
Cryptography

Tuomas Aura
CS-C3130 Information security

Aalto University 2023

Outline

▪ Cryptographic hash function and HMAC

▪ Symmetric encryption

▪ Symmetric key and hash lengths

▪ Public-key signature

▪ Public-key encryption

▪ Diffie-Hellman key exchange

▪ Summary (notes about cryptography)

2

This lecture is intended mainly
for those who are not taking a
cryptography course yet

CRYPTOGRAPHIC HASH FUNCTION AND HMAC

3

4

$ git log

commit 9036c57ab9275f0e42f63a391ed68044f8c590bc

Author: raghunfs

Date: Fri Jul 1 07:44:23 2016 +0000

Handling error codes

commit 4d057be278eedce4e2c0682604d5304c7d18fb5a

Author: ms88 <ms88>

Date: Tue Jun 28 16:27:27 2016 +0300

fix fast reconnect

Cryptographic hash
= message digest
= fingerprint

Cryptographic hash function

– The algorithm is public, no keys or other secrets needed

– Examples: SHA-256, SHA-512, SHA3-256

5

input: any byte string

output: short n-bit string

Public pseudorandom
function

334d016f 755cd6dc

58c53a86 e183882f

8ec14f52 fb053458

87c8a5ed d42c87b7

“Hello!”

SHA-256

256 bits

= 32 bytes

echo -n "Hello!" | openssl sha256

Cryptographic hash: security requirements

▪ One-way = pre-image resistant: given only output, impossible
to compute input, except by guessing

▪ Second-pre-image resistant: given one input, impossible to find
a second input that produces the same output

▪ Collision-resistant: impossible to find any two inputs with the
same output

– Old hash functions with broken collision resistance: MD5, SHA-1

6

Hash function implementation

▪ Ideal hash function is a random, public function chosen from
the set of all byte strings (of any length) to bit-strings of fixed-
length (e.g. n=256 bits)
– Also called “random oracle”

– In practice, impossible to store and share such infinite-size functions

▪ Practical hash function is pseudorandom: deterministic
algorithm, but output looks random
– One-way, collision resistant

– Efficient to compute for large inputs

– Typically algorithm based on And, Xor, Rot, Add (mod 232) operations

7

Extra
material

Hash function applications

▪ Integrity check on stored files, software downloads, or any
data – compute hash and compare with known correct value

▪ Unique, “self-certifying” identifier for any object, e.g. file,
public key, Bitcoin block

▪ Key derivation and password storage, e.g. PBKDF2

▪ Signing: sign the hash of the message with RSA

▪ Message authentication with HMAC and a shared secret key

8

Hash collisions
▪ Research has found collisions in several standard hash functions

– MD5, SHA-1

– Applications should be designed for crypto agility i.e. easy upgrading of functions

▪ Where and why is collision resistance needed?
(or is preimage and second-preimage resistance sufficient?)

– File integrity check?

– Software integrity check?

– Digital signature on a contract?

– MAC for end-to-end authentication?

– Password storage?

– Key derivation in Wi-Fi?

– Bitcoin?

▪ Not all applications need collision resistance, but many do in subtle ways

9

Extra
material

Message authentication code (MAC)

▪ Secret key is needed to create and to check the MAC
▪ HMAC is a standard way to construct a MAC from a

hash function, e.g. HMAC-SHA256

10

input: any byte string

output: short n-bit string

Secret
key K

MAC

“EZ87k7QC7m

9c8t23pG37s

rrpU9y8KZHP

nmmHG427DdU

6G632” 3b8a41f7 b44336ae

ca058ae6 94a06be1

43f6d366 54d79abd

a5300240 47ea9746

“Hello!”

HMAC-SHA256

echo -n "Hello!" | openssl sha256 -hmac "EZ87k7QC7m9c8t23pG37srrpU9y8KZHPnmmHG427DdU6G632"

Message authentication with MAC

▪ Message authentication and integrity protection
▪ Endpoints share the secret key K (thus, it is symmetric cryptography)
▪ MAC is appended to the original message M

11

MAC Compare

Authentic

Message M
Message M

Key K
Insecure

Medium

(network

or storage)

Sender Receiver

M, MACK(M)

MAC Ok?

Key K

|| split

MACK(M)M

M

MACK(M)

HMAC details

▪ HMAC is commonly used in standards:
– Way of deriving MAC from a cryptographic hash function h

HMACK(M) = h((K ⊕ opad) | h((K ⊕ ipad) ‖ M))

– Hash function h is instantiated with SHA-1, MD5 etc. to produce
HMAC-SHA-1, HMAC-MD5,…

–⊕ is XOR; | is concatenation of byte strings

– ipad and opad are bit strings for padding the key to fixed length

– Details: [RFC 2104][Bellare, Canetti, Krawczyk Crypto’96] *

▪ HMAC is theoretically stronger than simpler constructions, e.g.
h(M | K)

12

Extra
material

http://www.research.ibm.com/security/keyed-md5.html

Hash and HMAC commands
Compute the hash of a file

echo "Attack at sunrise!" > m.txt

sha256sum m.txt

openssl dgst -sha256 m.txt

Append a LF to the file and see if the hash changes

echo >> m.txt

openssl dgst -sha256 m.txt

Compute HMAC using hash of “abc123” (bad!) as the key

openssl dgst -sha256 -hmac abc123 m.txt

Change the key slightly and see if the hash changes

openssl dgst -sha256 -hmac abc132 m.txt

13

SYMMETRIC ENCRYPTION

14

Alice Bob

Confidential
message
(plaintext):
“Attack at
sunrise...”

Secret key K =
EF74EA0A3B1E27BF

6EE758DA39BA1B5D

A0BF2A0E7F54AF4F

4940B1529DFF6ECD

Secret key K =
EF74EA0A3B1E27BF

6EE758DA39BA1B5D

A0BF2A0E7F54AF4F

4940B1529DFF6ECD

Confidential
message
(plaintext):
“Attack at
sunrise...”

Passphrase:
“Tw0+legs+better!”

Passphrase:
“Tw0+legs+better!”

hash hash

Encrypt
+ MAC

Check MAC
+ Decrypt

Encrypted
message
(ciphertext):
536153746c4655f5

f4528b78568e799e

88db8e1f2c9b0572

47550c68eeb96f71

801b527cf1a94c21

a7b7052e6daa191e

...

Insecure network
or storage

15
[Daemon graphics: www.freebsd.org]

▪ Message encryption based on symmetric cryptography,
i.e. a shared secret key

Symmetric encryption

Symmetric encryption

▪ Message encryption based on symmetric cryptography,
i.e. a shared secret key

16

Encryption

E

Decryption

D

Ciphertext

EK(M)Plaintext

message M

Plaintext

message M

Key K

Insecure

networkSender Receiver

Key K

Symmetric encryption

▪ Kerckhoff’s principle: the encryption and decryption algorithms
are public algorithms; only the key is secret

▪ Encrypted message content looks like random bits – unless you
know the key

▪ The key must be shared over a secure out-of-band channel

– a 128…256-bit random number

– sometimes computed from a passphrase with a cryptographic hash
function (should use PBKDF2 to make cracking slower)

17

Alice Bob

Confidential
message
(plaintext):
“Attack at
sunrise...”

Secret key K =
EF74EA0A3B1E27BF

6EE758DA39BA1B5D

A0BF2A0E7F54AF4F

4940B1529DFF6ECD

Secret key K =
EF74EA0A3B1E27BF

6EE758DA39BA1B5D

A0BF2A0E7F54AF4F

4940B1529DFF6ECD

Confidential
message
(plaintext):
“Attack at
sunrise...”

Passphrase:
“Tw0+legs+better!”

Passphrase:
“Tw0+legs+better!”

hash hash

Encrypt
+ MAC

Check MAC
+ Decrypt

Encrypted
message
(ciphertext):
536153746c4655f5

f4528b78568e799e

88db8e1f2c9b0572

47550c68eeb96f71

801b527cf1a94c21

a7b7052e6daa191e

...

Insecure network
or storage

18
[Daemon graphics: www.freebsd.org]

▪ Message encryption based on symmetric cryptography,
i.e. a shared secret key

Symmetric encryption

Block cipher and cipher mode

▪ Block cipher is the basic construction block for encryption

– Encryption of a fixed-length block, typically 128 bits

– Examples: AES, 3DES

▪ Cipher mode uses the block cipher as building block for
encrypting messages of any length

– Padding of the message to full blocks

– Initialization vector, so that the same plaintext always produces a
different ciphertext (called salt in OpenSSL commands)

– Example: cipher-block chaining (CBC)

19

Symmetric encryption with OpenSSL
Create a plaintext message (length multiple of 128 bits).

echo "Secret meeting in the usual place at 10 am xxxx" > m.txt

hexdump -C m.txt

Encrypt with block cipher.

openssl enc -aes-256-cbc -nosalt -nopad -k abc123 -in m.txt -out m.enc

cat m.enc

hexdump -C m.enc

Note how random the ciphertext looks. Then, decrypt and compare.

openssl enc -d -aes-256-cbc -nosalt -nopad -k abc123 -in m.enc -out r.txt

hexdump -C r.txt

Try also decrypting with a different key.

Edit the ciphertext slightly and decrypt again. The plaintext may change only partly.

Normally, encryption uses salt (or IV) and padding: The salt is random, not secret, and stored with the ciphertext. The

message is padded to full 128-bit blocks.

echo "Secret meeting in the usual place at 10 am." > m.txt

hexdump -C m.txt

openssl enc -aes-256-cbc -k abc123 -in m.txt -out m.enc

hexdump -C m.enc

openssl enc -d -aes-256-cbc -k abc123 -in m.enc -out r.txt

hexdump -C r.txt

Edit one byte of the ciphertext and decrypt again.

OpenSSL computes the key (and IV) from with PBKDF2 from the passphrase and salt.

If we encrypt the same message again, thanks to the salt, the ciphertext looks different.

hexdump -C m.enc

openssl enc -aes-256-cbc -k abc123 -in m.txt -out m.enc

hexdump -C m.enc

Encrypted files are binary. To send over email or http, they are usually base64 encoded.

openssl enc -aes-256-cbc -base64 -k abc123 -in m.txt -out m.enc

cat m.enc 20

Encryption and message integrity

▪ Encryption alone protects secrets, not integrity
– Attacker can usually modify the secret message

– Receiver of the modified secret message usually leaks some
information, e.g. error in message

➔ Always combine encryption with integrity protection

– Encrypt-then-MAC: encrypt with block cipher e.g. in CBC mode, then
compute and append a MAC

– Authenticated encryption modes do encryption and integrity in one
pass, e.g. AES-GCM

21

!

If in doubt, use Authenticated encryption with associated data (AEAD)

!

SYMMETRIC KEY AND HASH LENGTHS

22

Key length (1)

▪ Shared key of ≥ 128 bits is strong, < 80 bits is weak

– To resist brute-force guessing, the secret key must be random with
(almost) even probability distribution

– Quantum cryptoanalysis may require keys of 256 bits in the future

– Q: Why is a secret key of 1000 bits on 1 MB not better than 256?

23

Number of atoms in the earth is less than 1050 ≈ 2166.
Age of the universe 4.3∙1017 ≈ 259 seconds ≈ 289 nanoseconds.
2166 ∙ 289 ≤ 2256 .
→ 256-bit keys definitely cannot be brute-forced

Key length (2)

▪ Brute-force attacks are easy to parallelize; thus, cost should never
be measured in time but in money (EUR, USD, CPU days)
– 1 CPU day = $1 on high-end PC, less on cloud infrastructure

– Q: If NSA has a billion-dollar computer and can break DES encryption keys
in 1 second, how much does it cost for you to break them on Amazon EC2?

▪ Strength of a key derived from passphrase?
K = SHA-256(“verYsekReTT123pasSfraZe”)

– Dictionary attack to guess human-invented passphrases is possible, while
brute-forcing a random 128 or 256-bit key is not

24

Hash length and birthday paradox

▪ How long hash values? Answer: 256..512 bits

▪ One-wayness and second preimage resistance require has
length of 128..256 bits. Why?

– Attacker tries different inputs to match a known hash value.
Impossible to perform 2128 hash computations

▪ Collision resistance requires almost twice that length. Why?

▪ Birthday attack: store computed hash values and find a match
between any two of them

25

Hash length and birthday paradox (2)

▪ Rule of thumb: When randomly sampling a set of M values,
collisions appear after M1/2 (square root of M) samples

(More precisely: for large M, the collision probability is 50% at (2 · ln 2 · M)1/2 ≈ 1.18 · M1/2 samples.)

▪ Same rule in different words:
– When randomly sampling a set of 2N values, collisions appear after 2N/2 samples

– If attacker can compute and store 2N hash values, it can find collisions for hash
values of length 2·N bits

– If an N-bit hash value is safe against brute-force reversing, nearly 2·N bits are
needed to avoid collisions with birthday attack (“nearly” because brute-force
reversing requires only CPU but the birthday attack requires also storage)

26

HOW DOES ENCRYPTION WORK?
– BLOCK CIPHERS

27

Please read this section
for a rough idea of how a
block cipher works. More
details in a cryptography
course

Extra
material

Ideal encryption: random permutation

▪ Messages = bit strings with some maximum length L
▪ Ideal encryption would be a random 1-to-1 function i.e. permutation of the set of all

possible messages to itself
▪ Decryption is the reverse function
▪ Like an old-fashioned military code book, but much larger
▪ Impossible to store and share: table with 2L rows

28

Secret random
permutation

All possible plaintexts (2L)

All possible ciphertexts (2L)

Extra
material

Real encryption: pseudorandom permutation

▪ Block cipher: string length fixed usually to L=128 bits
– Pseudorandom permutation that depends on a secret key of 128..256 bits
– Number of different permutations is 2256, large but far less than (2L)!

▪ Pseudorandom = indistinguishable from random unless you know the algorithm and key
▪ Kerckhoff’s principle: public algorithm, secret key

29

Pseudorandom
permutation

2128 plaintexts

2128 ciphertexts

Secret
key K
e.g. 256 bits

Block cipher with
block length 128-bits

Extra
material

Substitution-permutation network

▪ One way to implement a key-
dependent pseudorandom
permutation

▪ Substitution-permutation network:
– S-box = substitution is a small

(random) 1-to-1 function for a small
block, e.g. 24…216 values

– P-box = bit-permutation mixes bits
between the small blocks

– Repeat for many rounds,
e.g. 8…100

– Mix key bits with data in each round
– Decryption is the reverse

▪ Cryptanalysis tries to detect
minute differences between this
and a true random permutation

30

[Wikimedia Commons]

Extra
material

http://upload.wikimedia.org/wikipedia/commons/c/cd/SubstitutionPermutationNetwork2.png

Cipher design
▪ It is not difficult to make strong block cipher: long key, large S-boxes, many

many rounds
▪ Good bock ciphers are not only strong

– fast to compute in software
– require little memory
– cheap to implement in hardware
– optimized for both throughput and latency
– use a short (e.g. 128-bit) key, which is expanded to the round keys, but still allow

fast key changes
– no unexplained features that could be a backdoor
– implementation is resistant to side-channel attacks
– etc.

▪ The difficulty is in finding a balance between performance and security

31

Extra
material

AES
▪ Advance Encryption Standard (AES)

– Standardized by NIST in 2001
– 128-bit block cipher
– 128, 192 or 256-bit key
– 10, 12 or 14 rounds

▪ AES round:
– SubBytes: 8-byte S-box, not really random, based on finite-field arithmetic,

multiplication in GF(28)
– ShiftRows and MixColumn: reversible linear combination of S-box outputs

(mixing effect similar to P-box)
– AddRoundKey: XOR bits from expanded key with data

▪ Key schedule: expands key to round keys

32

Extra
material

Cipher mode example
▪ Block-cipher mode, e.g. cipher-block chaining (CBC), is used for encrypting longer messages

▪ Initialization vector (IV) makes ciphertexts different even if the message repeats. It may be a
non-repeating counter or a random number that is also sent to the receiver. IV is not secret

▪ The message is padded to fill full blocks of the block cipher
33

[Wikimedia Commons]

Extra
material

http://upload.wikimedia.org/wikipedia/commons/d/d3/Cbc_encryption.png

34

Common ciphers and modes
▪ Block ciphers:

– DES — old standard, 56-bit keys now too short, 64-bit block
– 3DES in EDE mode: DESK3(DES-1K2(DESK1(M))), 3x56 key bits
– AES — at least 128-bit keys, 128-bit block

▪ Block-cipher modes
– E.g. electronic code book (ECB), cipher-block chaining (CBC)

▪ Stream ciphers:
– XOR plaintext and a keyed pseudorandom bit stream
– RC4: simple and fast software implementation

▪ Most encryption modes are malleable: attacker can make controlled
modifications to the plaintext
– E.g. consider CBC mode or stream cipher

▪ Authenticated encryption modes combine encryption and integrity check

Extra
material

ASYMMETRIC CRYPTOGRAPHY:
DIGITAL SIGNATURE

35

Digital signature

▪ Message authentication and integrity protection
▪ Asymmetric i.e. public-key cryptography
▪ Key pair with public and private parts

36

Alice Bob

Message:
“Attack at
sunrise...”

Alice s private
key SK

Alice s public
key PK

Message:
“Attack at
sunrise...”

Sign Verify

Message:
“Attack at
sunrise...”

+ Signature

Insecure network
or storage

[Daemon graphics: www.freebsd.org]

RSA signature with GPG
Generate a key pair

gpg --gen-key

Note the key fingerprint.

Take a look at the keys

ls ~/.gnupg/

gpg --fingerprint

gpg --export -a "Tuomas Aura" > tuomas.key

Sign a message and check the signature

echo "Attack at sunrise!" > m.txt

hexdump -C m.txt

gpg --sign -v -u "Tuomas Aura" m.txt

hexdump -C m.txt.gpg

gpg < m.txt.gpg

Note that the message is not encrypted

hexdump -C m.txt.gpg

Encoding for inclusion in email etc.

gpg --sign --armor -v -u "Tuomas Aura" m.txt

less m.txt.asc

gpg < m.txt.asc

More readable but fragile message with --clearsign

gpg --clearsign -v -u "Tuomas Aura" m.txt

less m.txt.asc
37

Digital signature

▪ Message authentication and integrity protection with public-key crypto
– Verifier has a public key PK ; signer has the private key SK

– Messages are first hashed and then signed

– Examples: DSS, RSA + SHA-256, ECDSA

38

Hash

Original

Message M

Received

Message M’

Private

Key PK
-1

Insecure

networkSender A Receiver

Hash

Sign Verify

M, SignA(M)

Public

Key PK

Ok?

h(M) h(M)

|| split

SignA(M)

M

SignA(M)

SK

Digital signature issues
▪ Always follow strictly the standard when implementing signatures!

There are many subtle points that can go wrong
– Examples: DSA, RSA [PKCS#1]

▪ Signing is not encryption with public key!
– Common misconception because the RSA private key can be used both to

sign and decrypt

▪ Digital signature “with appendix”
– Hash the message, sign the hash
– The signature is usually appended to the actual message but can also be

stored separately

▪ Question: what consequences if you use a broken hash function
with known collisions (e.g. SHA-1) for signing?

39

PUBLIC-KEY ENCRYPTION

40

Public-key encryption

▪ Asymmetric encryption: public key and private key
▪ Protects secrets, not integrity

41

Alice Bob

Confidential
message
(plaintext):
“Attack at
sunrise...”

Bob s public
key PK

Bob s private
key SK

Confidential
message
(plaintext):
“Attack at
sunrise...”

Encrypt Decrypt

Encrypted
message
(ciphertext)

Insecure network
or storage

[Daemon graphics: www.freebsd.org]

RSA encryption with GPG
Sign and encrypt a message

gpg --encrypt --sign -u "Tuomas Aura" -r "Test User" m.txt

hexdump -C m.txt.gpg

Open a received message

gpg confidential.asc

Here is how Test User signed and encrypted it:

gpg --encrypt --sign --armor -u "Test User" -r "Tuomas Aura" --output

confidential.asc letter.txt

42

Public-key encryption

▪ Message encryption based on asymmetric cryptography
– Key pair: public key and private key

▪ Protects secrets, not integrity

43

Insecure

network

EB(M)Encrypt

(asymm.)

Bob’s

public

Key PK

Decrypt

(asymm.)

Bob’s

private

Key PK
-1

Message

M

Message

M

Sender Receiver Bob

SK

Hybrid encryption

▪ Symmetric encryption is fast; asymmetric is convenient
▪ Hybrid encryption = symmetric encryption with random session key +

asymmetric encryption of the session key

44

Insecure

network

ESK(M), EB(SK)
Encrypt

(symm.)

Encrypt

(asymm.)

Bob’s

public

Key PK

EB(SK)

Fresh

random

session

key SK

Decrypt

(symm.)

Decrypt

(asymm.)

Bob’s

private

Key PK
-1

SKEB(SK)

|| split
Message

M

Message

M

Sender Alice Receiver Bob

Key distribution

▪ The advantage of public-key cryptography is easier key distribution

▪ Shared secret keys, symmetric cryptography:

– O(N2) pairwise keys for N participants → does not scale

– Keys must be kept secret → hard to distribute safely

▪ Public-key protocols, asymmetric cryptography:

– N key pairs needed, one for each participant (or 2∙N if different key pairs
for encryption and signature)

– Public keys are public → can be posted on the Internet

45

!

But… both shared and public keys must be authentic
How does Alice know she shares KAB with Bob, not with Eve?
How does Alice know PKB is Bob’s public key, not Eve’s?

RSA encryption details
▪ RSA encryption, published 1978

– Based on modulo arithmetic with very large integers

▪ Simplified description of the algorithm:
– Public key (e,n) - public exponent and modulus
– Private key (d,n) - secret exponent and public modulus
– Encryption C = Me mod n
– Decryption Cd mod n = (Me)d mod n = M
– n is commonly 1024 or 2048 bits long, d will also be long,

e can be short (17 or 216+1); M can be at most as long as n

▪ Why does it work? Based on number theory
– Euler’s totient function ϕ(n), number of integers 1...n that are relatively prime with n

– Euler’s theorem: xϕ(n) ≡ 1 (mod n), and thus xkϕ(n)+1 ≡ X (mod n)
– We need to have e and d so that ed = kϕ(n)+1 for some k
– Key pair generation:

1. Choose n as product of two large secret prime numbers n=pq; then, ϕ(n)=(p-1)(q-1)
2. Then pick a small e (e=17 or e=216+1), solve d with the extended Euclidian algorithm
3. Forget p,q,ϕ(n)

– RSA security assumption: difficult to solve d when you only know (e,n)
(this is assumed to be about as difficult as factoring n without being told p and q)

▪ For details and implementation guidelines, see PKCS#1
Never implement RSA without following such a standard!

46

Goal here is to give a quick
feel of how RSA works, not
to understand it all

Extra
material

Example: RSA public key
30 82 01 0a 02 82 01 01 00 c7 3a 73 01 f3 2e a8
72 25 3c 6b a4 14 54 24 e7 e0 ab 47 2e 9f 38 a7
12 77 dc cf 62 bc de 47 a2 55 34 a6 47 9e d6 13
90 3d 9f 72 aa 42 32 45 c4 4a b7 88 cc 7b c5 a6
18 4f d5 86 a4 9e fb 42 5f 37 47 53 e0 ff 10 2e
cd ed 4a 4c a8 45 d9 88 09 cd 2f 5f 7d b6 9b 40
41 4f f7 a9 9b 7a 95 d4 a4 03 60 3e 3f 0b ff 83
d5 a9 3b 67 11 59 d7 8c aa be 61 91 d0 9d 5d 96
4f 75 39 fb e7 59 ca ca a0 63 47 bd b1 7c 32 27
1b 04 35 5a 5e e3 29 1a 06 98 2d 5a 47 d4 05 b3
22 3f fd 43 38 51 20 01 ad 1c 9e 4e ad 39 f4 d1
ae 90 7d f9 e0 81 89 d2 b7 ba cd 68 2e 62 b3 d7
ad 00 4c 52 24 29 97 37 8c 6e 36 31 bd 9d 3d 1d
4c 4c cc b0 b0 94 86 06 9c 13 02 27 c5 7c 1e 2e
f6 e3 f6 13 37 d9 fb 23 9d e7 c7 d5 ce 94 54 7d
ef ef df 7b 7b 79 2e f9 75 37 8a c1 ef a5 c1 2a
01 e0 05 36 26 6a 98 bb d3 02 03 01 00 01

47

2048-bit
modulus

public exponent
(216+1)

ASN.1
type tags

Extra
material

ASN.1
type tags

Key length in asymmetric crypto

▪ In RSA, secure key lengths are ≥ 2048 bits

▪ Elliptic-curve cryptography (ECC):
public-key crypto with much shorter keys and efficient
computation, ≥ 256 bits

– Used for most new applications and small devices

48

Formal security definitions
▪ Cryptographic security definitions for asymmetric encryption
▪ Semantic security (security against passive attackers)

– Computational security against a ciphertext-only attack

▪ Ciphertext indistinguishability (active attackers)
– IND-CPA — attacker submits two plaintexts, receives one of them encrypted, and is challenged to

guess which it is ⇔ semantic security
– IND-CCA — indistinguishability under chosen ciphertext attack i.e. attacker has access to a

decryption oracle before the challenge
– IND-CCA2 — indistinguishability under adaptive chosen ciphertext attack i.e. attacker has access

to a decryption oracle before and after the challenge (except to decrypt the challenge)

▪ Non-malleability
– Attacker cannot modify ciphertext to produce a related plaintext
– NM-CPA ⇒ IND-CPA; NM-CCA2 ⇔ IND-CCA2

▪ It is non-trivial to choose the right kind of encryption for your application;
ask a cryptographer!

49

Extra
material

DIFFIE-HELLMAN KEY EXCHANGE

50

Diffie-Hellman key exchange

51

Alice Bob
Alice generates

new DH pair:
private key x
public key gx

Compute
shared secret

gx

Insecure network

Bob generates
new DH pair:
private key y
public key gy

Compute
shared secret

gy

x y

K = h(gxy) K = h(gxy)(gx)y = (gy)x = gxy

[Daemon graphics: www.freebsd.org]

Diffie-Hellman key exchange

▪ Both sides compute the same session key

▪ Passive attacker listens to communication but cannot compute
the key

52

KAB = g
xy

DH Public Key

DHA = g
x

Insecure

networkA B

KAB := (g
y
)
x

KAB = (g
x
)
y

DH Public Key

DHB = g
yDHA = g

x
DHB = g

y

KAB = g
xy

Diffie-Hellman key exchange

▪ Creating a shared key based on commutative operation, such
as exponentiation modulo p:

(gx mod p)y mod p = (gy mod p)x mod p

▪ Diffie-Hellman assumption: given g, p, gx and gy, it is infeasible
to solve gxy

– Security depends on the difficulty of the discrete logarithm problem,
i.e. solving x from (gx mod p) when p is large

▪ Elliptic curve Diffie-Hellman uses commutative operations in a
different field

53

Impersonation attack

54

Alice
Alice generates

new DH pair:
private key x
public key gx

Compute
shared secret

gx

Insecure network

Attacker
generates new

DH pair:
private key y
public key gy

Compute
shared secret

gy

x y

K = h(gxy) K = h(gxy)(gx)y = (gy)x = gxy

[Daemon graphics: www.freebsd.org]

Authenticated Diffie-Hellman

▪ Diffie-Hellman key exchange is vulnerable to impersonation
attacks: Shared secret key, ok, but with whom?
Without authentication, it could be anyone.

▪ Unauthenticated DH is secure against passive attackers who
only listen, but not against active attackers who also lie and
pretend

▪ Solution: authenticate the key-exchange messages

– Sign with public-key signatures

– Compare manually between endpoints

55

SUMMARY

56

How strong is cryptography?
▪ Cryptology viewpoint: requires continuous analysis and improvement

▪ Engineering viewpoint: unbreakable for years if you use strong standard
algorithms and 128..256-bit symmetric keys
– May need to upgrade algorithms every 10 years or so

– Avoid using algorithms in creative ways that are not their original purpose

▪ Weak crypto is worse than no crypto, use strong algorithms and keys

▪ Which algorithms can be trusted?
– Block ciphers have endured relatively well, hash functions require upgrading

– Quantum computers might break public-key cryptography

▪ Almost no absolute proofs of security exist!

57

Security vs. cryptography

▪ Cryptography: mathematical methods for encryption and
authentication

▪ In this course, we use cryptography as one building block for
security mechanisms

▪ Remember that cryptography alone does not solve all security
problems:

“Whoever thinks his problem can be solved using cryptography,
doesn’t understand the problem and doesn’t understand
cryptography.”
— attributed to Roger Needham and Butler Lampson

58

Message size overhead
▪ Authentication increases the message size:

– MAC or signature is appended to the message
– MAC takes 16–32 bytes
– 4096-bit RSA signature is 512 bytes
– Elliptic-curve signatures (ECDSA) can be 64..128 bytes

▪ Encryption increases the message size:
– In block ciphers, messages are padded to nearest full block
– IV for block cipher takes 8–16 bytes
– 1024-bit RSA encryption of the session key is 128 bytes

▪ Overhead of headers, type tags etc.
▪ Small size increase ok for most applications but can cause problems in some:

– Signing individual IP packets (1500-byte limit on packet size)
– Authenticating small wireless frames
– Encrypting file system sector by sector, but cannot increase sector size by a few bytes to

fit in the IV or MAC

59

List of key concepts

▪ Cryptographic hash function, pseudorandom, preimage resistance,
second-preimage resistance, collision resistance, birthday attack,
MAC, HMAC

▪ Symmetric cryptography, shared secret key, key length, encryption,
decrypting, plaintext, ciphertext, Kerckhoff’s principle, block cipher,
cipher mode, AES, CBC mode, authenticated encryption, AES-GCM

▪ Asymmetric or public-key cryptography, kay pair, public key, private
key, RSA, elliptic-curve cryptography ECC, hybrid encryption, digital
signature, key distribution, Diffie-Hellman key exchange, ECDH

▪ Message secrecy or confidentiality, integrity, authentication, weak
and strong cryptography, impersonation

60

Notations in protocol specifications
and research papers

▪ Shared key:
K = SK = KAB

▪ Symmetric encryption:
EncK(M), EK(M), E(K;M), {M}K, K{M}

▪ Hash function:
h(M), H(M), hash(M), SHA-256(M)

▪ Message authentication code:
MACK(M), MAC(K;M), HMACK(M)

▪ Public/private key:
PK = PKA = KA = K+ = K+

A = e ; SK = PK-1 = PK-1
A = K- = K-

A = d
▪ Public-key encryption:

EncB(M), EB(M), PK{M}, {M}PK

▪ Signature notations:
SA(M) = SignA(M) = S(PK-1; M) = PK-

A(M) = {M}PK-1

61

Extra
material

Reading material

▪ Stallings: Computer Security Principles and Practice, 4th ed.,
chapters 2,20,21

▪ Ross Anderson: Security Engineering, 2nd ed., chapter 5

62

Exercises
▪ Confidentiality, integrity, availability – which can be protected with cryptography?
▪ What kind of cryptography would you use to

– protect files stored on disk
– store client passwords on server disk
– implement secure boot
– protect email in transit
– publish an electronic book
– implement an electronic bus ticket
– identify friendly and enemy aircraft (“friend or foe”)
– sign an electronic contract
– transmit satellite TV
– protect software updates
– create a cryptocurrency
– send pseudonymous letters
– timestamp an invention

▪ Which applications require strong collision resistance of hash functions? What attacks have resulted from
collisions in MD5?

▪ Find out about DES cracking; why is DES vulnerable and how much security would it give today?
▪ What ethical issues are there related to cryptography? Should commercial products use cryptography that is so

strong that even the police cannot break it?
▪ How are quantum computers expected to affect the security of different encryption and authentication

algorithms?

63

	Slide 1: Cryptography
	Slide 2: Outline
	Slide 3: Cryptographic hash function and HMAC
	Slide 4
	Slide 5: Cryptographic hash function
	Slide 6: Cryptographic hash: security requirements
	Slide 7: Hash function implementation
	Slide 8: Hash function applications
	Slide 9: Hash collisions
	Slide 10: Message authentication code (MAC)
	Slide 11: Message authentication with MAC
	Slide 12: HMAC details
	Slide 13: Hash and HMAC commands
	Slide 14: Symmetric encryption
	Slide 15: Symmetric encryption
	Slide 16: Symmetric encryption
	Slide 17: Symmetric encryption
	Slide 18: Symmetric encryption
	Slide 19: Block cipher and cipher mode
	Slide 20: Symmetric encryption with OpenSSL
	Slide 21: Encryption and message integrity
	Slide 22: Symmetric Key and hash lengths
	Slide 23: Key length (1)
	Slide 24: Key length (2)
	Slide 25: Hash length and birthday paradox
	Slide 26: Hash length and birthday paradox (2)
	Slide 27: How does encryption work? – block ciphers
	Slide 28: Ideal encryption: random permutation
	Slide 29: Real encryption: pseudorandom permutation
	Slide 30: Substitution-permutation network
	Slide 31: Cipher design
	Slide 32: AES
	Slide 33: Cipher mode example
	Slide 34: Common ciphers and modes
	Slide 35: Asymmetric cryptography: Digital signature
	Slide 36: Digital signature
	Slide 37: RSA signature with GPG
	Slide 38: Digital signature
	Slide 39: Digital signature issues
	Slide 40: Public-key encryption
	Slide 41: Public-key encryption
	Slide 42: RSA encryption with GPG
	Slide 43: Public-key encryption
	Slide 44: Hybrid encryption
	Slide 45: Key distribution
	Slide 46: RSA encryption details
	Slide 47: Example: RSA public key
	Slide 48: Key length in asymmetric crypto
	Slide 49: Formal security definitions
	Slide 50: Diffie-Hellman key exchange
	Slide 51: Diffie-Hellman key exchange
	Slide 52: Diffie-Hellman key exchange
	Slide 53: Diffie-Hellman key exchange
	Slide 54: Impersonation attack
	Slide 55: Authenticated Diffie-Hellman
	Slide 56: Summary
	Slide 57: How strong is cryptography?
	Slide 58: Security vs. cryptography
	Slide 59: Message size overhead
	Slide 60: List of key concepts
	Slide 61: Notations in protocol specifications and research papers
	Slide 62: Reading material
	Slide 63: Exercises

