Introduction to scanning electrochemical microscopy (SECM)

Peter Liljeroth Bernadette Quinn

Scanning electrochemical microscopy:

- Current flow at a probe electrode, "SECM tip", is measured
- Can be used to probe the reactivity of insulating, conducting and semi-conducting substrates
- Member of the scanning probe microscopy (SPM) family
- First introduced in the late 1980s by Engstrom et al. and by Bard et al.
- Subsequently developed into an established electrochemical technique

Different SECM operating modes:

- Amperometric feedback mode
- Generation / collection mode
- Potentiometric detection
- Transient methods

Equilibrium perturbation

Double potential step chronoamperometry

• Scanning mode

Amperometric feedback

mode

- Diffusion to a microelectrode
- Measure the change due to the proximity of a surface
- Relate this change to the reactivity and topography of the surface

Negative feedback:

substrate

- Hindered diffusion due to the presence of the substrate
- The measured current <u>lower</u> than in the bulk

Positive feedback:

- Redox mediator regeneration occurs at the substrate
- The measured current <u>higher</u> than in the bulk

substrate

dimensionless coordinates:

$$L = d / a$$

 $R_{\rm q} = r_{\rm q} / a$

Fick's second law:

$$\frac{\partial \boldsymbol{c}}{\partial t} = \boldsymbol{D} \left(\frac{\partial^2 \boldsymbol{c}}{\partial r^2} + \frac{1}{r} \frac{\partial \boldsymbol{c}}{\partial r} + \frac{\partial^2 \boldsymbol{c}}{\partial \boldsymbol{z}^2} \right)$$

dimensionless quantities

$$C = c / c^{b};$$
 $R = r / a;$
 $Z = z / a;$ $T = t D / a^{2}$

$$\rightarrow \frac{\partial C}{\partial T} = \frac{\partial^2 C}{\partial R^2} + \frac{1}{R} \frac{\partial C}{\partial R} + \frac{\partial^2 C}{\partial Z^2}$$

At steady-state: $\frac{\partial^2 C}{\partial R^2} + \frac{1}{R} \frac{\partial C}{\partial R} + \frac{\partial^2 C}{\partial Z^2} = 0$ Initial condition

 $C_{\rm Ox}(r,z,t=0) = C^{\rm b}$

Reaction at the tip,

Ox + ne^- → Red at a diffusion controlled rate, hence $c_{Ox}(r < a, z=0, t) = 0$

If $D_{Ox} = D_{Red}$, the principle of mass-conservation gives $c_{Red}(r,z,t) = c^{b} - c_{Ox}(r,z,t)$ and only a single species needs to be considered.

This always applies at steady-state.

Initial condition C(R,Z,T=0) = 1

At an insulating substrate $\partial C / \partial Z = 0$

At a conducting substrate Red \rightarrow Ox + *n*e⁻ at a diffusion controlled rate $c_{\text{Red}}(r,z=d,t) = 0$ $\Rightarrow C(R,Z=L,T) = 1$

Kinetics at the substrate:

In dimensionless form, with mass-conservation, for an irreversible reaction, $k_{\rm b} = 0$

$$\frac{\partial C}{\partial Z}\Big|_{Z=L} = K(1-C)$$
 where $K = k_{\rm f} a / D$

Scanning

mode

The scanning mode:

- Gives information on both the topography and the local reactivity of the substrate
- The resolution is of the order of the tip radius and dependent on the tip-sample distance
- atomic resolution not possible (SECM vs. STM)
- Two principal types: constant height and constant current
- Two principal modes: feedback and collection
- Variations exist: use of a chemical lens, modulation techniques, shear force detection etc.

Tip preparation

7. grind back to expose the electrode and polish with subsequently finer grinding paper or alumina slurry

8. make electrical connection to the tip and run a test CV

9. sharpen until the radius of the glass sheath is < 10a

unpolished microelectrode

polished microelectrode finished SECM tip

Z. Ding, B.M. Quinn, A.J. Bard, J. Phys. Chem. B 105 (2001) 6367-6374

Nanometre electrodes:

1. Electrochemical etching

2. Electrodeposition of cathodic or anodic electrophoretic paint

3. Thermal curing causes the paint to shrink, exposing a tiny conical electrode

C.J. Slevin, N.J. Gray, J.V. Macpherson, M.A. Webb, P.R. Unwin, *Electrochem. Commun.* 1 (1999) 282-288

Nanometre electrodes, part deux:

1. Start as previously, electrochemically etch a Pt wire

2. Heat induced polymerisation of an imide

3. Thermal curing at ca. 200°C

2.

P. Sun, Z. Zhang, J. Guo, Y. Shao, Anal. Chem. 73 (2001) 5346-5351

Experimental aspects

Tip shape

 concentricity of the disk and the insulating glass sheath

 \rightarrow effective $R_{\rm g}$

• highest point on the tip

• alignment of the tip

Effect of $R_{\rm g}$

• Small *R*_g makes it easier to get close to the substrate

O. Sklyar, G. Wittstock, J. Phys. Chem. B 106 (2002) 7499-7508

Various imperfections

Perfect electrode (A), irregularly shaped electrode
(B), a recessed electrode (D), a "lagooned" electrode
(E) and a leaky UME (F)

Y. Shao, M.V. Mirkin, G. Fish, S. Kokotov, D. Palanker, A. Lewis, Anal. Chem. 69 (1997) 1627-1634

Effect of tip geometry

• Disk preferred, however, especially small electrodes usually have conical or hemi-spherical shape

conical

hemi-spherical

Effect of tip geometry on the approach curves

• Generally makes the response less sharp

Y. Selzer, D. Mandler, Anal. Chem. 72 (2000) 2383-2390