as in the top of the event tree or in the fault tree cut sets or leaf 
nodes), it is identified implicitly. 

FMEA: As with HAZOP, the cause(s) and possible effects or consequences are identified for each 
failure considered in the FMEA. 

Exercise: What are some systemic causes of accidents in systems with which you are familiar? 

Examples of things you might have listed are budget pressures, time and schedule pressures, safety 
culture, a belief that the cost of safety is reduced productivity, beliefs that taking steps to reduce risk 
is unmanly, budget cuts by management without specifying how lower management levels are to 
make decisions on where to cut, the influence of politics on decision making, lack of a company 
safety policy to convey to employees how they should make safety-critical decisions, poor employee 
morale, employee/management rapport, effects of the legal system on accident investigation and on 
the collection and exchange of safety information, employee certification, public sentiment, etc. 

 
Exercise: What are some other examples of emergent properties? 

Examples of possible answers: security and any of what are usually called system “qualities” or 
“ilities”  

 

Exercise: What are some of the safety constraints in the systems in your industry? How are they 
enforced or controlled? 

The answers here will be very system specific.  
 
Exercise:  For your industry or for a system with which you are familiar, what “process” is being 
controlled? How is it controlled? What are some typical hazards that must be handled? What are some 
safety constraints that must be enforced? 

Again, the answers will be system-specific. 
 

Exercise:  Identify the system-level hazard(s) for the batch reactor.  

Pressure or temperature of the chemical reaction exceeds a threshold. 
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Exercise: Create the functional safety control structure for the batch reactor system shown on page X of 
ESW. What is an accident in this system? What is the system-level safety constraint involved in the 
accident? 

 
 
 
Exercise:  Take the control structure you created for the batch reactor and create the Step 1 tables. 
Then change the entries into requirements for the operator and the computer software. 

Step 1 table for the Software:  
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Safety Constraints:  
• Water valve must always be fully open before catalyst valve is opened. 

– Water valve must never be opened (complete opening) more than X seconds after 
catalyst valve opens 

• Catalyst valve must always be fully closed before water valve is closed. 
– Catalyst valve must never be closed more than X seconds after water valve has fully 

closed. 
In the real accident, both of these constraints were missing from the software requirements. Even if 
the first one had been identified, the second one is the type of case that is often omitted. 

  
Exercise: Take your Step 1 table that you generated for the batch chemical reactor and identify causal 
scenarios for the unsafe control actions. At the least, 

 Identify some causes of the hazardous control action: Open catalyst valve when water valve 
not open. HINT: Consider how controller’s process model could identify that the water valve is 
open when it is not. 

The valve does not open for some physical reason.  The design may be such that the software 
assumes the water valve has opened because an instruction was issued to close it and no 
feedback was provided in the design to tell the software whether the control action was 
successfully completed. Or feedback was provided but it says only that the control action 
signal was received by the valve actuator, but not that the valve actually opened. Valve 
opening or closing could have failed or been blocked for a variety of reasons but listing these 
may not be necessary to come up with a solution for the problem. 

 What are some causes for a required control action (e.g., open water valve) being given by 
the software but not executed? 

A lost or corrupted signal, failure of the valve actuator or blocking of the valve before it is 
fully open or closed, and other failures of the loop components. 

 

 What design features (controls) might you use to protect the system from the scenarios you 
found? 

One possibility is to use a flow monitor to check that water is actually flowing through the 
pipe before the catalyst valve is opened and vice versa for the water valve. Other design 
options are possible. The goal of STPA is not to identify the options for the designers, but to 
provide information that will help them to make the design decisions.  

 
Exercise: Identify the process model variables for the software controller in the batch reactor system 
from the previous chapter.  

- As the control structure shows, the software is primarily responsible for controlling two valves in 
the plant. Therefore, at a minimum, the software must have process model variables that reflect 
the state of those valves. In addition, the software is responsible for stopping operations when 
something in the plant goes wrong; therefore the software must also know the plant state. 

Software Controller Process Model Variables: 
Water Valve: Open, Closed 
Catalyst Valve: Open, Closed 
Plant State: OK, Not OK 
 

Exercise: Using the process model variables you identified for the batch reactor software, create a 
context table like Table 3.1 for the Open Catalyst Valve control action. 
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Control Action Plant 
State 

Water 
Valve 

Catalyst 
Valve 

Hazardous to 
provide 
control 
action in this 
context? 

Hazardous to 
provide 
control 
action too 
early in this 
context? 

Hazardous to 
provide 
control 
action too 
late in this 
context? 

Open Catalyst Valve command Ok Closed Closed Yes Yes Yes 

Open Catalyst Valve command Ok Closed Open Yes Yes Yes 

Open Catalyst Valve command Ok Open Closed No No No 

Open Catalyst Valve command Ok Open Open No No No 

Open Catalyst Valve command Not Ok Closed Closed Yes Yes Yes 

Open Catalyst Valve command Not Ok Closed Open Yes Yes Yes 

Open Catalyst Valve command Not Ok Open Closed Yes Yes Yes 

Open Catalyst Valve command Not Ok Open Open Yes Yes Yes 

 
In the first two rows, it is hazardous to command the catalyst valve open because the water 
valve is closed. Commanding the catalyst valve open with a closed water valve causes a sharp 
increase in temperature may lead to potential hazards. In the last four rows, it is hazardous to 
command the catalyst open because the plant is not Ok and any further operation may lead to 
potential hazards. 

 
Exercise: Using the process model variables you identified for the batch reactor software, create a 
context table like Table 3.2 for the lack of an Open Catalyst Valve control action. 
 

Control Action Plant 
State 

Water 
Valve 

Catalyst 
Valve 

Hazardous to 
NOT provide 
control 
action in this 
context? 

Open Catalyst Valve command NOT provided Ok Closed Closed No 

Open Catalyst Valve command NOT provided Ok Closed Open No 

Open Catalyst Valve command NOT provided Ok Open Closed No 

Open Catalyst Valve command NOT provided Ok Open Open No 

Open Catalyst Valve command NOT provided Not Ok Closed Closed No 

Open Catalyst Valve command NOT provided Not Ok Closed Open No 

Open Catalyst Valve command NOT provided Not Ok Open Closed No 

Open Catalyst Valve command NOT provided Not Ok Open Open No 

 
Although there are situations when an absent open catalyst valve command can adversely affect 
the operational goals of the plant, there are no situations in which an absent open catalyst valve 
command will cause a hazard. In other words, it is always safe to not open the catalyst valve. 
Although this primer focuses on hazard analysis, note that the same approach can also be 
applied to non-safety-related functional goals of the system too. 
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