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This lecture is intended mainly 
for those who are not taking a 
cryptography course yet



CRYPTOGRAPHIC HASH FUNCTION AND HMAC
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$ git log

commit 9036c57ab9275f0e42f63a391ed68044f8c590bc

Author: raghunfs

Date:   Fri Jul 1 07:44:23 2016 +0000

Handling error codes

commit 4d057be278eedce4e2c0682604d5304c7d18fb5a

Author: ms88 <ms88>

Date:   Tue Jun 28 16:27:27 2016 +0300

fix fast reconnect

Cryptographic hash 
= message digest 
= fingerprint



Cryptographic hash function 

– The algorithm is public, no keys or other secrets needed

– Examples: SHA-256, SHA-512, SHA3-256
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input: any byte string

output: short n-bit string

Public pseudorandom 
function

334d016f 755cd6dc 

58c53a86 e183882f 

8ec14f52 fb053458 

87c8a5ed d42c87b7

“Hello!”

SHA-256

256 bits

= 32 bytes

echo -n "Hello!" | openssl sha256



Cryptographic hash: security requirements

▪ One-way = pre-image resistant: given only output, impossible 
to compute input, except by guessing

▪ Second-pre-image resistant: given one input, impossible to find 
a second input that produces the same output

▪ Collision-resistant: impossible to find any two inputs with the 
same output

– Old hash functions with broken collision resistance: MD5, SHA-1
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Hash function implementation 

▪ Ideal hash function is a random, public function chosen from 
the set of all byte strings (of any length) to bit-strings of fixed-
length (e.g. n=256 bits) 
– Also called “random oracle”

– In practice, impossible to store and share such infinite-size functions 

▪ Practical hash function is pseudorandom: deterministic 
algorithm, but output looks random
– One-way, collision resistant

– Efficient to compute for large inputs

– Typically algorithm based on And, Xor, Rot, Add (mod 232) operations
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Hash function applications

▪ Integrity check on stored files, software downloads, or any 
data – compute hash and compare with known correct value

▪ Unique, “self-certifying” identifier for any object, e.g. file, 
public key, Bitcoin block

▪ Key derivation and password storage, e.g. PBKDF2

▪ Signing: sign the hash of the message with RSA

▪ Message authentication with HMAC and a shared secret key
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Hash collisions
▪ Research has found collisions in several standard hash functions

– MD5, SHA-1

– Applications should be designed for crypto agility i.e. easy upgrading of functions

▪ Where and why is collision resistance needed? 
(or is preimage and second-preimage resistance sufficient?)

– File integrity check?

– Software integrity check?

– Digital signature on a contract?

– MAC for end-to-end authentication?

– Password storage?

– Key derivation in Wi-Fi?

– Bitcoin?

▪ Not all applications need collision resistance, but many do in subtle ways
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Message authentication code (MAC)

▪ Secret key is needed to create and to check the MAC
▪ HMAC is a standard way to construct a MAC from a 

hash function, e.g. HMAC-SHA256
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input: any byte string

output: short n-bit string

Secret
key K

MAC

“EZ87k7QC7m

9c8t23pG37s

rrpU9y8KZHP

nmmHG427DdU

6G632” 3b8a41f7 b44336ae 

ca058ae6 94a06be1 

43f6d366 54d79abd 

a5300240 47ea9746

“Hello!”

HMAC-SHA256

echo -n "Hello!" | openssl sha256 -hmac "EZ87k7QC7m9c8t23pG37srrpU9y8KZHPnmmHG427DdU6G632"



Message authentication with MAC

▪ Message authentication and integrity protection 
▪ Endpoints share the secret key K (thus, it is symmetric cryptography)
▪ MAC is appended to the original message M
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MAC Compare

Authentic

Message M
Message M

Key K
Insecure

Medium 

(network

or storage)

Sender Receiver

M, MACK(M)

MAC Ok?

Key K

|| split

MACK(M)M

M

MACK(M)



HMAC details

▪ HMAC is commonly used in standards:
– Way of deriving MAC from a cryptographic hash function h 

HMACK(M) = h((K ⊕ opad) | h((K ⊕ ipad) ‖ M))

– Hash function h is instantiated with SHA-1, MD5 etc. to produce 
HMAC-SHA-1, HMAC-MD5,…

–⊕ is XOR; | is concatenation of byte strings

– ipad and opad are bit strings for padding the key to fixed length

– Details: [RFC 2104][Bellare, Canetti, Krawczyk Crypto’96] *

▪ HMAC is theoretically stronger than simpler constructions, e.g. 
h(M | K)
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http://www.research.ibm.com/security/keyed-md5.html


Hash and HMAC commands
# Compute the hash of a file

echo "Attack at sunrise!" > m.txt

sha256sum m.txt

openssl dgst -sha256 m.txt

# Append a LF to the file and see if the hash changes

echo >> m.txt

openssl dgst -sha256 m.txt

# Compute HMAC using hash of “abc123” (bad!) as the key

openssl dgst -sha256 -hmac abc123 m.txt

# Change the key slightly and see if the hash changes

openssl dgst -sha256 -hmac abc132 m.txt
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SYMMETRIC ENCRYPTION
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Alice Bob

Confidential
message
(plaintext):
“Attack at 
sunrise...”

Secret key K = 
EF74EA0A3B1E27BF

6EE758DA39BA1B5D

A0BF2A0E7F54AF4F

4940B1529DFF6ECD

Secret key K = 
EF74EA0A3B1E27BF

6EE758DA39BA1B5D

A0BF2A0E7F54AF4F

4940B1529DFF6ECD

Confidential
message
(plaintext):
“Attack at 
sunrise...”

Passphrase:
“Tw0+legs+better!”

Passphrase:
“Tw0+legs+better!”

hash hash

Encrypt
+ MAC

Check MAC
+ Decrypt

Encrypted 
message
(ciphertext):
536153746c4655f5

f4528b78568e799e

88db8e1f2c9b0572

47550c68eeb96f71

801b527cf1a94c21

a7b7052e6daa191e

...

Insecure network 
or storage
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▪ Message encryption based on symmetric cryptography, 
i.e. a shared secret key

Symmetric encryption



Symmetric encryption

▪ Message encryption based on symmetric cryptography, 
i.e. a shared secret key
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Encryption

E

Decryption

D

Ciphertext

EK(M)Plaintext

message M

Plaintext 

message M

Key K

Insecure

networkSender Receiver

Key K



Symmetric encryption

▪ Kerckhoff’s principle: the encryption and decryption algorithms 
are public algorithms; only the key is secret

▪ Encrypted message content looks like random bits – unless you 
know the key

▪ The key must be shared over a secure out-of-band channel

– a 128…256-bit random number

– sometimes computed from a passphrase with a cryptographic hash 
function (should use PBKDF2 to make cracking slower)
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Alice Bob

Confidential
message
(plaintext):
“Attack at 
sunrise...”

Secret key K = 
EF74EA0A3B1E27BF

6EE758DA39BA1B5D

A0BF2A0E7F54AF4F

4940B1529DFF6ECD

Secret key K = 
EF74EA0A3B1E27BF

6EE758DA39BA1B5D

A0BF2A0E7F54AF4F

4940B1529DFF6ECD

Confidential
message
(plaintext):
“Attack at 
sunrise...”

Passphrase:
“Tw0+legs+better!”

Passphrase:
“Tw0+legs+better!”

hash hash

Encrypt
+ MAC

Check MAC
+ Decrypt

Encrypted 
message
(ciphertext):
536153746c4655f5

f4528b78568e799e

88db8e1f2c9b0572

47550c68eeb96f71

801b527cf1a94c21

a7b7052e6daa191e

...

Insecure network 
or storage
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▪ Message encryption based on symmetric cryptography, 
i.e. a shared secret key

Symmetric encryption



Block cipher and cipher mode

▪ Block cipher is the basic construction block for encryption

– Encryption of a fixed-length block, typically 128 bits

– Examples: AES, 3DES

▪ Cipher mode uses the block cipher as building block for 
encrypting messages of any length

– Padding of the message to full blocks

– Initialization vector, so that the same plaintext always produces a 
different ciphertext (called salt in OpenSSL commands)

– Example: cipher-block chaining (CBC)
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Symmetric encryption with OpenSSL
# Create a plaintext message (length multiple of 128 bits).

echo "Secret meeting in the usual place at 10 am xxxx" > m.txt

hexdump -C m.txt

# Encrypt with block cipher.

openssl enc -aes-256-cbc -nosalt -nopad -k abc123 -in m.txt -out m.enc

cat m.enc

hexdump -C m.enc

# Note how random the ciphertext looks. Then, decrypt and compare.

openssl enc -d -aes-256-cbc -nosalt -nopad -k abc123 -in m.enc -out r.txt 

hexdump -C r.txt

# Try also decrypting with a different key.

# Edit the ciphertext slightly and decrypt again. The plaintext may change only partly.

# Normally, encryption uses salt (or IV) and padding: The salt is random, not secret, and stored with the ciphertext. The 

message is padded to full 128-bit blocks.

echo "Secret meeting in the usual place at 10 am." > m.txt

hexdump -C m.txt

openssl enc -aes-256-cbc -k abc123 -in m.txt -out m.enc

hexdump -C m.enc

openssl enc -d -aes-256-cbc -k abc123 -in m.enc -out r.txt 

hexdump -C r.txt

# Edit one byte of the ciphertext and decrypt again. 

# OpenSSL computes the key (and IV) from with PBKDF2 from the passphrase and salt.

# If we encrypt the same message again, thanks to the salt, the ciphertext looks different.

hexdump -C m.enc

openssl enc -aes-256-cbc -k abc123 -in m.txt -out m.enc

hexdump -C m.enc

# Encrypted files are binary. To send over email or http, they are usually base64 encoded.

openssl enc -aes-256-cbc -base64 -k abc123 -in m.txt -out m.enc

cat m.enc 20



Encryption and message integrity

▪ Encryption alone protects secrets, not integrity
– Attacker can usually modify the secret message

– Receiver of the modified secret message usually leaks some 
information, e.g. error in message

➔ Always combine encryption with integrity protection

– Encrypt-then-MAC: encrypt with block cipher e.g. in CBC mode, then 
compute and append a MAC 

– Authenticated encryption modes do encryption and integrity in one 
pass, e.g. AES-GCM
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!

If in doubt, use Authenticated encryption with associated data (AEAD)

!



SYMMETRIC KEY AND HASH LENGTHS
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Key length (1)

▪ Shared key of ≥ 128 bits is strong, < 80 bits is weak

– To resist brute-force guessing, the secret key must be random with 
(almost) even probability distribution

– Quantum cryptoanalysis may require keys of 256 bits in the future

– Q: Why is a secret key of 1000 bits on 1 MB not better than 256?

23

Number of atoms in the earth is less than 1050 ≈ 2166.
Age of the universe 4.3∙1017 ≈  259 seconds ≈  289 nanoseconds.
2166 ∙ 289 ≤ 2256 . 
→ 256-bit keys definitely cannot be brute-forced



Key length (2)

▪ Brute-force attacks are easy to parallelize; thus, cost should never 
be measured in time but in money (EUR, USD, CPU days)
– 1 CPU day = $1 on high-end PC, less on cloud infrastructure 

– Q: If NSA has a billion-dollar computer and can break DES encryption keys 
in 1 second, how much does it cost for you to break them on Amazon EC2?

▪ Strength of a key derived from passphrase? 
K = SHA-256(“verYsekReTT123pasSfraZe”)

– Dictionary attack to guess human-invented passphrases is possible, while 
brute-forcing a random 128 or 256-bit key is not
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Hash length and birthday paradox

▪ How long hash values? Answer: 256..512 bits

▪ One-wayness and second preimage resistance require has 
length of 128..256 bits. Why? 

– Attacker tries different inputs to match a known hash value. 
Impossible to perform 2128 hash computations

▪ Collision resistance requires almost twice that length. Why?

▪ Birthday attack: store computed hash values and find a match 
between any two of them
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Hash length and birthday paradox (2)

▪ Rule of thumb: When randomly sampling a set of M values, 
collisions appear after M1/2 (square root of M) samples 

(More precisely: for large M, the collision probability is 50% at (2 · ln 2 · M)1/2 ≈ 1.18 · M1/2 samples.)

▪ Same rule in different words:
– When randomly sampling a set of 2N values, collisions appear after 2N/2 samples

– If attacker can compute and store 2N hash values, it can find collisions for hash 
values of length 2·N bits  

– If an N-bit hash value is safe against brute-force reversing, nearly 2·N bits are 
needed to avoid collisions with birthday attack (“nearly” because brute-force 
reversing requires only CPU but the birthday attack requires also storage)
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HOW DOES ENCRYPTION WORK?
– BLOCK CIPHERS

27

Please read this section 
for a rough idea of how a 
block cipher works. More 
details in a cryptography 
course

Extra 
material



Ideal encryption: random permutation

▪ Messages = bit strings with some maximum length L
▪ Ideal encryption would be a random 1-to-1 function i.e. permutation of the set of all 

possible messages to itself
▪ Decryption is the reverse function
▪ Like an old-fashioned military code book, but much larger
▪ Impossible to store and share: table with 2L rows
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Secret random 
permutation

All possible plaintexts (2L)

All possible ciphertexts (2L)

Extra 
material



Real encryption: pseudorandom permutation

▪ Block cipher: string length fixed usually to L=128 bits
– Pseudorandom permutation that depends on a secret key of  128..256 bits
– Number of different permutations is 2256, large but far less than (2L)!

▪ Pseudorandom = indistinguishable from random unless you know the algorithm and key
▪ Kerckhoff’s principle: public algorithm, secret key

29

Pseudorandom 
permutation

2128 plaintexts

2128 ciphertexts

Secret
key K
e.g. 256 bits

Block cipher with 
block length 128-bits

Extra 
material



Substitution-permutation network

▪ One way to implement a key-
dependent pseudorandom 
permutation

▪ Substitution-permutation network:
– S-box = substitution is a small 

(random) 1-to-1 function for a small 
block, e.g. 24…216 values

– P-box = bit-permutation mixes bits 
between the small blocks

– Repeat for many rounds, 
e.g. 8…100

– Mix key bits with data in each round
– Decryption is the reverse

▪ Cryptanalysis tries to detect 
minute differences between this 
and a true random permutation
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[Wikimedia Commons]

Extra 
material

http://upload.wikimedia.org/wikipedia/commons/c/cd/SubstitutionPermutationNetwork2.png


Cipher design
▪ It is not difficult to make strong block cipher: long key, large S-boxes, many 

many rounds
▪ Good bock ciphers are not only strong

– fast to compute in software
– require little memory
– cheap to implement in hardware
– optimized for both throughput and latency
– use a short (e.g. 128-bit) key, which is expanded to the round keys, but still allow 

fast key changes
– no unexplained features that could be a backdoor
– implementation is resistant to side-channel attacks
– etc.

▪ The difficulty is in finding a balance between performance and security

31
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AES
▪ Advance Encryption Standard (AES)

– Standardized by NIST in 2001
– 128-bit block cipher
– 128, 192 or 256-bit key
– 10, 12 or 14 rounds

▪ AES round:
– SubBytes: 8-byte S-box, not really random, based on finite-field arithmetic, 

multiplication in GF(28)
– ShiftRows and MixColumn: reversible linear combination of S-box outputs 

(mixing effect similar to P-box)
– AddRoundKey: XOR bits from expanded key with data

▪ Key schedule: expands key to round keys 

32
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Cipher mode example
▪ Block-cipher mode, e.g. cipher-block chaining (CBC), is used for encrypting longer messages

▪ Initialization vector (IV) makes ciphertexts different even if the message repeats. It may be a 
non-repeating counter or a random number that is also sent to the receiver. IV is not secret

▪ The message is padded to fill full blocks of the block cipher
33

[Wikimedia Commons]

Extra 
material

http://upload.wikimedia.org/wikipedia/commons/d/d3/Cbc_encryption.png
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Common ciphers and modes
▪ Block ciphers:

– DES — old standard, 56-bit keys now too short, 64-bit block
– 3DES in EDE mode: DESK3(DES-1K2(DESK1(M))), 3x56 key bits
– AES — at least 128-bit keys, 128-bit block

▪ Block-cipher modes
– E.g. electronic code book (ECB), cipher-block chaining (CBC)

▪ Stream ciphers:
– XOR plaintext and a keyed pseudorandom bit stream
– RC4: simple and fast software implementation

▪ Most encryption modes are malleable: attacker can make controlled 
modifications to the plaintext
– E.g. consider CBC mode or stream cipher

▪ Authenticated encryption modes combine encryption and integrity check

Extra 
material



ASYMMETRIC CRYPTOGRAPHY:
DIGITAL SIGNATURE
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Digital signature

▪ Message authentication and integrity protection
▪ Asymmetric i.e. public-key cryptography
▪ Key pair with public and private parts
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Alice Bob

Message:
“Attack at 
sunrise...”

Alice s private 
key SK

Alice s public 
key PK

Message:
“Attack at 
sunrise...”

Sign Verify

Message:
“Attack at 
sunrise...”

+ Signature

Insecure network 
or storage

[Daemon graphics: www.freebsd.org]



RSA signature with GPG
# Generate a key pair

gpg --gen-key 

# Note the key fingerprint.

# Take a look at the keys

ls ~/.gnupg/

gpg --fingerprint

gpg --export -a "Tuomas Aura" > tuomas.key

# Sign a message and check the signature

echo "Attack at sunrise!" > m.txt

hexdump -C m.txt

gpg --sign -v -u "Tuomas Aura" m.txt

hexdump -C m.txt.gpg

gpg < m.txt.gpg

# Note that the message is not encrypted

hexdump -C m.txt.gpg

# Encoding for inclusion in email etc.

gpg --sign --armor -v -u "Tuomas Aura" m.txt

less m.txt.asc

gpg < m.txt.asc

# More readable but fragile message with --clearsign

gpg --clearsign -v -u "Tuomas Aura" m.txt

less m.txt.asc
37



Digital signature

▪ Message authentication and integrity protection with public-key crypto
– Verifier has a public key PK ; signer has the private key SK

– Messages are first hashed and then signed

– Examples: DSS, RSA + SHA-256, ECDSA
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Hash

Original

Message M

Received

Message M’

Private 

Key PK
-1

Insecure

networkSender A Receiver

Hash

Sign Verify

M, SignA(M)

Public 

Key PK

Ok?

h(M) h(M)

|| split

SignA(M)

M

SignA(M)

SK



Digital signature issues
▪ Always follow strictly the standard when implementing signatures! 

There are many subtle points that can go wrong
– Examples: DSA, RSA [PKCS#1]

▪ Signing is not encryption with public key!
– Common misconception because the RSA private key can be used both to 

sign and decrypt

▪ Digital signature “with appendix”
– Hash the message, sign the hash
– The signature is usually appended to the actual message but can also be 

stored separately

▪ Question: what consequences if you use a broken hash function 
with known collisions (e.g. SHA-1) for signing? 
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PUBLIC-KEY ENCRYPTION
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Public-key encryption

▪ Asymmetric encryption: public key and private key
▪ Protects secrets, not integrity

41

Alice Bob

Confidential
message
(plaintext):
“Attack at 
sunrise...”

Bob s public 
key PK

Bob s private 
key SK

Confidential
message
(plaintext):
“Attack at 
sunrise...”

Encrypt Decrypt

Encrypted 
message
(ciphertext)

Insecure network 
or storage

[Daemon graphics: www.freebsd.org]



RSA encryption with GPG
# Sign and encrypt a message

gpg --encrypt --sign -u "Tuomas Aura" -r "Test User" m.txt

hexdump -C m.txt.gpg

# Open a received message

gpg confidential.asc

# Here is how Test User signed and encrypted it:

gpg --encrypt --sign --armor -u "Test User" -r "Tuomas Aura" --output 

confidential.asc letter.txt
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Public-key encryption

▪ Message encryption based on asymmetric cryptography
– Key pair: public key and private key

▪ Protects secrets, not integrity

43

Insecure

network

EB(M)Encrypt 

(asymm.)

Bob’s

public 

Key PK

Decrypt 

(asymm.)

Bob’s

private 

Key PK
-1

Message 

M

Message 

M

Sender Receiver Bob

SK



Hybrid encryption

▪ Symmetric encryption is fast; asymmetric is convenient
▪ Hybrid encryption = symmetric encryption with random session key +   

asymmetric encryption of the session key
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Insecure

network

ESK(M), EB(SK)
Encrypt 

(symm.)

Encrypt 

(asymm.)

Bob’s

public 

Key PK

EB(SK)

Fresh 

random 

session 

key SK

Decrypt 

(symm.)

Decrypt 

(asymm.)

Bob’s

private 

Key PK
-1

SKEB(SK)

|| split
Message 

M

Message 

M

Sender Alice Receiver Bob



Key distribution

▪ The advantage of public-key cryptography is easier key distribution

▪ Shared secret keys, symmetric cryptography: 

– O(N2) pairwise keys for N participants → does not scale

– Keys must be kept secret → hard to distribute safely

▪ Public-key protocols, asymmetric cryptography:

– N key pairs needed, one for each participant (or 2∙N if different key pairs 
for encryption and signature)

– Public keys are public → can be posted on the Internet

45

!

But… both shared and public keys must be authentic
How does Alice know she shares KAB with Bob, not with Eve?
How does Alice know PKB is Bob’s public key, not Eve’s?



RSA encryption details
▪ RSA encryption, published 1978

– Based on modulo arithmetic with very large integers

▪ Simplified description of the algorithm:
– Public key (e,n) - public exponent and modulus
– Private key (d,n) - secret exponent and public modulus
– Encryption   C = Me mod n
– Decryption Cd mod n  =  (Me)d mod n  = M
– n is commonly 1024 or 2048 bits long, d will also be long, 

e can be short (17 or 216+1); M can be at most as long as n

▪ Why does it work? Based on number theory
– Euler’s totient function ϕ(n), number of integers 1...n that are relatively prime with n

– Euler’s theorem: xϕ(n) ≡ 1 (mod n), and thus xkϕ(n)+1 ≡ X (mod n)
– We need to have e and d so that ed = kϕ(n)+1 for some k
– Key pair generation:

1. Choose n as product of two large secret prime numbers n=pq; then, ϕ(n)=(p-1)(q-1) 
2. Then pick a small e (e=17 or e=216+1), solve d with the extended Euclidian algorithm
3. Forget p,q,ϕ(n)

– RSA security assumption: difficult to solve d when you only know (e,n) 
(this is assumed to be about as difficult as factoring n without being told p and q)

▪ For details and implementation guidelines, see PKCS#1
Never implement RSA without following such a standard!

46

Goal here is to give a quick 
feel of how RSA works, not 
to understand it all

Extra 
material



Example: RSA public key
30 82 01 0a 02 82 01 01 00 c7 3a 73 01 f3 2e a8 
72 25 3c 6b a4 14 54 24 e7 e0 ab 47 2e 9f 38 a7 
12 77 dc cf 62 bc de 47 a2 55 34 a6 47 9e d6 13 
90 3d 9f 72 aa 42 32 45 c4 4a b7 88 cc 7b c5 a6 
18 4f d5 86 a4 9e fb 42 5f 37 47 53 e0 ff 10 2e 
cd ed 4a 4c a8 45 d9 88 09 cd 2f 5f 7d b6 9b 40 
41 4f f7 a9 9b 7a 95 d4 a4 03 60 3e 3f 0b ff 83 
d5 a9 3b 67 11 59 d7 8c aa be 61 91 d0 9d 5d 96 
4f 75 39 fb e7 59 ca ca a0 63 47 bd b1 7c 32 27 
1b 04 35 5a 5e e3 29 1a 06 98 2d 5a 47 d4 05 b3 
22 3f fd 43 38 51 20 01 ad 1c 9e 4e ad 39 f4 d1 
ae 90 7d f9 e0 81 89 d2 b7 ba cd 68 2e 62 b3 d7 
ad 00 4c 52 24 29 97 37 8c 6e 36 31 bd 9d 3d 1d 
4c 4c cc b0 b0 94 86 06 9c 13 02 27 c5 7c 1e 2e 
f6 e3 f6 13 37 d9 fb 23 9d e7 c7 d5 ce 94 54 7d 
ef ef df 7b 7b 79 2e f9 75 37 8a c1 ef a5 c1 2a 
01 e0 05 36 26 6a 98 bb d3 02 03 01 00 01

47

2048-bit 
modulus

public exponent
(216+1)

ASN.1
type tags

Extra 
material
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Key length in asymmetric crypto

▪ In RSA, secure key lengths are ≥ 2048 bits

▪ Elliptic-curve cryptography (ECC): 
public-key crypto with much shorter keys and efficient 
computation, ≥ 256 bits

– Used for most new applications and small devices 
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Formal security definitions
▪ Cryptographic security definitions for asymmetric encryption
▪ Semantic security (security against passive attackers)

– Computational security against a ciphertext-only attack

▪ Ciphertext indistinguishability (active attackers)
– IND-CPA — attacker submits two plaintexts, receives one of them encrypted, and is challenged to 

guess which it is ⇔ semantic security
– IND-CCA — indistinguishability under chosen ciphertext attack i.e. attacker has access to a 

decryption oracle before the challenge
– IND-CCA2 — indistinguishability under adaptive chosen ciphertext attack i.e. attacker has access 

to a decryption oracle before and after the challenge (except to decrypt the challenge)

▪ Non-malleability
– Attacker cannot modify ciphertext to produce a related plaintext
– NM-CPA ⇒ IND-CPA;   NM-CCA2 ⇔ IND-CCA2

▪ It is non-trivial to choose the right kind of encryption for your application; 
ask a cryptographer!
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DIFFIE-HELLMAN KEY EXCHANGE
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Diffie-Hellman key exchange
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Alice Bob
Alice generates 

new DH pair:
private key x
public key gx

Compute 
shared secret 

gx

Insecure network 

Bob generates 
new DH pair:
private key y
public key gy

Compute 
shared secret 

gy

x y

K = h(gxy) K = h(gxy)(gx)y  =  (gy)x   =  gxy

[Daemon graphics: www.freebsd.org]



Diffie-Hellman key exchange

▪ Both sides compute the same session key

▪ Passive attacker listens to communication but cannot compute 
the key
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KAB = g
xy

DH Public Key

DHA = g
x

Insecure

networkA B
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Diffie-Hellman key exchange

▪ Creating a shared key based on commutative operation, such 
as exponentiation modulo p:

(gx mod p)y mod p   =   (gy mod p)x mod p

▪ Diffie-Hellman assumption: given g, p, gx and gy, it is infeasible 
to solve gxy

– Security depends on the difficulty of the discrete logarithm problem, 
i.e. solving  x from (gx mod p) when p is large

▪ Elliptic curve Diffie-Hellman uses commutative operations in a 
different field
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Impersonation attack
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Authenticated Diffie-Hellman

▪ Diffie-Hellman key exchange is vulnerable to impersonation 
attacks: Shared secret key, ok, but with whom?
Without authentication, it could be anyone.

▪ Unauthenticated DH is secure against passive attackers who 
only listen, but not against active attackers who also lie and 
pretend

▪ Solution: authenticate the key-exchange messages

– Sign with public-key signatures

– Compare manually between endpoints
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SUMMARY
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How strong is cryptography?
▪ Cryptology viewpoint: requires continuous analysis and improvement

▪ Engineering viewpoint: unbreakable for years if you use strong standard 
algorithms and 128..256-bit symmetric keys
– May need to upgrade algorithms every 10 years or so 

– Avoid using algorithms in creative ways that are not their original purpose

▪ Weak crypto is worse than no crypto, use strong algorithms and keys

▪ Which algorithms can be trusted?
– Block ciphers have endured relatively well, hash functions require upgrading

– Quantum computers might break public-key cryptography

▪ Almost no absolute proofs of security exist!
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Security vs. cryptography

▪ Cryptography: mathematical methods for encryption and 
authentication

▪ In this course, we use cryptography as one building block for 
security mechanisms

▪ Remember that cryptography alone does not solve all security 
problems:

“Whoever thinks his problem can be solved using cryptography, 
doesn’t understand the problem and doesn’t understand 
cryptography.” 
— attributed to Roger Needham and Butler Lampson
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Message size overhead
▪ Authentication increases the message size:

– MAC or signature is  appended to the message
– MAC takes 16–32 bytes
– 4096-bit RSA signature is 512 bytes
– Elliptic-curve signatures (ECDSA) can be 64..128 bytes

▪ Encryption increases the message size:
– In block ciphers, messages are padded to nearest full block
– IV for block cipher takes 8–16 bytes
– 1024-bit RSA encryption of the session key is 128 bytes

▪ Overhead of headers, type tags etc.
▪ Small size increase ok for most applications but can cause problems in some:

– Signing individual IP packets (1500-byte limit on packet size)
– Authenticating small wireless frames
– Encrypting file system sector by sector, but cannot increase sector size by a few bytes to 

fit in the IV or MAC
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List of key concepts

▪ Cryptographic hash function, pseudorandom, preimage resistance, 
second-preimage resistance, collision resistance, birthday attack, 
MAC, HMAC

▪ Symmetric cryptography, shared secret key, key length, encryption, 
decrypting, plaintext, ciphertext, Kerckhoff’s principle, block cipher, 
cipher mode, AES, CBC mode, authenticated encryption, AES-GCM 

▪ Asymmetric or public-key cryptography, kay pair, public key, private 
key, RSA, elliptic-curve cryptography ECC, hybrid encryption, digital 
signature, key distribution, Diffie-Hellman key exchange, ECDH

▪ Message secrecy or confidentiality, integrity, authentication, weak 
and strong cryptography, impersonation
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Notations in protocol specifications
and research papers

▪ Shared key:
K = SK = KAB

▪ Symmetric encryption: 
EncK(M), EK(M), E(K;M), {M}K,  K{M}

▪ Hash function:
h(M), H(M), hash(M), SHA-256(M)

▪ Message authentication code:
MACK(M),  MAC(K;M),  HMACK(M)

▪ Public/private key:  
PK = PKA = KA = K+ = K+

A = e ; SK = PK-1 = PK-1
A = K- = K-

A = d
▪ Public-key encryption: 

EncB(M), EB(M), PK{M}, {M}PK

▪ Signature notations:  
SA(M) = SignA(M) = S(PK-1; M) = PK-

A(M) = {M}PK-1
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Reading material

▪ Stallings: Computer Security Principles and Practice, 4th ed., 
chapters 2,20,21

▪ Ross Anderson: Security Engineering, 2nd ed., chapter 5
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Exercises
▪ Confidentiality, integrity, availability – which can be protected with cryptography?
▪ What kind of cryptography would you use to

– protect files stored on disk
– store client passwords on server disk
– implement secure boot 
– protect email in transit
– publish an electronic book 
– implement an electronic bus ticket
– identify friendly and enemy aircraft (“friend or foe”)
– sign an electronic contract
– transmit satellite TV
– protect software updates
– create a cryptocurrency
– send pseudonymous letters
– timestamp an invention

▪ Which applications require strong collision resistance of hash functions? What attacks have resulted from 
collisions in MD5?

▪ Find out about DES cracking; why is DES vulnerable and how much security would it give today?
▪ What ethical issues are there related to cryptography? Should commercial products use cryptography that is so 

strong that even the police cannot break it?
▪ How are quantum computers expected to affect the security of different encryption and authentication 

algorithms?
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