CHEM-E4235 Transport processes at electrodes and membranes

Exercises from Chapter 1 and 2

1. Prove that $\sum_{i=1}^{k} M_{i} \bar{j}_{i}^{m}=0$, where M_{i} is the molar mass of species i and $\bar{j}_{i}^{m}=c_{i}\left(\bar{v}_{i}-\bar{v}\right)$ is its flux in mass-average (barycentric) reference frame. $\bar{v}=\sum_{i=1}^{k} w_{i} \bar{v}_{i} ; w_{i}$ is the mass fraction, $w_{i}=\frac{m_{i}}{\sum_{k} m_{k}}$. Hint: Express w_{i} in terms of concentrations and molar masses.
2. Prove that electric current density \vec{I} does not depend on the reference frame: $\vec{I}=F \sum_{i=1}^{k} z_{i} \vec{j}_{i}^{r}$ with any reference velocity \vec{v}^{r}.
3. Prove eq. (1.68): $-\sum_{i} \vec{j}_{i}^{m} \cdot \nabla \mu_{i}+\vec{I} \cdot \vec{E}=-\sum_{i} \vec{j}_{i}^{m} \cdot \nabla \widetilde{\mu}_{i}$.
4. In the case of two fluxes and forces the phenomenological equations are written as

$$
\left\{\begin{array}{l}
J_{1}=L_{11} X_{1}+L_{12} X_{2} \\
J_{2}=L_{21} X_{1}+L_{22} X_{2}
\end{array}\right.
$$

What constraints are required from the phenomenological coefficients $L_{i j}$ in order to make the dissipation function $\theta>0$. Remember Onsager's reciprocal relation $L_{i j}=L_{j i}$. Hint: Since the eigenvalues of matrix \mathbf{L}, λ_{1} and $\lambda_{2}>0$, also $\lambda_{1} \lambda_{2}>0$ and $\lambda_{1}+\lambda_{2}>0$.
5. The molar conductivities (Λ) of $\mathrm{NaCl}, \mathrm{CaCl}_{2}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ and CaSO_{4} have been measured at infinite dilution. Prove that it is not possible to determine the ionic molar conductivities $\left(\lambda_{i}\right)$ from these measurements. $\Lambda=\sum_{i} v_{i} \lambda_{i}$. Hint: Create a matrix equation.
6. In a ternary system of two $1: 1$ electrolytes, e.g. $\mathrm{NaCl}-\mathrm{KCl}$, the fluxes of the components are written in the phenomenological form as

$$
\left\{\begin{array}{l}
-\vec{J}_{13}=L_{13,13} \nabla \mu_{13}+L_{13,23} \nabla \mu_{23} \tag{2.103}\\
-\vec{J}_{23}=L_{13,23} \nabla \mu_{13}+L_{23,23} \nabla \mu_{23}
\end{array}\right.
$$

and in Fickian formalism as

$$
\left\{\begin{array}{l}
-\vec{J}_{13}=D_{13,13} \nabla c_{13}+D_{13,23} \nabla c_{23} \\
-\vec{J}_{23}=D_{23,13} \nabla c_{13}+D_{23,23} \nabla c_{23}
\end{array}\right.
$$

$[\mathrm{NaCl}]=c_{13}$ and $[\mathrm{KCl}]=c_{23}$, i.e. $z_{1}=v_{1}=z_{2}=v_{2}=-z_{3}=v_{3,1}=v_{3,2}=1$, and therefore $c_{1}=c_{13}$, $c_{2}=c_{23}, c_{3}=c_{13}+c_{23}$. The phenomenal coefficients are given by eqs. (2.108) $-(2.110)$ in the textbook. As an example, prove eq. (2.113) when we know that

$$
D_{13,13}=R T\left[L_{13,13}\left(\frac{v_{1}}{c_{13}}+\frac{v_{3,1}^{2}}{c_{3}}\right)+L_{13,23} \frac{v_{3,1} v_{3,2}}{c_{3}}\right]
$$

Hint: You need to apply the definitions of the transport number and conductivity, eqs. (2.72) and (2.73). Note that Onsager's theorem applies to $L_{i j} \mathrm{~s}$ but not to $D_{i j} \mathrm{~s}$.

