Communication acoustics Ch 2: Physics of sound - Acoustics

Ville Pulkki and Matti Karjalainen

Department of Signal Processing and Acoustics
Aalto University, Finland
Sept 26, 2023

Physics of sound

- Basic quantities

■ Vibration \rightarrow generation of sound

- Resonance, resonators
- Sound radiation
- Sound propagation

■ Reflection, absorption,

- Diffraction, refraction

■ Modeling of acoustics

Sound pressure

- Atmospheric pressure $p_{\mathrm{a}} \approx 101 \mathrm{kPa}$, can be assumed constant with time
- Pressure disturbances travel as sound waves
- Total pressure $p_{\mathrm{tot}(t)}=p_{\mathrm{a}}+p(t)$

■ Instantaneous sound pressure $p(t)[\mathrm{Pa}]$ can be captured with a microphone
■ Audible sounds have frequencies between about 20 Hz and 20 kHz
■ Effective value (rms value) of sound pressure

$$
p_{\mathrm{rms}}=\sqrt{\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} p(t)^{2} \mathrm{~d} t}
$$

Sound pressure level, Decibel

- Effective sound pressure p [Pa] (rms value)
- Sound pressure level $L_{p}=20 \log _{10}\left(p / p_{0}\right)$

■ Reference pressure $p_{0}=20 \cdot 10^{-6} \mathrm{~Pa}$

ratio	decibels	ratio	decibels
$1 / 1$	0		
$\sqrt{2} \approx 1.41$	$\approx 3.01 \approx 3$	$\sqrt{1 / 2} \approx 0.71$	$\approx-3.01 \approx-3$
$2 / 1$	$\approx 6.02 \approx 6$	$1 / 2$	$\approx-6.02 \approx-6$
$\sqrt{10} \approx 3.16$	10	$\sqrt{1 / 10} \approx 0.316$	-10
$10 / 1$	20	$1 / 10$	-20
$100 / 1$	40	$1 / 100$	-40
$1000 / 1$	60	$1 / 1000$	-60

Vibration - generation of sound

■ Most of physical sounds in natural environment are caused by vibrating objects

- Frequency range 20 Hz - 20 kHz (audible frequencies)

■ Impact sounds, water, animal sounds, human voice, musical instruments

- Exception: electric sparks, thunder

Vibrating systems

a)

b)

c)

d)

e)

■ Simple vibration: mass-spring system

Vibrating systems

■ $y(t)=\boldsymbol{A} e^{-\alpha t} \cos \left(\omega_{\mathrm{d}} t+\phi\right)=\boldsymbol{A}(t) \cos (\psi(t))$

Resonance

■ Mass-spring resonator
■ Single mass, single resonance, single mode

Resonance

■ Helmholtz-resonator

Two-mass vibrating systems

a)

b)

c)

d)

■ Transversal and longitudinal vibration of a two-mass system
■ Each case forms a mode (a resonance)
■ Two modes in transversal vibration
■ Two modes in longitudinal vibration

Three-mass vibrating systems

a)
b) คrom

■ Transversal and longitudinal vibration of a three-mass system

Vibration modes of a string

- String is continuous, infinite number of masses
- Infinite number of modes, whose resonance frequencies are integer multiples of fundamental frequency
■ Harmonic spectrum
■ (demo with guitar string)

Modes and spectral content in string vibration

a)

Relative amplitude Harmon.

1	1	+
2	0.40	+
3	0.18	+
4	0.06	+
5	0	
6	0.03	-

d)

Modes in bars

■ Stiffness of bar makes frequencies to travel with different speeds

- Modes are not related to each other with integer relations
- Inharmonic spectrum
- (demo)

Resonance modes in tube

- Harmonic spectrum

■ Spectrum: a) all harmonics b) only odd harmonics

- (demo with tube)

1D wave propagation

■ Wave equation $\ddot{y}=c^{2} y^{\prime \prime}$
■ D'Alember 1D solution $y(t, x)=g_{1}(c t-x)+g_{2}(c t+x)$
■ $\lambda=c / f$

Wave propagation animations

Click for animation
Animation courtesy of Dr. Dan Russell, Grad. Prog. Acoustics, Penn State

- Speed of wave propagation c

Wave phenomena: plane wave in tube

- Reflection and transmission. $R=\frac{Z_{2}-Z_{1}}{Z_{2}+Z_{1}}$

Modes in 2D membranes

■ Complex distribution of modes \rightarrow inharmonic spectrum

Radiation from sound source

■ Sound is caused by mechanical vibrations in audible range of frequencies
\square Sound source is coupled to air
■ Some of energy of source vibration emanates as sound

- Radiation has often directional pattern, sound is radiated to different directions with different strengths

Spherical wave propagation

■ Sound speed in air $c_{\text {air }}(T)=331.3+0.6 T$

- Longitudinal wave, moving rarefactions and compressions
- Spherical wave:
- Energy is constant in each spherical wave
- Area of the wave $\propto r^{2}->$ energy decays with $1 / r^{2}$ law
- Amplitude decays with $1 / r$ law
- $p_{1} r_{1}=p_{2} r_{2}, p_{2}=p_{1}\left(r_{1} / r_{2}\right)$

Directional patterns

■ Omnidirectional radiates with amplitude coefficient c_{0} to all directions

- Dipole $c_{1} \cos \theta$
- Quadrupole $c_{2} \cos 2 \theta$

■ When source is large compared to wave length, the radiation pattern is affected a lot
■ The directionality is often irregular, as sources are typically irregular in shape

Reflection and refraction

■ After radiation, sound wave continues straight ahead, if medium is still and has constant density

■ In cases of obstacles, or changes in medium, sound changes its direction

Diffraction

- non-planar surfaces and especially edges (other than 90 degrees corners) act as secondary sources

Sound propagation paths in a room

Impulse response of a room

- Theoretic response to an ideal impulse
- Instantaneous amplitude of $p(t)$ is plotted

Impulse response of a room

Real measured response of a listening room to a laser-induced spark source

3D propagation of sound visualized in 2D plane
\rightarrow Link to ripple tank visualization

Diffuse field, room modes

■ Diffuse field: sound with equal frequency content arrives evenly from all directions with random phase relations
■ Late reverberation produces diffuse field in many rooms

- Rooms have also resonances

■ Standing waves can be evoked with sinusoidal stimulus
■ Room modes: spatial distribution of pressure [or velocity] maxima

- Link to room mode visualization

Modes in rectangular room

- A normal room has its own resonances
- Mode frequencies for a room with only right-angled corners

$$
f\left(n_{x}, n_{y}, n_{z}\right)=\frac{c}{2} \sqrt{\left(\frac{n_{x}}{L_{x}}\right)^{2}+\left(\frac{n_{y}}{L_{y}}\right)^{2}+\left(\frac{n_{z}}{L_{z}}\right)^{2}}
$$

Reverberation time

■ The time that it takes sound to decay 60dB after offset

- Can be measured from impulse response

■ In reverberant rooms similar values found for different positions
■ In rooms with absorbents, value may change a lot depending on position

Estimation of reverberation time

■ Sabine's formula for simple estimation from room geometry: $T_{60}=0.161 \mathrm{~V} / \mathrm{S}$
■ Volume of room $V\left[\mathrm{~m}^{3}\right]$

- Absorption area of room S
$\square S=\sum a_{i} A_{i}, a_{i}$ is absorption coefficient (e.g., table below)
- A_{i} is surface area [m^{2}]

■ Assumes diffuse field: not accurate often (non-cubical rooms, non-equal distribution of absorption)

Frequency	125	250	500	1000	2000	4000
Glass window	0.35	0.25	0.18	0.12	0.07	0.04
Painted concrete	0.10	0.05	0.06	0.07	0.09	0.08
Wooden floor	0.15	0.11	0.10	0.07	0.06	0.07

Level of sound field in room as function of distance from source

$L_{p}=L_{W}+10 \log _{10}\left(\frac{Q}{4 \pi r^{2}}+\frac{4}{S}\right), L_{r}=L_{W}+10 \log _{10}\left(\frac{4}{S}\right)$
■ radius of reverberation r_{r}

- $r_{r}=\frac{1}{4} \sqrt{\frac{Q S}{\pi}}$

Sound pressure caused by multiple sources

■ Sound pressure is always measured in single position with a microphone (or listened to with ear)

- Often microphone captures sound (almost) equally from all directions

■ How can we compute the sound pressure caused by multiple sources?

$$
\begin{gathered}
p_{\text {rms }}=\sqrt{\frac{1}{t_{2}-t_{1}} \int\left(p_{1}(t)+p_{2}(t)\right)^{2} \mathrm{~d} t} \\
p_{\mathrm{rms}}=\sqrt{\frac{1}{t_{2}-t_{1}} \int\left(p_{1}^{2}(t)+2 p_{1}(t) p_{2}(t)+p_{2}^{2}(t)\right) \mathrm{d} t}
\end{gathered}
$$

$2 p_{1}(t) p_{2}(t)$ has mean value of zero if $p_{1}(t)$ and $p_{2}(t)$ are uncorrelated

$$
p_{\mathrm{rms}}=\sqrt{\frac{1}{t_{2}-t_{1}} \int\left(p_{1}^{2}(t)+p_{2}^{2}(t)\right) \mathrm{d} t}
$$

Sound pressure caused by multiple sources

- If coherent sound arrives from multiple directions to microphone (reflections, stereophonic sound)

■ Two sources: $p_{\text {tot }}(t)=p(t)+p(t)=2 p(t)$

- 6dB increase in prms
- If incoherent sound arrives from multiple directions to microphone (multiple concurrent sources)
- N sources: $p_{\text {tot }{ }_{r m s}}=\sqrt{\sum p_{\mathrm{n}_{\mathrm{rms}}}^{2}}$
- Two sources: $L_{\text {tot }}=10 \log _{10}\left(10^{L_{1} / 10}+10^{L_{2} / 10}\right)$
- 3dB increase in p_{rms}

Example 1, radiation from loudspeaker cone

A loudspeaker radiates sound with good efficiency, if the dimensions of the radiating surface are of the same order with sound being radiated. Too small radiating surface causes only air movement in vicinity of loudspeaker, and no sound is radiated far field. What can you say about radiation from a loudspeaker cone? What diameter should be needed for radiation at $30 \mathrm{~Hz}, 1 \mathrm{kHz}$ or 2 kHz .
$\lambda=c / f$

Example 1

Lets assume $c=331.5 \mathrm{~m} / \mathrm{s}$
$\lambda=c / f$
$30 \mathrm{~Hz}: \lambda=\frac{331.5 \mathrm{~m} / \mathrm{s}}{301 / \mathrm{s}}=11.05 \mathrm{~m} \approx 11 \mathrm{~m}$.

Example 1

Lets assume $c=331.5 \mathrm{~m} / \mathrm{s}$ $\lambda=c / f$
$30 \mathrm{~Hz}: \lambda=\frac{331.5 \mathrm{~m} / \mathrm{s}}{301 / \mathrm{s}}=11.05 \mathrm{~m} \approx 11 \mathrm{~m}$.
$1 \mathrm{kHz}: \lambda=\frac{331.5 \mathrm{~m} / \mathrm{s}}{10001 / \mathrm{s}}=0.332 \mathrm{~m} \approx 33 \mathrm{~cm}$.

Example 1

Lets assume $c=331.5 \mathrm{~m} / \mathrm{s}$
$\lambda=c / f$
$30 \mathrm{~Hz}: \lambda=\frac{331.5 \mathrm{~m} / \mathrm{s}}{301 / \mathrm{s}}=11.05 \mathrm{~m} \approx 11 \mathrm{~m}$.
$1 \mathrm{kHz}: \lambda=\frac{331.5 \mathrm{~m} / \mathrm{s}}{10001 / \mathrm{s}}=0.332 \mathrm{~m} \approx 33 \mathrm{~cm}$.
$10 \mathrm{kHz}: \lambda=\frac{331.5 \mathrm{~m} / \mathrm{s}}{100001 / \mathrm{s}}=0.0332 \mathrm{~m} \approx 3.3 \mathrm{~cm}$.
In practise, even largest cones are too small for 30 Hz .

Example 2, loudspeaker cone coupled to a vented

box

The efficiency of a cone in free air can be made better by attaching it to a box, and even better radiation is obtained when the resonance frequency of the box adjusted to match with desired frequency. A loudspeaker with bass reflex principle is in fact a Helmholtz resonator. A typical small loudspeaker has volume V of $5500 \mathrm{~cm}^{3}$, and a reflex tube with length / and opening area of $a=8 \mathrm{~cm}^{2}$. What would be the correct tube length for 45 Hz resonance frequency? Helmholtz resonance frequency can be computed

$$
f=\frac{c}{2 \pi} \sqrt{\frac{a}{V I}} \Leftrightarrow I=a \frac{c^{2}}{V 4 \pi^{2} f^{2}}
$$

Example 2, loudspeaker cone coupled to a vented box

Helmholtz resonance frequency can be computed

$$
f=\frac{c}{2 \pi} \sqrt{\frac{a}{V I}} \Leftrightarrow I=a \frac{c^{2}}{V 4 \pi^{2} f^{2}}
$$

Numerical values:

$$
I=8 * \frac{(340 * 100 \mathrm{~cm} / \mathrm{s})^{2}}{5500 * 4 \pi^{2} 45^{2}}=21 \mathrm{~cm}
$$

Example 3, reverberation time of a room

The dimensions of an empty right-angled room are $10 \mathrm{~m} \times 6 \mathrm{~m} \times 3 \mathrm{~m}$. The absorption coefficients at 500 Hz are in floor 0.06 , ceiling 0.17 and walls 0.20 . There are no windows neither doors in the room.

1. Compute the T_{60} of the room
2. What absorption coefficient should the walls have to obtain 0.7 s for T_{60} ? Sabine's formula to estimate (more or less roughly) reverberation time:

$$
T_{60}=0.161 \frac{\mathrm{~V}}{\mathrm{~S}}
$$

where $V=$ volume, $S=$ absorption area $=\sum_{i} a_{i} A_{i}, A_{i}=$ area of a surface i, and $a_{i}=$ absorption coefficient of surface i

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$ ceiling: $S_{c}=60 * 0.17=10.2 \mathrm{~m}^{2}$

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$
ceiling: $S_{c}=60 * 0.17=10.2 \mathrm{~m}^{2}$
walls: $S_{w}=2 * 30 * 0.20+2 * 0.2 * 18=19.2 \mathrm{~m}^{2}$

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$
ceiling: $S_{c}=60 * 0.17=10.2 \mathrm{~m}^{2}$
walls: $S_{w}=2 * 30 * 0.20+2 * 0.2 * 18=19.2 \mathrm{~m}^{2}$
Reverberation time is computed from total absorption area:

$$
\begin{equation*}
S=3.6+10.2+19.2=33.0 \mathrm{~m}^{2} \tag{1}
\end{equation*}
$$

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$
ceiling: $S_{c}=60 * 0.17=10.2 \mathrm{~m}^{2}$
walls: $S_{w}=2 * 30 * 0.20+2 * 0.2 * 18=19.2 \mathrm{~m}^{2}$
Reverberation time is computed from total absorption area:

$$
\begin{array}{r}
S=3.6+10.2+19.2=33.0 \mathrm{~m}^{2} \tag{1}\\
T_{60}=0.161 \frac{V}{S}=0.161 * \frac{180}{33}=0.878 \mathrm{~s}
\end{array}
$$

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$
ceiling: $S_{c}=60 * 0.17=10.2 \mathrm{~m}^{2}$
walls: $S_{w}=2 * 30 * 0.20+2 * 0.2 * 18=19.2 \mathrm{~m}^{2}$
Reverberation time is computed from total absorption area:

$$
\begin{array}{r}
S=3.6+10.2+19.2=33.0 \mathrm{~m}^{2} \tag{1}\\
T_{60}=0.161 \frac{V}{S}=0.161 * \frac{180}{33}=0.878 \mathrm{~s}
\end{array}
$$

2. Absorption coefficient for walls.

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$
ceiling: $S_{c}=60 * 0.17=10.2 \mathrm{~m}^{2}$
walls: $S_{w}=2 * 30 * 0.20+2 * 0.2 * 18=19.2 \mathrm{~m}^{2}$
Reverberation time is computed from total absorption area:

$$
\begin{array}{r}
S=3.6+10.2+19.2=33.0 \mathrm{~m}^{2} \tag{1}\\
T_{60}=0.161 \frac{V}{S}=0.161 * \frac{180}{33}=0.878 \mathrm{~s}
\end{array}
$$

2. Absorption coefficient for walls.

Absorption area: $S_{w}=K \frac{V}{T_{60}}-S_{f}-S_{c}$

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$
ceiling: $S_{c}=60 * 0.17=10.2 \mathrm{~m}^{2}$
walls: $S_{w}=2 * 30 * 0.20+2 * 0.2 * 18=19.2 \mathrm{~m}^{2}$
Reverberation time is computed from total absorption area:

$$
\begin{array}{r}
S=3.6+10.2+19.2=33.0 \mathrm{~m}^{2} \tag{1}\\
T_{60}=0.161 \frac{V}{S}=0.161 * \frac{180}{33}=0.878 \mathrm{~s}
\end{array}
$$

2. Absorption coefficient for walls.

Absorption area: $S_{w}=K \frac{V}{T_{60}}-S_{f}-S_{c}$
Substitute numeric values $S_{w}=0.161 \frac{180}{0.7}-3.6-10.2=27.6 \mathrm{~m}^{2}$

Example 3, reverberation time of a room

Volume of the room: $V=10 * 6 * 3=180 \mathrm{~m}^{3}$

1. Reverberation time. Total absorption area: $S=S_{f}+S_{c}+S_{w}$ floor: $S_{f}=60 * 0.06=3.6 \mathrm{~m}^{2}$
ceiling: $S_{c}=60 * 0.17=10.2 \mathrm{~m}^{2}$
walls: $S_{w}=2 * 30 * 0.20+2 * 0.2 * 18=19.2 \mathrm{~m}^{2}$
Reverberation time is computed from total absorption area:

$$
\begin{array}{r}
S=3.6+10.2+19.2=33.0 \mathrm{~m}^{2} \tag{1}\\
T_{60}=0.161 \frac{V}{S}=0.161 * \frac{180}{33}=0.878 \mathrm{~s}
\end{array}
$$

2. Absorption coefficient for walls.

Absorption area: $S_{w}=K \frac{V}{T_{60}}-S_{f}-S_{c}$
Substitute numeric values $S_{w}=0.161 \frac{180}{0.7}-3.6-10.2=27.6 \mathrm{~m}^{2}$
The absorption coefficient should then be: $a=\frac{S_{w}}{A_{w}}=\frac{27.6}{2 * 30+2 * 18}=0.29$

Example 4, SPL generated by multiple sources

Average talking produces 60 dB SPL in 1 m distance. What would be the SPL when

1. two persons are talking?
2. 10 persons are talking?
3. two persons with distances 1 m and 3 m are talking?

Assume that all of them are in 1 m distance from the position of measurement.
Sound arriving from each source is incoherent, which means that the effective pressure p will be summed as quadratic.

$$
p=\sqrt{\left(p_{1}^{2}+p_{2}^{2}\right)}
$$

Example 4, SPL generated by multiple sources

Effective sound pressure caused by one talker is p_{1}.
Lets compute SPLs:

1. Two talkers

The pressure for two talkers is $p_{2}=\sqrt{p_{1}^{2}+p_{1}^{2}}=p_{1} \sqrt{2} . \Rightarrow$

$$
L=20 \lg \left(p_{2}\right)=20 \lg \left(p_{1} \sqrt{2}\right)=L_{1}+3.01 \mathrm{~dB}=63 \mathrm{~dB} .
$$

Example 4, SPL generated by multiple sources

Effective sound pressure caused by one talker is p_{1}.
Lets compute SPLs:

1. Two talkers

The pressure for two talkers is $p_{2}=\sqrt{p_{1}^{2}+p_{1}^{2}}=p_{1} \sqrt{2} . \Rightarrow$
$L=20 \lg \left(p_{2}\right)=20 \lg \left(p_{1} \sqrt{2}\right)=L_{1}+3.01 \mathrm{~dB}=63 \mathrm{~dB}$.
2. Ten talkers: $\Rightarrow L=20 \lg \left(\sqrt{10} * p_{1}\right)=L_{1}+10 \mathrm{~dB}=70 \mathrm{~dB}$

Example 4, SPL generated by multiple sources

Effective sound pressure caused by one talker is p_{1}.
Lets compute SPLs:

1. Two talkers

The pressure for two talkers is $p_{2}=\sqrt{p_{1}^{2}+p_{1}^{2}}=p_{1} \sqrt{2} . \Rightarrow$

$$
L=20 \lg \left(p_{2}\right)=20 \lg \left(p_{1} \sqrt{2}\right)=L_{1}+3.01 \mathrm{~dB}=63 \mathrm{~dB}
$$

2. Ten talkers: $\Rightarrow L=20 \lg \left(\sqrt{10} * p_{1}\right)=L_{1}+10 \mathrm{~dB}=70 \mathrm{~dB}$
3. Two talkers with distances of 1 and 3 meters:
$p_{t}=\sqrt{p_{1}^{2}+\left(p_{1}\left(r_{1} / r_{2}\right)\right)^{2}}=\sqrt{p_{1}^{2}+\left(p_{1} 1 / 3\right)^{2}}=\sqrt{p_{1}^{2}+1 / 9\left(p_{1}\right)^{2}}=$
$p_{1} \sqrt{10 / 9}$

$$
\begin{equation*}
L=20 \lg \left(\sqrt{10 / 9} * p_{1}\right)=L_{1}+0.5 d B=60.5 \mathrm{~dB} \tag{2}
\end{equation*}
$$

References

These slides follow corresponding chapter in: Pulkki, V. and Karjalainen, M. Communication Acoustics: An Introduction to Speech, Audio and Psychoacoustics. John Wiley \& Sons, 2015, where also a more complete list of references can be found.

