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Auditory models

Auditory system can not be explained with mathematical expressions
accurately

E.g., the formula presented for loudness don’t explain many
phenomena in hearing

DSP models of hearing have proven to be effective in modeling

A large number of different types of auditory models have been
developed

We go through some basic versions of most-well-known models



This chapter

Simple psychoacoustic models;

Filter bank models;

Cochlear models;

Hair-cell models;

Models for cognitive processing;

Models of binaural interaction.



Simple psychoacoustic model with DFT

Windowing with 25 ms Hamming window

DFT (discrete Fourier transform)

Power spectrum

Magnitude response of ear canal and middle ear

Spreading of excitation in frequency



Sine input

Power spectrum Auditory spectrum
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White noise input

Power spectrum Auditory spectrum
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/a/ input

Power spectrum Auditory spectrum
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/s/ input

Power spectrum Auditory spectrum
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Mel cepstral coefficients
Utilized widely in speech recognition

Similar processing with DFT-based auditory models
Speech input

Pre-emphasis

Windowing

Power spectrum

Mel filter bank

Discrete cosine transform

MFCC features

...

... M = 20
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Shortcomings with DFT-based auditory models

Time window forces equal time resolution at all frequencies, not realistic

Forward masking and temporal integration not easy to model

Level-dependent effects



Filter bank models
Model cochlea by time-domain parallel filters

Neural phase locking (half-wave rect, low-pass filter)

Adaptation, temporal integration (e.g., loudness modeling)
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Gamma-tone filter bank
Often used in auditory modeling
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Simple auditory model

%create of a gammatone filter bank using a command from the auditory
%modelling toolbox (http://amtoolbox.sourceforge.net)
[b,a] = gammatone(erbspacebw(fLow,fHigh),fs,’complex’);

%processing the signal through the filter bank
filterOut = real(ufilterbankz(b,a,sample));

%emulation of the neural transduction with half-wave rectification and
%low-pass filtering of the filter bank output
rectified = filterOut.*(filterOut>0);

%a first-order IIR filter is used as the low-pass filter
beta = exp(-fCut/fs);
outSig = filter(1-beta,[1 -beta],rectified);



Shortcomings in simple filter-bank models

Better approximation of time-frequency resolution than DFT models

Time resolution may still be to coarse at high frequencies

Response to short transients is too slow

Level-dependent effects are missing



Dual-resonance filter bank

Implements at least some level-dependent effects in cochlea

Lower path broader, upper path narrower response
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Modeling of neural adaptation

Serial feedback loops with division

: : :

t1 t2 t3

half-wave
rectification
and low-pass

post-
processing

time time

input output



Modeling basilar membrane
1D-2D-3D FEM, Transmission line models,

Electric equivalent models with possible nonlinear components
modeling outer hair cells

Computationally very demanding, becoming more popular
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Transmission-line model response to click train
High-frequency response: peak + noise burst, simulates outer hair cell
functionality
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Modeling cells separately

Processing the
neurotransmitters in
hair cell
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Periodicity analysis, functional model
Assumes time-domain analysis of the pitch

Sum autocorrelation function
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Periodicity analysis, example
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b) filter bank outputs
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c) normalized cochleograms
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Models of spatial hearing
Spatial hearing is based on signal analysis in the brains

Decoding of monaural spectral cues
Decoding of binaural cues
Binaural detection of signals

Distance perception, no models available
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Delay-network-based models

Signals from the ears meet in neurons, topographic mapping

Most active output defines the azimuth (of confusion cone)
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Definition of ITD cue by selection of channel with highest output                

 ITD-selective channels



Delay-network response to source in free field
Speech source in 30◦
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Count-comparison models

An estimate of left-right coordinate is computed

Not topographic mapping, only computation of spatial information,
"where is the source?"
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Difference between principles of binaural models
The first neurons sensitive to ITD have different sensitivities assumed
by the models

Debate is going on. Some neurophysiological evidence that delay-lines
exist in avians, and count-comparison mechanisms in mammals
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Applications of auditory models

Audio coding
Psychoacoustic or perceptual models of masking

Sound quality modeling
Modeling of perceived differences
Criteria for audio reproduction
Binaural audio quality

Speech recognition
Advanced front-end models

Advanced hearing aids
Cochlear implants
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