Diffusion through a membrane

One of the most common measurements in pharmacy is the determination of drug
permeability across a model membrane, such as skin, cornea, etc. The measurement is
carried out either in Franz cell or 1n a side-by-side diffusion cell.
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Franz cell. If the membrane 1s skin,
stratum corneum points upwards.

A side-by-side diffusion cell. Total width
ca. 9 cm. Chamber volume ca. 3 cm?.



Both the donor (o) and acceptor compartments ([3) are stirred so that ideally no
consentration differences appear in their bulk solution. Samples are withdrawn from
the acceptor compartment and its concentration determined with fluorescence or UV
detection after separation with High Performance Liquid Chromatography (HPLC).
Our task 1s to seek for the concentration as a function of time. Often the permeability
is so low that the concentration of the acceptor compartment remains practically zero
compared with the donor compartment. This is known as the perfect sink condition.
In the beginning of an experiment there is a lag time during which the steady-state is
reached. After that the consentration profile in the membrane 1s linear:

B«
c(x)=c°°+%x (8.1)

and the flux across the membrane is

J=-D—"— (8.2)



Example:

Membrane, thickness 4 and surface area 4, separates two compartments with
volumes V| and V,. Initially, ¢, = ¢, and ¢, = 0. Calculate the concentrations ¢, and
¢, as a function of time.

This set-up corresponds to a typical drug permeation experiment.



Assume that both compartments are ideally stirred, i.e. they have a homogeneous
concentration at all times. Mass balance:

Vico=Vic1(0) + Vye(t) = () = Vi/V3lcp— ¢4(D)] (8.3)
The volume of the membrane is thus neglected.
Diffusion takes place only in the membrane, and we already know the solution:
c=Bx+B, (8.4)

With the boundary conditions (x =0, ¢ = ¢,) and (x = 4, ¢ = ¢,) B, and B, can be
found. The result is finally

c(x)=02261x+01 N 26’:021261:]11[;;1( _Cl)_cl} (8.5)
X 2

Diffusion reduces the amount of the solute in compartment 1:

Vy oc 8(: DV V.
g hoe_ _poc_ DV (LN
Ao ox  h {V “0 ( szcl} (8.6)



Collecting the constants together,

dcl — o — Bcl . o= DACO : B: DA 1 + | (87)
di Vi A2

This is an ordinary differential equation, its solution is

= E + (CO — j —PBt ; g COI/I
p p p r+h (8.8)

c, Vi +Vye Bt
o N+r

where the 1nitial condition ¢,(z = 0) = ¢, has been applied. From mass balance
(8.3) it 1s obtained

Cz:Vl[l_clj:Vl(l—er)

co W Co +h,

(8.9)

It V, =V, eq. (8.9) can be written in the form where a linear fit is possible:

Bt:m(E_ j (8.10)
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Aside plots of eq. (8.8)
(descending) and (8.9)
(ascending).

In the side-by-side cell V, =V,
=V, and [3 1s very small because
the permeability K, = D/h across
a membrane 1s often low. Hence,
exponent can be linearized,
giving the practical result

(8.11)

Plotting the concentration of the acceptor compartment as a function of time, a
straight line 1s obtained, giving the permeability from its slope.



- 90) In the beginning of the experiment

o o there is the lag time before the steady-
0.6 | state 1S reached, but after that our

| solution 1s accurate. The full solution
4 is obtained by solving Fick’s 2. law
0.2 | (see textbook). The result is (perfect
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j . 0 = [ J(h,u)du (8.12)
0

The series term vanishes rapidly, leaving a straight line that intercepts x axis at the
point Dt/h?> = 1/6. As a consequence, the lag time of diffusion is defined as
= Lol (8.13)
6D 6K, ‘

Since the slope of the straight line gives the permeability K, the actual membrane
thickness 4 and furthermore D can be calculated from eq. (8.13).



Dissolution of a spherical pill \

/

——

The solution is searched in spherical geometry. During ™~
dissolution saturated concentration prevails on the pill

surface at all times. Diffusion transports material from

the surface into the bulk solution. Boundary conditions ~~ .
are thus (r=a, c = ¢*) and (r = 0, ¢ = 0). The solution / \

was given earlier as c¢(r) = B, + B,/r.

-

BCs tell that B, = 0 and B, = c’a (a = a(?) 1s the pill radius and ¢* saturated
concentration). Hence,

a oc Dcs
=cs— ; J==-D| — =
c(r)=c p (arl_a . (8.14)
The mass of the pill, m, 1s
m(t) = Mn(t) = pV (¢) = p%na(fﬁ (8.15)

where M 1s molar mass, p density and 7 volume of the pill.



:iina3 — @=£4ﬂ:a2aa: pA('ia (8.16)
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Dissolution reduces the amount of material of the pill:

_i@_J — _ﬂa_a:l)ﬁ (8.17)

Aot M ot a

Initially, (=0, a = a,). Integrating eq. (8.17) it is obtained

az\/ag—ZDcSMt (8.13)
p

The characteristic feature of diffusion limited processes is their #/2 dependence. The
lifetime of the pill, t, 1s reached when a = 0:

2
=P % azaz()w/l—i (8.19)
M 2Dcs* T




Finally, the mass of the pill as a function of time 1s

3/2 3/2
m(t)ngna(tﬁ:pgnag(l—%j - m0 (1—1] (8.20)

m T

The plot below shows that the rate of dissolution is quite steady which 1s desirable
from the point of view of drug delivery, for example. |

Accurate solution is quite tedious; an 0.3l
interested reader may look at, e.g. diffusion
Christensen et al. J.Pharm.Sci. 71 (1982) 0.6} control
S
694-9. g,
If dissolution takes place under kinetic S o
control, viz —dm/dt = kA (k is the rate oaf  Kinene
constant and A pill surface area, . | | .
a=ay(l —t/t); T = ayp/k. Now 0 02 04 06 08
t/t

0.1
mo T (8.21)



Higuchi’s dissolution model

Drug is often dispersed in solid form in a matrix, and dissolution begins when it is
brought in contact with a liquid (water). Its saturated concentration is ¢, mutta its
content in solid form c¢* can be substantially higher than c..

Higuchi modeled dissolution from a matrix
assuming that at the point of dissolution saturated
concentration prevails at all times and that drug 1s
diffusing across the diffusion boundary layer
(DBL) at steady-state. Looking at the picture
aside, 1t 1s easy to see that the amount, removed
from the matrix, Q, 1s

perfect sink

1
DBL, thickness = A Q=c*h- 2Csh (8.22)
9O _(ex Lo ) _pSs (8.23)

h can be solved from the inner equality applying the initial condition /#(=0) = O:



[ pex " (8.24)
c*—(1/2)c,

Inserting eq. (8.24) into (8.22) the result is obtained as
0=[Dc,(2¢*—c, )] (8.25)

In the case c* » ¢, eq. (8.25) 1s simplified into the form of
O ~[2Dc*ct]'? (8.26)

Diffusion controlled dissolution is, again, characterized by ¢'? dependence that
provides a diagnostic criterion. In a general form, Q = k" where k is some constant.
In cylindrigal geometry the exponent » = 0.45 and in spherical geometry 0.43*,
Problem is actually more complex than presented here because of swelling of the
matrix in water. In those cases the analysis above does not apply (non-Fickian
diffusion), and other methods are needed.

*P.L. Ritger, N.A. Peppas, J.Contr.Rel. 5 (1987) 23-36.



Diffusion is rapid on the microscale

Einstein derived the distance / that a particle travels with Brownian motion in time #:

2

lz\/a = tzl—
D

Taking D = 107% cm?/s, the plot below can be drawn.

As can be seen in plot, travelling 1 um
takes only 0.01 s. This 1s important for
the intracellular traffic that could not be
diffusion controlled. If cells were, say, 1
mm across, the transport of nutrients or
metabolites would take ~10.000 s,
making the cell metabolism hopelessly

slow; perhaps life would not be possible.
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Fluorescence Recovery after Photo Bleaching (FRAP)

FRAP is a quick method the determination of the mobility of relatively large
molecules. The molecules need to be fluorescent or fluorescence-labeled.

. Top View Side View
A: Sample Wlth d ﬂUOI’GSCGﬂt molecule, ~ ],LM (molecular detail, not to scale)

B: The fluorescent molecule .is destroyed from a é?%?é’%‘é&’%%%’%%ﬁ%ﬁm s
small area (¢ ~ 10 um) with a powerful laser

C: Fluorescence recovers due to diffusion

D: In a 1deal case phase A is recovered
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The shape of the phase C curve can be calculated
from Fick’s 2" law (2D equation):
2

[ =ae [I,(b)+1,(b)] b= 5 (8.30)
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I =normalized fluorescence intensity € [0,1]

I, and I, = modified Bessel functions of the zeroth
and first order, respectively

r = the radius of the destroyed area
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Intensity

Fits of FRAP data, measured in a hydrogel

(hydroxypropyl methylcellulose)
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Observations

e D&~ 1070 cm?/s (?)
« The diffusion coefficient of BSA > Peptide (?)

kgT N = viscosity

But! Stokes- Einstein equation: D =

61Ny r = molecule radius

nel = 4000 cP = 4000-n™Y — Del = 1/4000-D¥ = 10710 cm?/s
MW of peptide ~1200 and MW of BSA ~ 66400

peptide

Conclusion: hydrogel does not obey Stokes-Einstein equation, because it is a
net-like structure.



Goldman constant field approximation

In biophysics Goldman constant field approximation V¢ = A¢// 1s usually applied.
A¢ 1s the potential drop across a membrane and /4 its thickness. The approximation 1s
quite good for thin membranes with low charge density. With this approximation
Nernst-Planck equation can be integrated. Denoting A = ¢P — p*

._ D zZfAd g e ay_pp P e Bazad
j== erA¢_1(c e’ —¢ )—EF-z(c —cPe?™?) (8.31)
Eq. (8.32) defines the iontophoretic 10
enhancement factor:
8
_zfAg /
EF = e (8.32) 6 7
) /
As shown aside, zA¢ = —250 mV already 4
enhances the flux ten-fold. This is why /
iontophoretic delivery of drugs has received a ? 4
lot of attention. 9_=,/



Electroosmosis is observed in several types of biomembranes. Therefore, membranes
must include small water-filled capillaries (see picture below). The passive transport
of molecules across a membrane can be divided into aqueous and lipid contributions:

Jp=J¥ + (8.33)

As the conductivity of the lipid matrix is ~0, o= J,,

iontophoresis enhances only the aqueous route: )
Je=JvEF+J0  (8.34) =’ r

Measured 1ontophoretic enhancement factor EF 1S -

the ratio of the 1ontophoretic and passive fluxes: J’

EF, = J/J; (8.35)

Inserting eqs. (8.33) and (8.34) into eq. (8.35), the fraction of the aqueous route x is:

o J%  _ER, -l

JW 4 o EF —1 (836)

Because x is very low for lipophilic molecules their iontophoretic enhancement is not
very reasonable. Eq. (8.36) thus provides a diagnostic criterion for the feasibility of
iontophoretic delivery of a drug.



Iontophoretic lag time

It 1s possible to calculate the lag time in an 1ontophoretic experiment by applying
Goldman approximation in the time-dependent Nernst-Planck equation:

%:D(Vzc+szc-V(|))zD(Vzc+szcA(|)/h) (8.37)

The solution 1s rather cumbersome (see textbook), and we content to give the ratio of
the iontophoretic and the diffusion lag time (8.38) (y = zfAd):

1

@_6ycoth(y/2)—2
2(0) = y2 0.9}
(8.38)

L 6(y-2)

5 )
y

y>6

©(zfA¢)/7(0)

Iontophoresis also reduces the lag time.




Some more transport

Let’s consider steady-state transport as depicted below:

Membrane has the thickness 7,
and 1t is flanked by two diffusion
boundary layers (DBL) of the
thickness 0. Partition coefficient
between the solutions and the
membrane is P.

D{( PD D
J=—\lc" —c|)J=—\c;—¢r)=—c (8.39)
2l -a)- 2@ —e)= P
Let’s eliminate ¢, as the function of ¢, from the latter equality:
-1
) = cl(l +£_ﬁj (8.40)
PD o

Inserting this to the former eqality, ¢, is obtained as the function of ¢?:



¢ =c’ (1+D_hj/(2+D_hj (8.41)
PD S PD

1
J:cb(28+ ”_j _ K. (8.42)

where K, 1s permeability of the entire system. Interpreting D/o as the permeability of
the DBLs and the membrane permeability as PD / h, it is obtained that
1 1 1 1
_|_

% =— ot (8.43)
p Kp Kp Kp

This result can be generalized for an arbitrary number of sequential transport steps.
[f a single step has the permeability K, ; the total permeability K, 1s

(K, )" =Y (K, )" (8.44)

[
Permeabilities of parallel processes are simply summed.



Mediated transport

Most of transport across cell membranes takes place with other mechanisms than
passive diffusion. Passing of small 1ons 1s practically impossible. Parsegian® have
calculated that the electrostatic energy needed to transfer an 1on from water into the
center of a membrane (thickness = /) 1s

2 2 w
Wy =— il L1 + 2 In 28 (8.45)
8nega|lel &%) &% (&) +¢f

Lipids have €.~ 2, hence taking @ = 0.1 nm, z> = 1 and 4 = 5 nm, the energy is ca.
1.58 eV = 153 kJ/mol. Eq. (8.45) 1s the Born model corrected for with a term taking
into account the limited thickness of a membrane. Yet, 1.58 eV still 1s so high an
activation energy that transfer 1s not possible.

The fact that 1ons are, however, transferring means that membranes have aqueous
pathways and other mechanisms with which ions move passively or by utilizing ATP
energy. According to Parsegianin the energy barrier of an aqueous pore 1s 118.6/b
kJ/mol where b is the pore diammeter (A). Taking b = 5 A, required energy is only
ca. 24 kJ/mol.

*A. Parsegian, Nature, 221 (1969) 844-6.
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A well-known example of a protein forming an ion channel is gramicidin-A (gA)
that allows the transport of Natand K* but not Ca?* due to its larger size. Na*/K*
ATPase 1s a famous example of active transport with ATP energy.



Helical gA channel is composed of
two protein units.

Two gramicidin-A molecules are needed to form
an 1on channel. The diameter of the channel 1s
ca. 4 A and length ca. 50 A. Although transport
takes place via passive diffusion, the narrow
pore hinders diffusion which is basically
Brownian movement. Additionally, transport 1s
affected by the interaction of the charges of the
ion and pore wall. Neglecting even the charges,
the 1onic concentration inside the pore is*

¢ =c;(1-8) (8.46)

& = alr, is the ratio of the ionic and pore radii.
The effective diffusion coefficient of a non-
charged species in a non-charged channel 1s
obtained via Renkin correction* if £ < 0.4:

*K.A. Johnson, et al., Langmuir, 5 (1989) 932-8.



D;ﬁ = (1-&)°(1-2.1044& +2.0893 — 0.948E5 ) (8.47)
Ionic radius in an aqueous solution is a bit problematic quantity because an ions drags
along its hydration water. This i1s why the mobility of, e.g. Li" lower than that of Na*
although its crystallographic radius is smaller. The 1onic radius of K* calculated from
its mobility is 1.33 A, making & = 0.665 > 0.4, beyound the applicability of Renkin
correction. The same applies for Na™ and CI™. If £= 0.4, D, /D = 0.1, which proves
that the channel is slowing transport down significantly.

1
Although the rate of transport through gA-
channel cannot be calculated accurately, it 0.8 \
is clear that it 1s an order of magnitude o 06 N
lower than in free solution. In terms of the s | \
increase of the activation energy D, f/D = S04 <
0.1 corresponds to ca. 5.7 kJ/mol (at 298 \
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Fig. 1. The movement of drug molecules in a volume V. The drug 0 L i '* i

N . N L 0 0.05 0.1 0.15 0.2 0.25
molecules are a jump length A away from the membrane surface
15 or 1/ (1/A)

with occasional holes. 4 1s the surface area of the membrane and
a, the area of a hole.

If pores are sparse, like 1n the eye membranes, transport is no more driven by the
concentration gradient (diffusion), but a molecule is passing through only when it hits
the mouth of a pore. This process 1s more like effusion than diffusion. The rate of
effusion is proportional to the collision frequency of molecules with the membrane
and hence to i1ts concentration, not its concentration gradient. A scheme of effusion in
solution (left) and the flux through rabbit conjunctiva as the function of the inverse of
the hydrodynamic (A) and Stokes radii (A) of polyethylene glycols (right). Pore size in
the membrane 8 — 14 A. (K.M. Himiildinen et al. J. Contr. Rel. 49 (1997) 97-104)



