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Problem 1.1: Extreme points of a univariate function

Plot the function f(z) = 2x* — 523 — 22 and characterize its stationary points.
Solution. We have

fl(x) =8z —152% — 2z and  f(z) = 242% — 30z — 2
Setting f'(x) = 0 and solving for x, we find the following 3 stationary points

1 =-1/8, x2=0, and z3=2.
Examining f”(x;) for i € {1,2,3}, we get
f(@1) =17/8,  f"(22) =2, and f"(z3) =34

Therefore:
1. As f"(x1) >0 = x; = —% is a local minimum

2. As f"(z2) <0 = x2 =0 is a local maximum

3. As f"(xz3) >0 = x3 =2 is a local minimum (also global in this case)

Problem 1.2: Extreme points of a bivariate function

Plot contours of the function f(x,y) = (y — 2?)? — 22 and characterize its stationary points.

Solution. We have

—4xy + 4x3 — 2z —Ay + 1222 -2 —4x
Vf(x,y) = ( gy _ 2%2 ) and V2f($,y) = ( Y —Ax 2 ) .

Setting V f(x,y) = 0 and solving for = and y, we find out that the only stationary point is

() = (0,0) with Vf(0,0) = ( v ) .
We can solve the eigenvalues A € R? of the Hessian V2 £(0,0) from the eigenvalue equation
(V2£(0,0) = X)v =0
which has a solution if and only if
det(V2f(0,0) = X) =0 < (=2—-XN)(2-))=0

The eigenvalues are A\; = 2 and Ao = —2, so the Hessian is indefinite and the stationary point
(z,y) = (0,0) is neither a local minimum nor a local maximum (it is a saddle point).

Problem 1.3: Newton’s method for a univariate problem

Consider the following unconstrained optimization problem where f(z) is a univariate function:

min. f(z) (1)

Solve the problem (1) with different functions f(z) using Newton’s method. In the univariate case,
Newton’s method starts with an initial starting point xg € R and updates the solution as follows:

Tpt1 = Tp — f//(xn)_lf/(xn)
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Try different starting points and observe if the method converges to a stationary point or diverges
without producing a solution. Plot the functions f(z) and show the path taken by Newton’s
method. You can try, for example, the following functions and starting points:

fzx) = 2* — 2% — 82? try different values for xg
f(z) = 2° — 623 — 227 xo =1

f(z) = arctan(x) xg=1

flx) = (1/4)z* — 2 + 2z xo=1.5

Solution.

See Julia code.

Problem 1.4: Newton’s method for a bivariate problem

Consider the following unconstrained optimization problem
min. (z; — 2)* 4 (21 — 225)> (2)

Let f(z) = (x1 — 2)* + (21 — 222)? denote the objective function. Solve the problem (2) using
Newton’s method. Newton’s method starts with an initial starting point zq € R? and updates the
solution as follows:

Tp+1l = Tp — vgf(xn)_lvf(xn)

Try different starting points and observe if the method converges to a stationary point or diverges
without producing a solution. Plot the contours of f(x) in (21, z2) plane and show the path taken
by Newton’s method.

Solution.

See Julia code.

Problem 1.5: Pooling Problem

Consider the following example of the pooling problem presented in Figure 1. This problem arises,
for example, in gas transportation and oil refinery blending problems.
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q_: value of property ¢ at node s € S
q,: upper bound of property ¢ at node t € T’
¢;: unit cost at node s € S (or unit revenue at node t € T')

b;: upper bound of flow to node i € N

g, = 2.5%
P1 > 1 Ct, = 9$
by, = 100
q, =1% !
., = 16$
Csy atl = 1.5%
a Ct, = 15$
by, = 200
gs;; = 2% t2
s, = 108

Figure 1: Pooling problem network.

The problem considered here is defined on a directed graph G = (N, A) as follows. We have a set
of source (or production) nodes S = {s1, 52,53}, a set of intermediate pooling nodes P = {p1},
and a set of target (or demand) nodes T' = {t1,t2}. The node set is thus

N=SUPUT

Each source node s € S has a unit cost ¢s to purchase oil and each target node t € T has a unit
value ¢; which represents a revenue for receiving oil. Each node ¢ € N has a property value g;
which corresponds to oil sulfur content in this example. These property values at source nodes
s € S are constants gs = ¢, and at target nodes t € T they have upper bounds ¢; < g, representing
required specifications (in this case maximum sulfur content) for the oil to be commercialised. The
property values g, at pooling nodes p € P are unknown, according to the information, we can
derive loose value bounds as ¢, € [0,00], ¢, € [0,2.5], and ¢, € [0, 1.5].

The arcs A represent pipelines transporting oil between the nodes. From each source node s € S,
crude oil with a property value g5 flows to target nodes ¢t € T either directly or via pooling nodes
p € P. When two or more oil streams with different properties flow to a pooling node p € P or a
target node ¢ € T, the properties g, or g; of the oil at that node change due to blending.

The objective is to maximise the total profit by purchasing oil at the source nodes s € S and selling
it at the target nodes t € T. We can use the following variables to formulate the problem:

x5 >0 amount of oil flowing through each arc (i,j) € A
¢ >0 propery (sulfur content) at each node i € N

Let us further define

N ={jeN:(ji)e A} and N ={jeN:(ij)ecA}

The problem can be formulated as follows.
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max.
z,q

subject to

th Z xjt—zcs Z Tsj

teT JEN, seS ]GN:—
E , Lip = E , Lpj»
JEN, JENT
E x5t < by,
JEN;
E : 4jZjp = dp E : Lpjs
JEN, JENG
E qjTit = Q¢ E Zjt,
JEN, jENT
Qt S qta
qs = gs,
qi 2 07
x5 > 0,

Vp € P (4)
VteT (5)
Vpe P (6)
VteT (7)
VteT (8)
Vs e S 9)
Vie PUT (10)
V(i,j) € A (11)

The objective (3) maximises the profit given by revenue minus cost. (4) maintains flow balance,
and (5) defines upper bounds of flow to target nodes. (6) and (7) determine the property values
at pooling nodes and target nodes, respectively. (8) imposes upper bounds for property values at

target nodes and (9) sets the initial property values at source nodes.

The problem is non-convex due to the constraints (6) and (7) which are called bilinear. Typically,
there are more pools and more than one property ¢; for each node i. This can be modeled by
introducing a set K of different properties so that ¢¥ denotes the value of property k at node i.

Model and solve the problem (3)-(11) with Julia using JuMP using the data shown in Figure 1.
This can be done using, for example, the non-linear programming solver Ipopt, and by trying
different initial (starting) values for the unknown property values ¢;,i € P UT with the JuMP
function set_start_value(...).

Solution.

See Julia code.



