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This chapter

Pitch

Loudness

Timbre

Duration



Pitch

Definition: "that auditory attribute of sound according to which sounds
can be ordered on a scale from low to high" ANSI

JND of frequency of two successive sinusoids
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Pitch strength
Different sounds produce differently strong perception of pitch
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Pitch perception versus duration of sound
Minimum length required for pitch perception

Already very short tone bursts lead into perception of pitch
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Pitch perception versus duration of sound
The accuracy of pitch perception is enhanced during first 200 ms of
sound
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Mel frequency scale
’adjust the pitch of the test tone to be two times higher than the
reference tone’

Mel scale derived
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Musical scale
Musical pitch scale is logarithmic

(Approximate) frequency ratios: Octave = 2:1, Fifth = 3:2, Fourth 4:3,
Third 5:4
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Detection of frequency modulation
Curves have different carrier frequencies

L   = 70dBp

f  = 8kHz1

modulation frequency [Hz]
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Virtual pitch
Although lowest harmonics are missing, a pitch is perceived to f0
Compare: telephone band 300Hz + 4kHz, although male voice
f0 < 100Hz



Pitch theories
Peak of activation at basilar membrane?

Some kind of autocorrelation process after cochlea?

Pitch theories have been debated for decades

Neither theory explains fully perceptual phenomena



Loudness
’that attribute of auditory sensation in terms of which sounds can be
ordered on a scale extending from quiet to loud" ANSI

One of fundamental quantities in psychoacoustics

Approach loudness with simple tests, and continue to more complicated
ones



Loudness
Task: adjust sound to be ’twice as loud’, lots of subjects, repetitions,
and SPLs tested

Define loudness scale with unit [sone]

10dB increase in SPL leads to doubling of loudness

sound pressure level [dB]
40 60 80 100 120200

lo
ud

ne
ss

 [s
on

es
]

10

0.1

1

100

white
noise

1000 Hz    tone

20dB

<4 times higher loudness 

Reprinted from Canteretta and Friedman (1978)



Loudness level
Loudness level defined with reference values located at 1 kHz with 10
dB spacing in the sound pressure level

Unit: [phon]
Loudness level [phon]
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Connection between sound pressure, loudness
and loudness level

N = loudness [sone]

LL = loudness level
[phon]

N = 2(LL−40)/10

LL = 40 + 10 log2(N)

N = k · (p − p0)
0.6

Doubling loudness in
sones means 10phon
(= 10dB @ 1kHz)
change in loudness
level (or SPL)
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Loudness of tone in presence of noise

White noise as masker with different SPLs

Loudness decreases fast when approaching the masking threshold

sound pressure level of partly masked tone [dB]
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Loudness with broad-band signals

Loudness is often affected, if the spectrum of sound changes and SPL
is kept equal

This was already seen in basic loudness listening test with sinusoids
and noise

sound pressure level [dB]
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Loudness with two sinusoids
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The level of a reference tone adjusted to match the loudness with a pair
of tones

Frequency difference shown in x-axis

Must be some kind of frequency integration in hearing!
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A theoretic view of loudness process
Input signal spectrum S(f ) is warped to auditory frequency scale z

S′(z) = S[f (z)] df
dz

Signal also spreads in frequency due to frequency masking, B(z) is
spreading function

E(z) = S′(z) ? B(z)

Compute specific loudness N ′(z), kind of loudness function over
frequency

N ′(z) = c E(z)0.23

Integrate over frequency for loudness N

N =
∫ M

0 N ′(z)dz
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Excitation pattern and specific loudness

a) excitation patterns. b) Specific loudness.

(dashed) sinusoid, (continuous) noise

0

1

2

10 15 20 25 30

20

40

60

42
0

frequency [ERB] frequency [ERB]sp
ec

ifi
c 

lo
ud

ne
ss

 [s
on

e/
E

R
B

]

ex
ci

ta
tio

n 
le

ve
l [

dB
]

a) b)

3550 10 15 20 25 30 423550

Adapted from Fastl and Zwicker (2007)



Difference threshold of loudness

The just noticeable level of amplitude modulation, about 1 dB with noise

Why 1kHz value decreases continuously? Similar FM-tone JND result
did not show this kind of result.
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JND threshold of amplitude modulation

Curves for tones with two levels and noise
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Difference threshold of loudness

AM causes periodic change of width of excitation pattern, especially at
higher levels

With FM this is not available

Explains why larger level causes smaller difference thresholds

AM modulation FM modulation
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Loudness vs duration of sound

The dependence of loudness level on duration

Tone burst with frequency of 2kHz and a sound pressure level of 57dB
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Timbre

When two sounds have the same pitch, loudness, and duration, timbre
is what makes one particular sound different from another

Humans recognize the sound source mostly with timbre

Closest physical explanation is magnitude spectrum and its variation
with time

Also phase spectrum has an effect

Complex phenomenon, not well understood or modeled

Simple specific loudness models explain only steady noise-like sounds



Perceived duration of sound

1-kHz tone at an SPL of 60 dB with duration shown in x-axis

Adjust the duration to "twice" or "half"

Subjective duration [dura]
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