
Ultramicroelectrodes
If some dimension of an electrode (radius, width, length) is of the order < 100 mm, we talk about ultramicroelectrodes. Their 
current-voltage characteristics changes because mass transfer to the electrode surface is enhanced significantly. Therefore, 
transient experiments begin to resemble steady-state experiments. Because electric currents on ultramicroelectrodes are of 
the order of < 1 mA ohmic losses in the solution become insignificant and experiments can be carried out in poorly conducting 
media, such as in organic solvents. Also power consumption is so low, of the order of < mW, that a signal generator and a 
sensitive ampere meter suffice as a measuring equipment. This makes it possible to utilize very fast perturbation functions 
(current/voltage) because a potentiostat is not limiting the response rate. Hence, with ultramicroelectrodes much faster 
kinetics can be studied than with normal sized (order of cm) electrodes. We consider here a disk ultramicroelectrode.

In the picture below, the concentration field around a microdisk is depicted. As can be seen, it has a spherical symmetry except 
very close to the electrode surface. Therefore, the analysis is done in spherical coordinates.

Left: Current distribution on a microdisk electrode. 
Right: Equiconcentration lines around the electrode.

It can be proved that the current distribution on a 
microdisk electrode is (a is the disk radius)
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Although current approaches infinity at the disk 
edge (r = a), the integral over the disk is finite.

(5.1)



At steady-state the diffusion problem to be solved is
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Under the limiting current condition, ck(a) = 0 and the concentration profile is
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and the limiting current density:

If the electrode were a true hemisphere the limiting current would be but it has been proved that for a disk 
electrode it is

anFci b
k 2lim

acnFDi b
kk4L  (5.5)

In practice, calculations are carried out in spherical coordinates and results are corrected by multiplying current with 2/. In 
a general case the concentration profile is
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In a transient experiment the problem is analogously:

ar

k
k

b
kk

b
kk

kk
k

k
r
cD

nF
Icrtcctrc

r
c

rr
cD

t
c































 ;),0(;),(;02

2

2

The surface concentration in Laplace domain is
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If the surface concentration is set to zero, like in the Cottrell experiment,
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Current at an ultramicroelectrode thus remains to the steady-state (eq. (5.8)) after a 
transient phase. Aside a simulation varying the parameter             . The black dotted 
line corresponds to the Cottrell experiment where a → . 
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The behavior of an ultramicroelectrode is best demonstrated with 
cyclic voltammetry. Aside a simulation varying the parameter 
sa2/D. At high enough parameter values the behavior approaches 
to a “normal” electrode, i.e. c approaches to 0.4463 while the at 
low parameter values the CV approaches a steady-state current-
voltage curve.

Simulation of CVs at an ultramicroelectrode with 
sa2/D = 0.01 (blue), 0.1 (green), 1 (red), and 10 
(turquoise).
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