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Assignment

Take a couple of minutes to answer the “Before the lecture”
questions in front of you
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Learning outcome

» Basic idea on what in the structure of fibres influences the properties of
macroscopic objects made of fibres

» Awareness of quantitative theories on (nano)fibre networks

« Knowledge on how the presence and absence of water affects the
properties of fibres and fibre products
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Plant fibres vs. other fibres

All plant fibres are, by definition, composite structures:
» Cellulose/hemicellulose/lignin

Cellulose is the main structural (load-bearing)
component

Hemicellulose/lignin matrix gives flexibility and
controls the moisture content

Lignin protects against pathogen

A
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Plant fibres vs. other fibres

* Many synthetic fibres are monocomponent and homogeneous structures

* Most regenerated cellulose fibres are also monocomponent and
homogeneous structures

» All fibres can be used as reinforcing phases in composites

* However, few fibres are composites by themselves

Carbon Viscose
fibre fibres
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Properties of single

cellulose-based
fibres




Comparison of tensile properties
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» Glass fibre goes up to 3000 MPa

« However, the density of glass fibres
Lyocell-average is ~2.5 whereas cellulose fibres
Modal possess typically a density of 1.5
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Tensile strength vs. modulus
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Natural cellulose fibres (like flax)
are typically superior in tensile

strength and modulus compared
with regenerated cellulose fibres
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Single fibre properties — comparison

Table 1.
Average tensile properties of regenerated cellulose and reference fibres (E - modulus of elasticity, oy - tensile
strength, & - elongation at break, W - work to fracture, for lyocell top values are given in brackets).

Fibre E (GPa) ot (MPa) &t (%) W ()10 mm™3)
Viscose 10.8+2.5 340173 15.4+2.2 32.7
Modal 132422 437 =69 10.4+1.8 37.2
Lyocell 23.4 (30.5) 3.9 556 (790) £ 78 8.7+1.6 34.5 (47.1)
Rayon tirecord 22.24+1.0 778 £ 62 10.7+1.4 40.8
Flax 40.0+19.2 904 1+ 326 1.4+0.2 6.7
Glass 70.0+93 3000 =356 4.3+ 54.3
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Lyocell modulus — how fibre diameter
affects the modulus
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Cellulose nanofibres

« Strength and modulus depend on the method used for measuring and
interpreting but in general they are considered very high for individual fibrils

‘olvent flow

R Imploding
- S '——) cavitation
Tens:le stress bubble

o

Tensile strength for TEMPO-
oxidized nanofibres: 2-6 GPa

Elastic modulus for bacterial
cellulose nanofibres: ~80 GPa
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Comparison of strength/modulus of
various fibres
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Theoretical strength of crystalline
cellulose

Table 3

Theoretical tensile strength of cellulose crystals.
Calculation assumptions O theoretical (MPa)
Stress to cause cohesive fracture based on intra-chain link energy 7340
Stress to cause chain scission based on potential energy function 22600' and 171507
Stress to cause separation of chains if ends are all in one transverse plane 280
Stress to cause sliding fracture 1260" and 1190°
Stress normal to chain axis to rupture hydrogen bonds 300
Ultimate shear strength 323

Strength of crystalline cellulose is theoretically extremely high.

A' gg::golf';‘f"g’hs;‘,}(ical Lee et al. Compos. Sci. Technol. 2014, 105, 15. 102005
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Nanopaper strength

Nanopaper means a network (paper) made of cellulose nanofibres

Table 2. Physical and Average Mechanical Properties for MFC Films Prepared of MFC with Different DP#

modulus, slope in the plastic yield stress, tensile strength, strain-to-failure, work to fracture,
material porosity [%] E [GPa] region, n [GPa] 0y [MPa] o, [MPa] €. [%] W, [MJ/m?]
DP-410 20 13.7 (0.3) b 81.5(4.7) 129 (8.7) 3.3(0.4) 3.0 (0.5)
DP-580 24 10.7 (1.2) 1.27 (0.13) 83.6 (2.1) 159 (16.4) 6.4 (1.7) 7.1(2.5)
DP-820 10.4 (0.5) 1.50 (0.07) 83.6 (2.8) 181 (12.7) 7.4 (1.5) 9.1 (2.3)
DP-1100 28 13.2 (0.6) 1.28 (0.16) 92.2 (5.2) 214 (6.8) 10.1 (1.4) 15.1 (1.9)
2 The values in parentheses are the sample standard deviations. © Due to low ¢, the plastic region is limited and this value can not be calculated

However, the strength of crystalline cellulose is not realized even in the highly

dense nanopapers.

6.10.2023
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Presemo

Take out your laptops or smartphones and type:
https://presemo.aalto.fi/e2140stpr
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Fibre network
- Cox

- Page
- Gibson-Ashby




Cox theory

Preconditions:

* Long, thin, straight fibres

* Uniform network

 Homogeneous strain field

« Fibres carry axial load only

* Fibres do not interact with each other

A
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Cox theory

Strain (€) is a vector and is related to strain in
directions x and y as well as to angle of fibre
around its own axis (y)

€ — (Em, €y, %:y)
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Cox theory

_ o2 2
€ = €, COS™ @ + €, SIN” & + 7Y, COS @ SIN (X

Axial strain (€) in a fibre inclined at
an angle a to the x-axis
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Cox theory

F = EfA¢(€, cos”™ a + €,sin” a + 7,y cosasina)

Force (F) on a fibre
A is the cross-sectional area

The equation is derived from
Hooke’s law
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Cox theory

1
fla) = —(1+ajcos2a + ascosda + - - - + by sin 2a + by sinda + - - )
s

Fibres can be presented as a matrix
a,, a, ... are coefficients

fo " fla)da =1

For an isotropic network f(a)=n
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Cox theory

After matrix algebra, we derive the value K:

K= A;E;p=22E;
Pf

where

A: is the cross-sectional area

E; is the elastic modulus

P, is the density of fibre network
p; is the density of a fibre

Network values:

K
H = T Elastic modulus
)
K
(7 = — Shear modulus
S
1
U — — Poisson’s ratio
2.
)
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Notes on Cox theory

« Seminal theory for fibre networks in general
« Works for well-bonded networks of long fibres

* Modulus values from Cox theory can be viewed as theoretical upper
limits for cellulosic fibre networks

* |In practice the modulus values predicted by the Cox theory are never
reached for cellulosic fibres
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Page equation

1] [9 . (12¢-C)
T 8Z (P-1-b-RBA)
Cannot be measured easily

= fiber length (length) /

= fiber-fiber bond strength (N/m?)

= relative bonded area (unit less)

= gravitational constant -(length/second? = 9.8 m/s?)
= tensile breaking length (length)

= zero span tensile (length)

= fiber coarseness (weight/length)

= fiber perimeter (length)

o8,
>

TON-HQ DT —
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Notes on Page equation

CREECE
T| |8z| |(P-1-b-RBA)

* Relative bonded area can be approximated from light scattering
measurements because more inter-fibre bonds scatter less light

» Works well for papers from chemical pulp fibres, but also nanopapers have
recently been well-described by the Page equation

» Although the Page equation was designed for paper (pulp fibres), it works
mainly for relatively straight, unbroken fibres; they should be mostly free

from kinks and curls
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Gibson-Ashby theory for cellular solids

Fibrillar networks can be approached as cellular solids

A g F|

Cell edge
bending
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Gibson-Ashby theory for cellular solids
E* fp*\ 2
ES LpS)
E. — Modulus of a fibril
p. — Density of a fibril

E* — Modulus of a film
p* — Density of a film

\
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Presemo

Take out your laptops or smartphones and type:
https://presemo.aalto.fi/e2140stpr
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Simple case study:

effect of moisture
on paper strength




Tensile strength goes down with
Increasing relative humidity
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Tensile strength decreases with
increasing moisture content

Grammage 48.8 g/m2, Furnish: TMP 50 % PGW 40 % DIP 10 %
* Notwithstanding the paper
1600 ; ; ; ; : ; : grade (historic, newsprint,
oo N I | RSN SO SR O art paper etc.), the

: ' detrimental effect of
humidity on paper
strength is clear
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Notes on humidity effect

« The effect of humidity, i.e., added moisture on a paper sheet is unambiguous:
tensile strength goes down

« The reason for decreased tensile strength is the hydrophilic nature of
cellulose: water penetrates between the fibre-fibre bonds and reduces their
strength; moreover, water penetrates between the microfibrils and makes the
fibres softer
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Case study on fibre

networks: porosity
of cellulose fibres




Swelling of chemical pulp fibres

The ratio of \HOOC xylan
glucuronic acid o (The carboxylic groups in xylan are mainly
dry state moeities in hardwood HO responsible for the anionicity of the fibre)

xylan is ~10 %
\(\Z\\#\ %OHO 0

\wet state
\
Vv Macropores (>220 nm)
in the physical cracks and
large voids in the fibre
' Micropores (~2 -220 nm)
\

Removed lignin leaves
cavities inside the fibre
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Swelling of chemical pulp fibres

Verbal summary of the previous slide:

» Pulp fibres are full of pores because lignin has been removed from between
cellulose microfibrils

« However, the pores exist only in presence of water; when dried, the
microfibrils collapse together and the pores do not exist

* In other words, the presence of water-filled pores is equal to swelling of the
fibre

« Water is attracted to cellulose because of its OH-groups but the presence of
charged groups (like COOQO- in xylan) strongly increases water sorption

Aalto University
School of Chemical 6.10.2023

B Technology 36



How to measure swelling/porosity?

The most straightforward measure is to determine the water retained in fibres,
i.e., water retention value (WRV):

m

WRV = -1 [1]
m,

where

m,y is the mass of the centrifuged wet test pad, in
grams;

1, is the mass of the dry test pad, in grams.

Before the measurement, free water is removed by centrifugation, leaving
behind the water bound (retained) in the cell wall of the fibre

Aalto University
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What happens when fibres are dried?

 When paper is recycled it needs to be
slushed to pulp in water

« Rewetting of the fibre induces
lre' _ irreversible changes

vwetting —> Fibres do not swell to the same extent
s as they used to before drying
(hornification)

g
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| wet — Flexibility of the fibre is partially lost
i { J /
virgin - wet " hornified
fibre fibre
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Results of hornification: aggregation of
cellulose microfibrils in fibre

Table 1. The Lateral Dimensions of Fibrils and Fibril Aggregates Before and After

Drying *
Average lateral fibril Average lateral fibril
dimension (nm) aggregate dimension Hemicellulose
Sample (nm) (% on dry
Never-dried Dried Never-dried Dried wood)
pulp handsheets pulp handsheets
Kraft cook (H
factor 2000) 4.8 4.8 18.1 23.1 10
Kraft cook (H
factor 1600) 4.5 4.8 17.9 21.4 17
Kraft cook (H
factor 1300) 3.9 4.5 15.4 17.6 22

* Adapted from Hult et al. 2001; Copyright 2001 with permission from Elsevier
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Results of hornifcation:

single fibres

strength of
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Note: Hornification does not
affect the tensile strength of
single fibres (as measured by
zero-span measurement)

—Number of drying steps
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Results of hornifcation: elasticity of

ingle fibres
12 L |
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Hornification affects the elasticity
(plasticity) of single fibres when the
lignin content of the pulps is very low
(i.e., pulp yield is low)

— Drying makes fibres stiffer when
they consists of mainly cellulose and
hemicellulose

A
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Results of hornification: loss of tensile
strength in paper sheets (fibre network)
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Notes on hornification

« Many factors affect the changes in fibre morphology upon drying/rewetting;
microfibril aggregation is just one of them

« For example, collapse of the hollow lumen plays a big role in the properties of
the dried fibre and the subsequent fibre network

* Moreover, the effects of hornification are not straightforward: for example,
reduced swelling is favourable for dewatering in the paper machine

« Many effects of hornification can be reversed by, e.g., beating fibres

Lesson learned: structure-property relationship of native fibres is a very complex
one — which structure affects which property
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Presemo

Take out your laptops or smartphones and type:
https://presemo.aalto.fi/e2140stpr

Aalto University
School of Chemical 6.10.2023
B Technology 44



Case study on
nanopaper strength:

effect of hemicellulose




Two types of nanopapers

4

e CNFs from bacterial cellulose
\ paper i
o 0% Hemicellulose

-' - NFC nanopaper

CNFs from hardwood pulp

& D )
27% Hemicellulose
A' Aalto University Cellulose 2021, 28,6619
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Tensile properties of two nanopapers
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individual fibre strength) is the same.
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Hemicellulose effect on strength

Hemicellulose effect

(a) 250 B B 60—~ Page equation in simple form
I - Z2213MPa 40 2 (without empirical constants):
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Presemo

Take out your laptops or smartphones and type:
https://presemo.aalto.fi/e2140stpr
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Case study with
cellulose nanopapers

- CNF size




Scaling laws for strength and toughness

Anomalous but desirable scaling law:
The smaller, the stronger AND tougher

Tougher

Conventional scaling law:
The smaller, the stronger, but less tough

Stronger
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Toughness development according to
fibre diameter

A Network of o - C D=11 nm
nanofibrillated E 10 20 nm
cellulose (CNF) E ; 28 nm gy
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' Aalto University Zhu et al. PNAS 2015, 112, 8971.
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Strength development according to
fibre diameter

Nanopaper strength vs. fibre diameter
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Anomalous scaling law — why?

(1) Fewer defects in smaller fibres
(2) Multiple hydrogen bonds between small CNFs can break and
reform — dissipation of energy

SI ubject to tensiun Fracture involves a cascade of hydrogen bond
breaking and re-forming events
OH
OH OH OH
OH OH OH

Hydrogen bonding OH OH

Cellulose chain
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Presemo

Take out your laptops or smartphones and type:
https://presemo.aalto.fi/e2140stpr
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Summary

» Particularly native cellulose fibres are very strong and stiff when compared
with their density

« Strength of individual fibres or nanofibres is not manifested in the isotropic
fibre networks to their full extent

* Cox theory is fundamental for fibre networks but does not work well for
cellulose-based fibres

» Effect of moisture on paper is unambiguous: increased moisture decreases
paper strength

« Anomalous scaling law for cellulose nanopaper: strength and toughness
increase with decreasing CNF width

* Many structure-property relationships with cellulosic fibres and fibre networks
are ambiguous
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Assignment

Take a couple of minutes to answer the “After the lecture”
questions in front of you
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