

Plant fibres: cell wall and structure of cellulose

Eero Kontturi Department of Bioproducts and Biosystems School of Chemical Engineering Aalto University

CHEM-E2140

Learning outcome

After this lecture, you will be able to:

- Answer the questions: where does cellulose come from?
- Distinguish herbaceous and woody plants (main source of cellulose)
- Describe the main points of cell wall ultrastructure: chemistry, morphology, and hierarchy

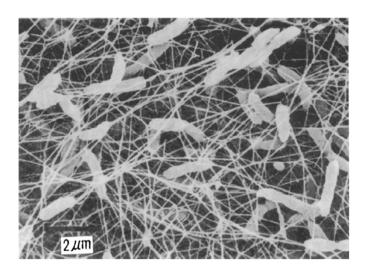
Contents

- (1) What is cellulose
- (2) Sources of cellulose
- (3) Plants: basics definitions
- (4) Woody plants and herbaceous plants
- (5) Wood structure and plant cell types
- (6) Plant cell walls: hierarchical structure of fibres
- (7) Chemical structure of fibres
- (8) Isolation of fibres from plant matrix

What is cellulose

- Cellulose is a polysaccharide biosynthesized in nature
- Main structural (load bearing) component of all plants
- The most abundant biopolymer on earth (10¹² tons produced per year)

- Poly (1,4-β-D-glucopyranose)
- Linear homopolymer
- Forms semi-crystalline microfibrils
- Recalcitrant
- Insoluble


Sources of cellulose

Cellulose is produced via biosynthesis in nature

There are three known sources of cellulose:

- (1) Certain species of bacteria (bacterial cellulose)
- (2) Tunicates (animal cellulose)
- (3) Plants (plant cellulose)

Bacterial cellulose

- Some species of bacteria are able to biosynthesize cellulose (notably acetobacteria xylinum)
- The cellulose is extracellular, it is not in the bacteria but extruded by the bacteria
- Bacterial cellulose is the only pure form of cellulose in nature, no other components are synthesized with cellulose
- Microfibrils in bacterial cellulose are generally larger than in other cellulose grades

Tunicate cellulose

- Tunicates are small marine animals
- They are the only species of animals that biosynthesize cellulose
- The body of a tunicate is surrounded by a test or a tunic where the cellulose is produced
- Tunicate cellulose is in the form of microfibrils that are highly crystalline compared with most plant celluloses

Plants

What is a plant?

By plants, people usually refer to *green plants*:

- Flowering plants (angiosperms)
- Gymnosperms
- Mosses
- Clubmosses
- Hornworts
- Liverworts
- Ferns
- Green algae

Two main features of all plants:

- Possess cell walls with cellulose as the main structural material
- Get most of their energy from photosynthesis

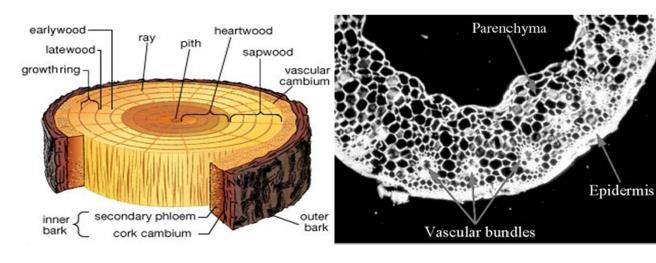
Categorisation of plants

Plants can be categorised in many ways; however, from the point of view of fibre materials, the most sensible division is to:

Herbaceous plants

- Agro fibres
- At least the part above ground dies after the growing season

Woody plants


- Wood fibres
- Remain alive during dormant season; reinforced by secondary xylem

Herbaceous vs. woody plants

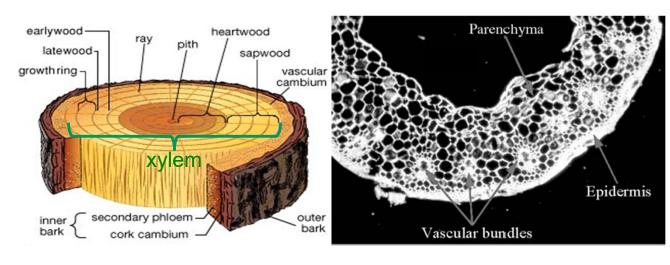
Localization of growth

(a) Woody plant

(b) Herbaceous plant

Growth occurs by cell division in vascular cambium

Growth occurs by cell division in vascular bundles



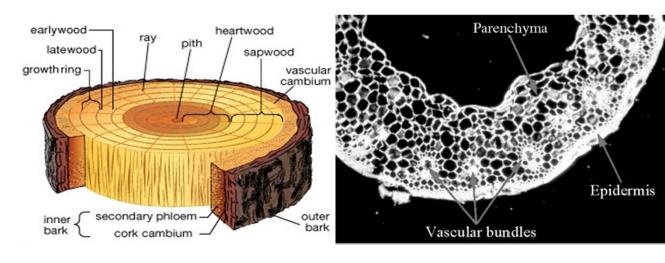
Herbaceous vs. woody plants

Strength distribution

(a) Woody plant

(b) Herbaceous plant

Strength provided by fibres all over the xylem


Much of the strength provided by epidermis (cellulose+silica) and fibres

Herbaceous vs. woody plants

Water transport

(a) Woody plant

(b) Herbaceous plant

Water transport occurs through xylem fibres

Water transport occurs mainly through vascular bundles

Common plants in fibre technology

Woody plants:

- Trees
- Shrubs

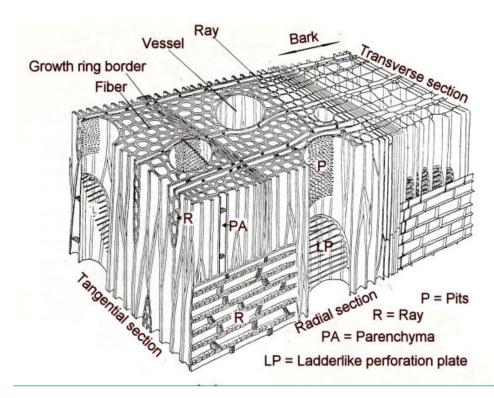
Herbaceous plants:

- Flax
- Cotton
- Jute
- Kenaf
- Bamboo
- Ramie
- Sisal

Wood structure and plant cell types

Heartwood and sapwood

SAPWOOD ~


- conducts water and minerals nutrients
- has (also) living tissue
- → active tissue

HEARTWOOD

- does not take part in water conduction
- high extractives content
- → inactive tissue
- protects wood against rot or insect decay

Fibres, vessels, parenchyma cells

Fibres: strength, water transport

Vessels: water and nutrition

transport

Parenchyma: storage of water

and nutrition

Softwood vs. hardwood

Softwood: from coniferous trees (evergreens, ones that have needles)

Hardwood: from deciduous trees (ones that have leaves)

Softwood vs. hardwood

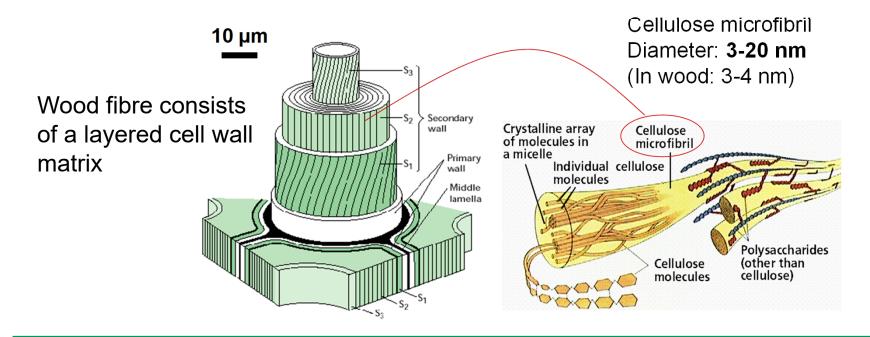
SOFTWOOD

EARLYWOOD AND LATEWOOD DISTINCTION

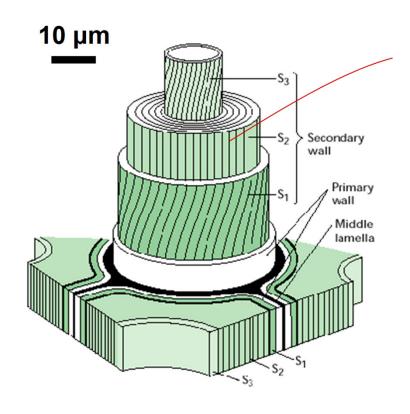
~90% OF WOOD CELLS ARE TRACHEIDS (FIBRES)

HARDWOOD

NO CLEAR DISTINCTION

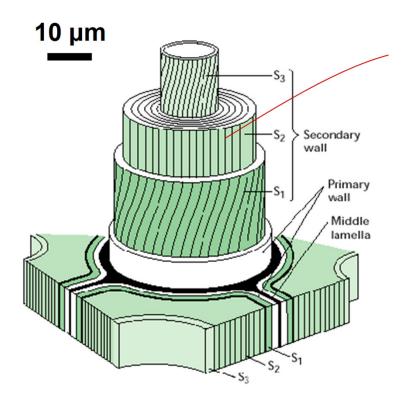

WIDER VARIETY OF WOOD CELLS
- ONLY 30-70% FIBRES

WIDER CHEMICAL DIVERSITY


Ultrastructure of plant fibres

Wood fibre

Wood fibres, like many other plants fibres, contain a secondary wall that yields exceptional strength to the fibre



Wood fibre

Wood fibre cell wall consists of semicrystalline cellulose microfibrils with amorphous lignin and hemicellulose in between.

Wood fibre

- Cellulose microfibrils are oriented in the secondary wall and arbitrarily aligned in the middle lamella
- The "fibril angle" affects the tensile strength of fibres a great deal

Chemical composition of fibres: the lowest hierarchical level

Cellulose: main structural element

- Poly (1,4-β-D-glucopyranose)
- Linear homopolymer
- Forms semi-crystalline microfibrils
- Recalcitrant
- Insoluble

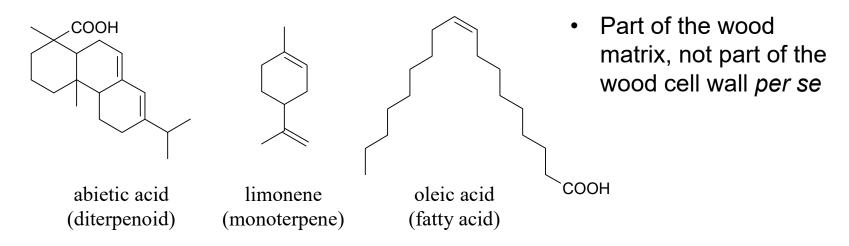
Lignin

OMe Ç-lignin HO. HO OMe HO НО OMe Example from a fragment of a НΟ、 HO lignin structure MeO HO НО

O-Lignin

ÓМе

- Non-linear polyphenol
- Structurally extremely diverse
- Glues fibres together as the main component in middle lamella
- Hydrophobic: controls the amount of water inside the cell wall
- Responsible for the brown colour of wood (pulping and papermaking aim at removing lignin as completely as possible)


Hemicellulose

Example from a structure of arabinoglucuronoxylan, a common hemicellulose in conifers

Hemicelluloses are heteropolysaccharides with low DP (<200) and they form amorphous structures in the cell wall

Extractives

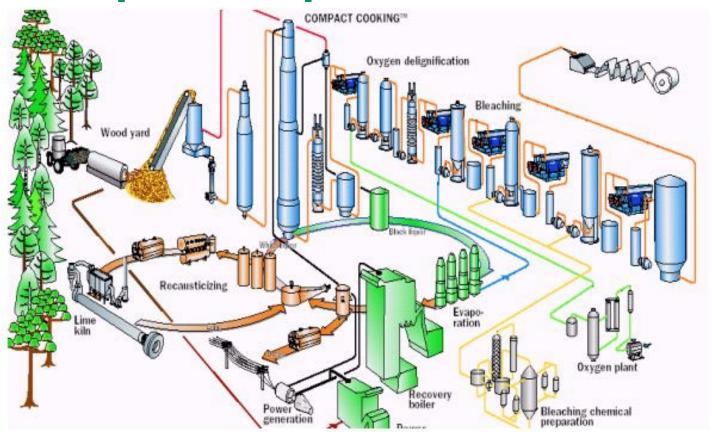
Some examples of common extractives

- Small molecular (not polymers) organic compounds that can be extracted with an organic solvent
- Thousands of different extractives abound

Chemical composition of wood

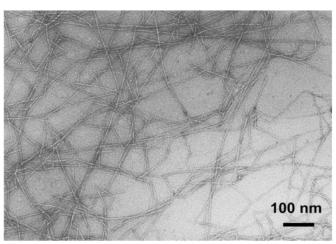
	Softwood	Hardwood
CELLULOSE	40 %	40-50 %
LIGNIN	27-33 %	19-25 %
HEMICELLULOSE	23-30 %	23-40 %
EXTRACTIVES	5-10 %	5-10 %

Isolation of fibres



Basic isolation methods

- In order to utilize fibres, they must be isolated from a plant matrix that confines them to a rigid template
- Wood fibres are generally isolated by:
 - Mechanical force (mechanical pulping)
 - Chemical means (chemical pulping)



Kraft process plant

Note: isolation of nanocellulose

Cellulose nanofibres

Cellulose nanocrystals

- At present, isolated plant fibres are further disintegrated to nanocellulose
- Nanocelluloses are also made mechanically and/or chemically
- Promising new materials in future applications

Summary on plant cells and cellulose

- Plant fibres stem from woody or herbaceous plants
- Tracheids (fibres), vessels, and parenchyma are the main types of plant cells
- Plant cell is a hierarchical construction made of cellulose, hemicellulose, and lignin
- Wood fibres are separated by either mechanical or chemical pulping
- Disintegration of wood fibres results in nanocellulose

