ELEC-E8107 - Stochastic models, estimation and control

Arto VISALA, and Issouf OUATTARA

September 22, 2023

Exercises Session 1

Exercise 1

Given the random variables x and y of dimensions n_x and n_y , with means \bar{x} and \bar{y} respectively, and with covariances matrices P_{xx} , P_{yy} and P_{xy} :

- 1. Find the mean and covariances of the n_z -dimensional vector z = Ax + By + c, where A and B are matrices of appropriate dimensions and c is a vector.
- 2. Indicate the dimensions of A, B and c.

Solution Exercise 1

1. The mean and covariance of z:

Since the expected value of the random variable is a linear operator and the expected value of a constant is a constant. The mean of the random variable z = Ax + By + c is then computed as:

$$\begin{split} \bar{z} &= E[Ax + By + c] \\ &= E[Ax] + E[By] + E[c] \\ &= AE[x] + BE[y] + c \\ &= A\bar{x} + B\bar{y} + c \end{split}$$

Here, the mean $E[x] = \bar{x}$ is the result of an *n*-fold integration written as;

$$E[x] = \int_{-\infty}^{\infty} \dots \int_{\infty}^{\infty} x p(x) dx_1 \dots dx_n$$

= \bar{x}

Similarly, the P_{xx} is the covariance matrix computed by the n_x -fold integration, given as:

$$cov(x,x) = E[(x-\bar{x})(x-\bar{x})^T]$$

$$= \int_{-\infty}^{\infty} \dots \int_{\infty}^{\infty} (x-\bar{x})(x-\bar{x})^T p(x) dx_1 \dots dx_n$$

$$= P_{xx}$$

Thus, the covariance matrix P_{zz} of the n_z -vector is obtained from the n_z -fold integration (here, we will use the short-hand notations), which leads to;

$$\begin{split} P_{zz} &= E[(z - \bar{z})(z - \bar{z})^T] \\ &= E\Big[(Ax + By + c - (A\bar{x} + B\bar{y} + c))(Ax + By + c - (A\bar{x} + B\bar{y} + c)^T] \\ &= E\Big[(A(x - \bar{x}) + B(y - \bar{y}) + c(1 - 1))(A(x - \bar{x}) + B(y - \bar{y}) + c(1 - 1))^T \Big] \\ &= E\Big[(A(x - \bar{x}) + B(y - \bar{y}))(A(x - \bar{x}) + B(y - \bar{y}))^T \Big] \\ &= E\Big[A(x - \bar{x})(x - \bar{x})^T A^T + A(x - \bar{x})(y - \bar{y})^T B^T + B(y - \bar{y})(x - \bar{x})^T A^T + B(y - \bar{y})(y - \bar{y})^T B^T \Big] \\ &= E\Big[A(x - \bar{x})(x - \bar{x})^T A^T \Big] + E\Big[A(x - \bar{x})(y - \bar{y})^T B^T \Big] \\ &= E\Big[B(y - \bar{y})(x - \bar{x})^T A^T \Big] + E\Big[B(y - \bar{y})(y - \bar{y})^T B^T \Big] \\ &= AE\Big[(x - \bar{x})(x - \bar{x})^T \Big] A^T + AE\Big[(x - \bar{x})(y - \bar{y})^T \Big] B^T \\ &= AP_{xx}A^T + AP_{xy}B^T + BP_{yx}A^T + BP_{yy}B^T \end{split}$$

2. The dimensions of A, B and c:

The dimensions of matrix A is $n_z \times n_x$; of matrix B is $n_z \times n_y$; and, the dimension of vector c is $n_z \times 1$.

Note that the covariance matrices are the symmetric matrices, where the diagonal entries constitute the variances and off-diagonal elements contain (scalar) covariances. The covariance matrix is also positive definite (and thus non-singular) unless there is some dependence among the elements of vector random variable. In such cases, the covariance matrix is positive semi-definite.

Exercise 2

A nonlinear system dynamic model of the car shown in Fig 1 is given by the following equation.

$$\begin{cases} x_{k+1} = x_k + \cos(\theta_k) \Delta t_k v_k \\ y_{k+1} = y_k + \sin(\theta_k) \Delta t_k v_k \\ \theta_{k+1} = \theta_k \frac{\Delta t_k v_k}{L} \tan(\Phi_k) \\ v_{k+1} = v_k \\ \Phi_{k+1} = \Phi_k \end{cases}$$

$$(1)$$

Where v is the speed of the vehicle, θ is the heading and Φ the steering angle. The state of the vehicle can be define as the vector $X_k = \left[x_k, y_k, \theta_k, v_k, \Phi_k\right]^T$. The equation (1) can be written as $X_{k+1} = f(X_k, t_k)$.

1. Compute the Jacobian of the function $f(X_k, t_k)$ with respect to the state vector X_k

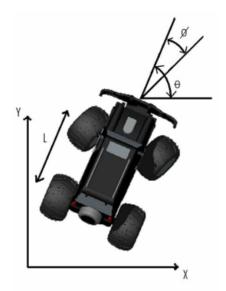


Figure 1: Simple car kinematic model markings: The distance between the axles of the vehicle is described by L, the direction is described by θ and the steering angle by Φ . The vehicle navigation point is in the center of the rear axle.

Solution Exercise 2

The Jacobian is computed using the definition. Note that $f(X_k, t_k)$ is a vector valued function. The Jacobian can be written as follow:

$$\frac{\partial f}{\partial X}\Big|_{X=X_k} = \begin{bmatrix}
\frac{\partial f_1}{\partial X_1} & \frac{\partial f_1}{\partial X_2} & \frac{\partial f_1}{\partial X_3} & \frac{\partial f_1}{\partial X_4} & \frac{\partial f_1}{\partial X_5} \\
\frac{\partial f_2}{\partial X_1} & \frac{\partial f_2}{\partial X_2} & \frac{\partial f_2}{\partial X_2} & \dots & \dots & \dots \\
\dots & \dots & \dots & \dots & \dots \\
\dots & \dots & \dots & \dots & \dots
\end{bmatrix}$$

$$= \begin{bmatrix}
1 & 0 & -v_k \Delta t_k sin(\theta_k) & \Delta t_k cos(\theta_k) & 0 \\
0 & 1 & v_k \Delta t_k cos(\theta_k) & \Delta t_k sin(\theta_k) & 0 \\
0 & 0 & 1 & \Delta t_k \frac{tan(\Phi_k)}{L} & \frac{v_k \Delta t_k}{Lcos(\Phi)^2} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$
(3)

$$= \begin{bmatrix} 1 & 0 & -v_k \Delta t_k sin(\theta_k) & \Delta t_k cos(\theta_k) & 0\\ 0 & 1 & v_k \Delta t_k cos(\theta_k) & \Delta t_k sin(\theta_k) & 0\\ 0 & 0 & 1 & \Delta t_k \frac{tan(\Phi_k)}{L} & \frac{v_k \Delta t_k}{L cos(\Phi)^2}\\ 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(3)

Exercise 3

Prove that the following equation holds for a discrete time Markov process

$$\int p(x_k|x_{k-1})p(x_{k-1}|x_{k-2})dx_{k-1} = p(x_k|x_{k-2})$$

Solution Exercise 3

The marginal joint distribution $p(x_k, x_{k-2})$ can be obtained from the joint distribution $p(x_k, x_{k-1}, x_{k-2})$ by integrating with respect to x_{k-1} :

$$\int p(x_k, x_{k-1}, x_{k-2}) dx_{k-1} = p(x_k, x_{k-2})$$
(4)

$$= p(x_k|x_{k-2})p(x_{k-2})$$
 (5)

By recursively using the Bayes' formula, and the Markov property we can write the following:

$$p(x_k, x_{k-1}, x_{k-2}) = p(x_k | x_{k-1}, x_{k-2}) p(x_{k-1}, x_{k-2})$$
(6)

$$= p(x_k|x_{k-1})p(x_{k-1}, x_{k-2})$$
(7)

$$= p(x_k|x_{k-1})p(x_{k-1}|x_{k-2})p(x_{k-2})$$
(8)

The equation (5) is obtained from (4) by applying the Markov property. We integrate (6) and equate it with (3):

$$\int p(x_k|x_{k-1})p(x_{k-1}|x_{k-2})p(x_{k-2})dx_{k-1} = p(x_k|x_{k-2})p(x_{k-2})$$
 (9)

$$p(x_{k-2}) \int p(x_k|x_{k-1}) p(x_{k-1}|x_{k-2}) dx_{k-1} = p(x_k|x_{k-2}) p(x_{k-2})$$
 (10)

$$\int p(x_k|x_{k-1})p(x_{k-1}|x_{k-2})dx_{k-1} = p(x_k|x_{k-2})$$
(11)

Exercise 4

The covariance matrix of random variables X and Y happens to be:

$$Q = \begin{bmatrix} 4 & -3 \\ -3 & 9 \end{bmatrix}$$

- 1. Find the variance of X and Y?
- 2. Compute the correlation coefficient between the two random variables.

Solution Exercise 4

1. The variance of X and Y:

The diagonal values of a covariance matrix consists of variances of individual variables, thus Var(X) = 4, and Var(Y) = 9.

2. The correlation coefficient between X and Y:

The off-diagonal elements include information of the correlation coefficient,

$$Q_{XY} = Q_{YX}$$
$$= \sigma_X * \sigma_Y * \rho_{X,Y}$$

Thus, $\rho_{X,Y} = \frac{-3}{2*3} = -0.5$. Notice that the value of a correlation coefficient (also know as Pearson's correlation coefficient) is always between +1 and -1. **Note:** if $\rho_{X,Y} = 0$, the variables X and Y are said to be uncorrelated. If $\rho_{X,Y} = 1$, then the variables X and Y are said to be linearly dependent.