

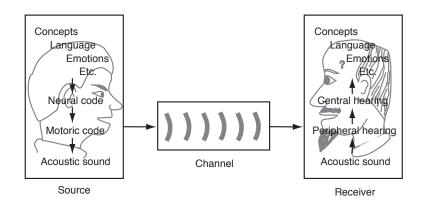
Communication acoustics Ch 5: Human voice

Ville Pulkki and Matti Karjalainen

Department of Signal Processing and Acoustics Aalto University, Finland

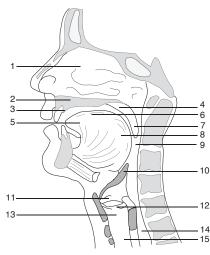
October 3, 2023

Speech


Speech

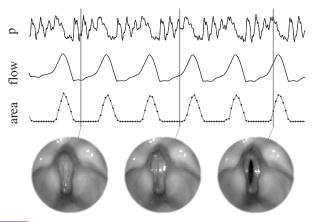
- Speech production mechanism
- Vocal folds phonation
- Vocal and nasal tract articulation
- Units and notation of speech: vowels, consonants
- Prosody of speech

- Speech
 - Speech production mechanism
 - Vocal folds phonation
 - Vocal and nasal tract articulation
 - Units and notation of speech: vowels, consonants
 - Prosody of speech
- Modeling of voice production


- Speech
 - Speech production mechanism
 - Vocal folds phonation
 - Vocal and nasal tract articulation
 - Units and notation of speech: vowels, consonants
 - Prosody of speech
- Modeling of voice production
- Singing voice

Speech communication chain

Speech production mechanism


- 1. Nasal cavity
- 2. Hard palate
- 3. Alveolar ridge
- 4. Soft palate (velum)
- 5. Tongue tip
- 6. Dorsum
- 7. Velum
- 8. Radix
- 9. Pharynx
- 10. Epiglottis
- 11. False vocal folds
- 12. Vocal folds
- 13. Larynx
- 14. Esophagus
- 15. Trachea

Phonation and articulation

- Vocal fold phonation
 - Generation and controlling of voiced sound in glottis
- Vocal tract and nasal tract articulation
 - Controlling of voice features by articulation organs
- Concepts
 - Glottis (vocal fold opening)
 - Voiced / unvoiced / combined
 - Constriction
 - Formant
 - Vowel / consonant
 - Prosodic features

Vocal folds – phonation

Link to vocal fold video

Vocal tract and nasal tract - articulation

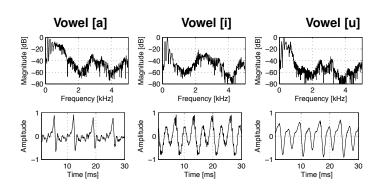


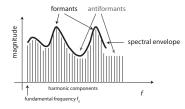
Units and notation of speech – Phonetics

- Phonetics: study and description of spoken language
- Languages and language families
 - Indo-European, Dravidian, Uralic, ...
- Phonetic alphabet:
 - IPA (International Phonetic Alphabet)
 - Computerized: SAMPA, Speech synthesis markup language, ...
- Units of spoken language:
 - Phoneme (smallest linguistic unit), abstract unit class
 - Phone, a concrete unit of speech, including details of producing the sound
 - Allophone (alternative pronounciations of a phoneme)
 - Diphone (from mid phone via transition to the mid of next one
 - Triphone (similar combination of three successive phones)
 - Speech segment (typically subunit of a phone)

Vowels (English)

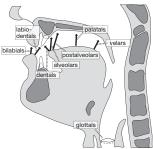
- Front-back position of tongue
- Open-closed position of tongue
- Rounded-unrounded opening of mouth


The symbols on the left of the vertical line have the mouth in an unrounded opening of the lips and those on the right in a rounded one. 2005 International Phonetic Association.


Vowels (English)

examples	IPA symbol	examples
beat	I	bit, (busy)
bait	3	bet
bat	а	cot
caught	0	coat
book	u	boot
but	ə	<i>a</i> bout
	beat bait bat caught book	beat

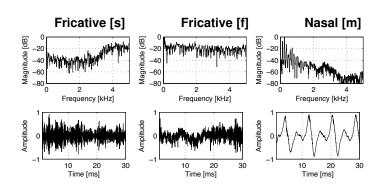
▶ Link to IPA page with sound examples of vowels and consonants


Vowel spectra

Consonants (English)

- Articulation place
 - Labial, dental, palatal, velar, laryngeal
- Articulation manner
 - Stop consonant, fricative, nasal, trill, lateral, approximant

Consonants (English)

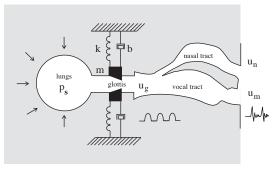

IPA symbol	ol example mann		voiced	position
j	j you		yes	palatal
W	WOW	approximant	yes	labial-velar
,	red (American dialect)	approximant	yes	alveolar
1	lull	approximant	yes	lateral
r	roar	trill	yes	alveolar
m	my	nasal	yes	bilabial
n	none	nasal	yes	alveolar
ŋ	hang	nasal	yes	velar
f	fine	fricative	no	labiodental
V	valve	fricative	yes	labiodental
θ	thigh	fricative	no	dental
ð	though	fricative	yes	dental
s say		fricative	no	alveolar

Consonants (English)

Z	Z00	fricative	yes	alveolar
ſ	show	fricative	no	postalveolar
3	measure	fricative	yes	postalveolar
h	how	fricative	no	glottal
p	pot	plosive	no	labial
b	bib	plosive	yes	labial
t	tot	plosive	no	alveolar
d	did	plosive	yes	alveolar
k	kick	plosive	no	velar
g	gig	plosive	yes	velar
t∫	church	affricate	no	alveopalatal
d∫	judge	affricate	yes	alveopalatal

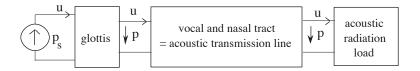
Table: Table of common American English consonants

Consonants signals and spectra

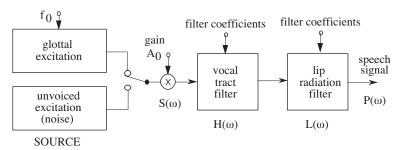


Prosody

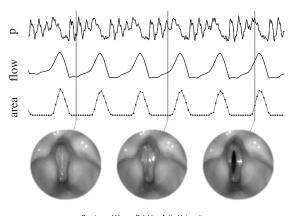
- Intonation
 - Variations of f_0
- Stress
 - Pitch accent, dynamic accent, qualitative accent, quantitative accent
- Rhythm and timing
 - Division of words and phonemes in time


Modeling of speech production

Simplification of the speech production mechanism, acoustic model

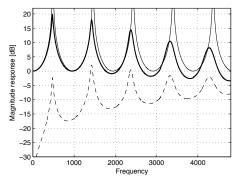

Transmission-line model of speech production

- Glottal oscillator
- Vocal tract as a transmission line
- Lip radiation as acoustic load

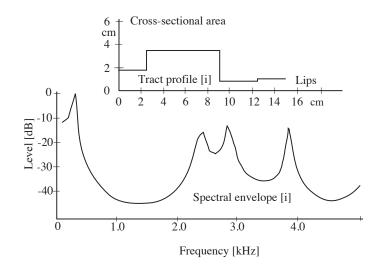


Signal model of speech production

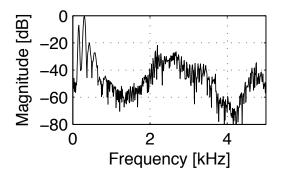
- Source-filter model
- Excitation (source)
 - (a) voiced = quasiperiodic
 - (b) unvoiced = noiselike excitation
- Filter = response of vocal and nasal tract



Glottal oscillation

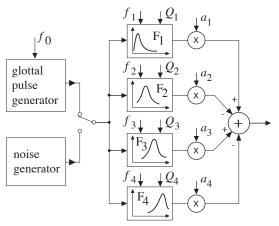

Courtesy of Hannu Pulakka, Aalto University.

Resonances of a tube



Thin line an idealized, lossless case. **Thick line** simulation with losses due to yielding walls, friction, and thermal loss. **Dashed line** shows the transfer function from the glottal velocity to pressure after lip radiation.

Vocal tract model resonances



Vocal /i/ spectrum

compare with vocal tract model output one previous page

Formant synthesis model

Used to in certain speech synthesis methods

Singing voice

- \blacksquare Clear pitch, avoid glissandos, use stable f_0 within each note
- Spectrum is different from normal speech
- Vibrato, pitch and/or level is modulated with about 7 Hz
- Wider range of f₀ than in speech
- Classical singing style
 - Target is to be heard over a symphony orchestra without amplification
 - 'Singers formant' around 3 kHz makes voice more audible
 - In soprano singing the singer adjusts the frequency of formant(s) to match the frequency(ies) of partial(s) → high amplification

References

These slides follow corresponding chapter in: Pulkki, V. and Karjalainen, M. Communication Acoustics: An Introduction to Speech, Audio and Psychoacoustics. John Wiley & Sons, 2015, where also a more complete list of references can be found.