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1 Introduction

In this document, you will learn what is Internet traffic classification and why
it is needed. After that, you will learn basics of machine learning and its usual
procedure. Finally, you will learn how the Internet traffic classification could be
implemented using machine learning.

TODO: figures seems to be too far from their text so find a way to deal with
Latex placements

2 Internet traffic classification

Internet traffic classification is about classifying unknown traffic into Inter-
net applications or classes of Internet applications. For example, recognizing if
the network traffic was Skype, Youtube, FTP, P2P, etc. [1]. Other traffic class
categories are also possible, such as if traffic is normal or malicious [9]. The
choice for deciding categories is huge and won’t matter much when analyzing
them.

There are many reasons that motivate classifying Internet traffic, such as net-
work monitoring, network optimization, pricing decisions, intrusion detection,
and energy saving. For example, for network operator it would be beneficial to
know what kind of traffic flows through their network in order to support the
network accordingly by prioritizing certain traffic before else.

There are several ways to distinguish applications from each other by ana-
lyzing the captured Internet traffic. We will now take a look at two traditional
approaches and one modern state-of-art approach: port based approach, pay-
load based approach, and statistical approach.

Traditional port based approach relies on the fact that certain applica-
tions use only certain ports registered by Internet Assigned Numbers Authority
(IANA). For example, SSH using TCP port 23. Even though port based ap-
proach is simple and quick, this approach is nowadays unreliable because of the
dynamic ports. Also, many P2P applications don’t have standard port num-
bers. Moreover, currently many applications run on top of HTTP and HTTPS
ports regardless its functionality. [1]

Another traditional approach is payload based approach which is also
known as deep packet inspection (DPI). This approach checks the packet’s pay-
load content to see if it matches well known signatures, such as GET requests.
This is very quite accurate method to determine Internet application. However,
payload based approach is slow and expensive since they require maintaining
huge database all the time. Moreover, they don’t work at all in case of encrypted
IP traffic (pretty much everything is nowadays encrypted) and also have privacy
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issues. Also, many encrypted packets utilize packet obfuscation and randomized
packet sizes in order to avoid any identification. [1]

Nowadays, flow-based statistical approach is used widely to classify In-
ternet traffic. It relies on certain Internet traffic characteristics, such as flow
length, packet size, and packet inter-arrival-time. The benefit of this approach
is that these characteristics are independent from the payload information and
can be unique for certain classes of applications [5]. Statistical approach uses
machine learning (ML) as a tool to get the results via training and testing
the available data.

3 Very basics of machine learning

Machine learning has become hot topic in most recent years. There are many
reason for this, such as the availability of big data, the improvement of ML
methods, and the improvement in technology. ML is great to deal with patterns,
large datasets, and datasets with multi-dimensional features [5]. ML has wide
range of applications in many fields. But what is ML exactly about?

Let’s start from very simple. First, let’s consider a traditional programming.
It is about finding desired output Y when input X and function F is given.
Unlike traditional programming, ML is about being able to find function F
when input X and output Y are given. The said function F is found by training
set of input/output pairs, i.e., mapping them together. Having suitable F is
really useful to predict future outcomes. Now, using correct ML terms, the said
function F is called as model, input X is called as features, and output Y is
called as target. [1]

Feature (also known as attribute) can be any statistics (such as mean, me-
dian, standard deviation) which can be calculated directly based on the original
dataset. Target (also known as label) is some desired thing that we want to
examine. Model is then created by ML algorithm that maps features to their
respective targets. Very important to note is that in order to get successful
model, a lot of data will be needed. It is true that bad algorithm with large
amount of data is able to produce better model than excellent algorithm with
small amount of data. However, keep in mind that as dataset size increases,
the model accuracy improves at the cost of more sampling time, storaging, and
training time. [6]

So instead of programming the model ourselves, we let the ML process to
create the model instead. This can be effective since ML process is able to
model difficult tasks which would have been maybe even impossible to program
ourselves. Now we are able to see the truth behind ML: it is actually pure statis-
tical mathematics. In this course, we will not delve much into its mathematical
background, but we will use ML as tool to analyze Internet traffic. Many pro-
gramming languages have vast amount of tools to utilize machine learning. For
example, Scikit-learn or Tensorflow (more deep learning focused library) for
Python, and Caret for R language.

Generally, ML algorithm can be supervised or unsupervised. Let’s talk about
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them next.

3.1 Supervised learning

In supervised learning, the available data is labeled priori so the possible
outcomes are known already [1]. For example, in case of Internet traffic, it
could be labeled as application such as Youtube and Skype. Classification
is about managing labeled data into their correct groups. Ideally, the training
data contains traffic type that one wished to see later and the different traffic
that might occur also in future [10]. It is important that the training set
contains all possible instances so that no unknown instances will appear later
during testing. Performance of supervised learning might be bad if the training
data is skewed and not representative enough. One of the main challenges of
supervised learning is that both training data and test data needs to be labeled
before, which may require human expertise with the aid of DPI or pattern
matching [1].

Supervised ML algorithms deals with different kinds of problems. In regres-
sion problems, we are usually dealing with continuous variables, i.e., finding
most optimal numerical value as output. In classification problems, we deal
with discrete set of variables, i.e., finding most optimal variable from the set. [1]

Most of the ML problems nowadays deal with supervised learning [7]. Re-
garding Internet traffic classification, we could utilize supervised ML to train
a model that is able to map set of flows to their respective application. Each
flow has same set of features (such as number of packets, packet inter-arrival-
time). Usually the value of such features depends on the captured application
but sometimes there can be two almost identical application, which is why the
dataset should be large enough or number of features as high enough to counter
this. Then we would be able to utilize the trained model to classify unknown
network flows. [6]

3.2 Unsupervised learning

In unsupervised learning, the available data is unknown and therefore they
are not labeled priori [1]. Unsupervised learning is about learning patterns in
the dataset and clustering each different patterns their own classes. In other
words, when speaking about unsupervised learning, we usually use clustering
algorithms to deal with unlabeled dataset. During clustering, some instances
may overlap to more than one category, in which case probability is used to
determine their category. Labeling is required after this, which can be expensive
and difficult to maintain and update. Another problem of unsupervised learning
is that in practice, the amount of clusters tend to be more than the actual
amount of classes so mapping a cluster to certain application can be then difficult
[10]. Therefore, unsupervised learning is often more difficult to evaluate than
supervised learning.

Usually many unsupervised algorithm require the number of clusters as hy-
perparameter. The closer the chosen hyperparameter is to the real number of
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clusters, the better result will outcome. The number of clusters is usually chosen
based on initial knowledge or assumption about the number of targets. Unsu-
pervised learning algorithms tends to be more robust than supervised learning
algorithms, i.e., the testing error is close to the training error [1].

4 Process of machine learning (Internet traffic
classification)

On high level, the procedure of ML is same for all applications, regardless of the
field of research or study. It usually contains some usual steps, such as getting
dataset, pre-processing, training, testing, and evaluation.

Usually the most time-consuming phase is pre-processing which actually
contains lots of things to do in order to make the available data as useful as
possible. The actual training in practice require only couple lines of code with
modern programming language, although the training time itself depends on
the size of dataset.

4.1 Getting data

The data itself is the essential part of ML process. Without sufficient amount
of data, it is not possible to create suitable models at all. Sometimes acquiring
data is more easier said than done, and can come as costful. Some of the datasets
are vital for company’s product line which they will never share or sell for the
public.

There are still many options for getting relevant data for ML purposes.
Many organizations rely on their own datasets that they have collected over
years, so being in the organization can give access to the dataset. Then there
is also an option to purchase it from other organizations if they are willing to
sell it. Collecting the data itself can often be costly for many reasons, such as
respecting privacy concerns. There are also many datasets available publicly
for free of charge in several sources. For example, Kaggle and UCI machine
learning repository.

In case of Internet traffic analysis, there are some software for capturing
packets to get data, such as Wireshark or Tcpdump (due to legalization of
data collection, make sure you have permission for capturing!). However, the
raw .pcap file is not quite suitable for ML model training since it alone doesn’t
contain many useful statistics for learning purposes. Therefore, usually the
flow information is extracted from .pcap files by using other software such as
CoralReef and NetMate to find out some useful features.

4.2 Pre-processing data

Most often pre-processing the data is the most time-consuming and complicated
part of the ML process. It is very important to pre-process the data properly
to save computation time later, and also to make the data suitable for further
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analysis. There are many things to perform during pre-processing to make the
raw dataset as ’clean’ as possible, such as

• labeling the data

• sampling

• dealing with empty values (imputing)

• dealing with non-numerical values (categorization)

• standardization

• normalization

• feature selection

• feature extraction

• splitting dataset to training set and test set

4.2.1 Labeling the targets in dataset (supervised learning)

Supervised learning needs to have labeled dataset in order to create the model
and evaluate its performance. This can be sometimes difficult to do perfectly
since most of time human expertise is required, and the amount of dataset can
be huge. Sometimes we have to do things in approximate ways in order to have
proper label dataset to start with.

Regarding labeling in Internet traffic classification, usually we can’t exactly
label the captured applications perfectly from the .pcap files. One ”heuristic”
method to label particular Internet application is to capture it separately alone
and later add an additional column that describes its label. However, this is still
not perfect way to label things. For instance, in case of Youtube, in addition to
the video contents, the website contains lots of other data due to the nature of
the website. Another method to label the applications would be to use DPI as
help. Most applications have specific signature on their packets but usually they
are encrypted. Or easiest method would be to get some available pre-labeled
Internet traffic dataset somewhere.

Remember that the Internet traffic can be labeled in many points of view,
depending on what we are our goals. You could label the packets as applica-
tion (such as Youtube, Netflix, Outlook) or you could label the packets as its
application class (such as P2P, FTP, DNS). So, usually labeling it is kind of
approximate in practice since its difficult to know priori information about all
applications since often network operators don’t know all applications running
on the network [1].
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4.2.2 Sampling

Usually in data science, the purpose of sampling is to pick up only few amount
of data from vast amount of data in order to reduce computation process later.
This also applies to ML process. In addition, sampling serves another purpose
as well.

In order for the model learning properly from the training data, the training
data should contain as diverse amount of targets as possible. Each targets
should have equal amount of instances in order to avoid later bias in evaluation.
In other words, the dataset should not be imbalanced for ML learning purposes
[8]. Practically, this is unlikely to happen, so the dataset tend to be imbalanced
naturally. For example, in case of Internet traffic, currently video traffic is most
dominating Internet traffic. If training set would contain mostly video traffic,
the model would heavily favor it when it is used to predict new unseen data.
Therefore, sampling need to be done to keep the training set as balanced as
possible. Let’s next look different sampling methods to combat dataset’s class
imbalance: random sampling, undersampling, and oversampling. [1]

One simple way to sample the dataset is to choose same amount of instances
from each target. Other option is to undersample the dataset, i.e., sampling
the dataset so that each target have as same number of instances as the target
that has fewest instances. Undersampling has a disadvantage that it actually
reduces the amount of data further which can be problematic if the original
dataset was already small. Another option is to oversample the dataset, i.e.,
sampling the dataset so that each target have the same number of instances as
the target that has most instances. The disadvantage of oversampling is that
some instances will be repeated in the dataset, which might lead to overfitting
(more about overfitting later). Check out Figure 1 for easier understanding
regarding undersampling and oversampling.

There also exist some feature selection algorithms (more about feature se-
lection later) that are able to choose certain features in a way so that the
imbalancedness of the dataset won’t affect the result at all [11]. However,
such algorithms are quite specific so it probably would be good idea to sample
instead.

In Python and R, you can perform sampling with sample() function.

4.2.3 Dealing with empty values

Sometimes the available data contains some missing values. For example, if
person’s age is unknown, it is marked as NaN or as zero. Many machine learning
algorithms are not able to deal with such empty and meaningless data properly.
There are many options to deal with this. The simplest method would be to
remove such columns and rows but then this will leave us reduced amount of
data. Other option is to fill these empty values manually by our own, but
then we risk for biased results (i.e., low accuracy results). Another option is to
impute the missing values with a statistical value, such as average value of the
particular column that the data belongs to. More advanced method would be
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Figure 1: Illustration for undersampling and oversampling for the dataset with
two different target values

to take into all features from the dataset and impute the missing values based
on them.

In Python, you can impute the values with SimpleImputer() function or just
drop such instances with dropna(). In R, you could use preProcess() function
with imputing options, such as ’knnImpute’.

4.2.4 Dealing with non-numerical values

Most of ML algorithms are only able to deal with numerical values but usu-
ally the dataset contains some categorical values such as strings or dates. For
example, scikit’s ML library is not able to handle strings well at all.

To overcome this problem, they must be encoded somehow. One simple
way would be to encode these values as number in increasing order. This simple
labeling method is not suitable for every occasion though especially when dealing
with categories that don’t have ”natural order”. Let’s imagine that we encode
”red”, ”blue”, and ”yellow” as 0, 1, and 2, respectively. There might be few
cases where some ML algorithm would calculate the average value of ”red” and
”yellow” as ”blue”, which can lead to wrong evaluations.

Other more advanced method would be to separate different non-numerical
values into their own columns so that they will obtain binary values (see Fig-
ure 2). This is called as OneHotEncoding. However, this kind of method
might increase the size of the dataset tremendeously, which might exceed the
computation capability.

In Python, you can encode relevant categorical values with by manually or
by using some pre-defined library functions, such as LabelEncoder and OneHo-
tEncoder. In R, you could use dummy variables to perform OneHotEncoding
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or use functions that can transform meaningful string into integers, such as
ip to numeric().

Figure 2: One hot encoding

4.2.5 Standardization

Standardization is about making every values in dataset having zero mean and
an unit variance. This can be important because there might be a feature with
very high variance or high value compared to other features. Therefore, it could
dominate too much, making the learning impossible. In addition, some ML
algorithms work more efficiently with standardized values. For example, if using
linear support vector classifier (LinearSVC), the algorithm might not converge
if the standardization was not done, leading to inaccurate results. In addition,
KNN that is based on Euclidean distance, also would require standardization
(although usually it is already internally implemented).

Furthermore, the standardization will improve the efficiency of gradient de-
scent (GD), which many ML algorithms utilize. Standardization will affect the
loss function of the dataset to be less skewed and more Gaussian-like instead
of being skewed towards certain direction. This could be helpful for GD con-
vergence. By having the loss function to be more Gaussian-like, each weight
directions update in GD are more equal regarding the convergence steps (read
more about loss function and GD in extra section if interested).

Typically in case of regression analysis, both features and targets need to
be standardized before training. However, in case of classification problems,
only features need to be standardized. This is good to keep in mind since some
classification algorithms will not be able to deal with continuous target values.
Usually, the scalers are created via training data only in order to keep it separate
from the test set for more realistic evaluation in later phases.

Standardization could be done manually but in Python, StandarScaler()
could be utilized for this as well. In R, preProcess() could be used with two
options: ”center” and ”scale”.
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4.2.6 Normalization

Normalization is about scaling the values into column to specific range, such
as range between of [0, 1]. The reason for normalization is to prevent the
gradient descent algorithm changing too radically since the derivatives can be
high in original data. In other words, normalization will ensure that the weight
updates are not oscillating too much (see more about GD in extra section if
interested). Normalization is especially required for deep learning models.

As in standardization, apply normalization to both features and targets in
case of regression analysis. In case of classification, apply it to features only.
Again, usually good idea to create scalers based on training data and then apply
it to the rest of the data.

In Python, you could utilize MinMaxScaler() for scaling the values between
specific range. In R, preProcess() could be used with ”range” option.

4.2.7 Feature extraction & feature selection

In some sources, both feature extraction and feature selection are utilized
as same meaning, but in some other sources they differ little bit.

Usually feature extraction is about deriving new features based on existing
features, such as adding statistical values [1]. In case of Internet traffic features,
suitable features could be protocol, mean packet length, packet inter-arrival
time, etc. By using ML, it is possible to train the model to map features into
different Internet applications. For example, average packet size in cloud storage
and streaming categories are much larger than in messaging applications [3].
However, these statistical values are not clearly available in .pcap files. You
need to write own scripts based on libpcap library which is available for many
programming languages. You also have another options, for example, some other
tools could be utilized to extract useful features, such as NetMate or CoralReef.
Both of them extract flow information from the captured packet files. NetMate
is able to extract 44 features whereas CoralReef is able to extract 11 features.
You can also add even more features on top of them on your own when handling
the dataset.

On the other hand, feature selection is about choosing only subset of the ex-
isting features [1]. The dataset itself might contain some very irrelevant features
that do not help the ML learning process at all. Irrelevant features might even
decrease the accuracy of the result, especially in the case of linear modeling.
For example, some features are the ones that are completely useless (such as
the name of person when classifying if person has a fever) or the ones that has
constant value in all cases. Another example of useless features are the features
that are strongly correlated with each other, i.e., correlation amongst features.
This would not improve the model much and might actually worsen the model.
We would want to remove either of them and keep more simple one (due to Oc-
cam’s Razor) to reduce the feature space. Computation time will be decreased
tremendeously as the number of features are reduced because the description
of the instance will require less space to the matrix representation. Feature
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selection might slightly decrease the accuracy of the created model, but usually
the tradeoff between accuracy and computational complexity is excellent at the
end of the day. Both accuracy and the training time are very relevant in case
of real-time classification systems. [5]

Regarding feature selection in Internet traffic classification, some of the fea-
tures can easily be reduced manually as humans since some features can be easily
understood as totally irrelevant to the target value. However, sometimes there
might exist some useful correlation between some features and targets which are
not clearly visible. Statistical methods are used to make this effortless. In fact,
some ML methods could be utilized here as well. There exist many different
feature selection algorithms that could be utilized to automatize the feature
selection process.

Feature selection algorithms could be divided into three categories: filter
methods, wrapper methods, and embedded methods. Filter method (also known
as information gain) selects the best subset of features based on their correla-
tions without the need of ML. Wrapper method utilize ML to find out the best
subsets via training and learning correlations. Embedded method is combina-
tion of both methods. Wrapper and embedded methods are computationally
heavier so you should not consider them if you have about more than 20 dif-
ferent features. In addition, most recently, deep learning algorithms have been
proven to successfully extract useful features without the need of humans. [1]

In Python, feature selection could be performed with SelecktKBest() func-
tion. In R, Recursive Feature Elimination (RFE) could be utilized by using
rfe() function. You can also do feature selection by own custom function, for
example, calculating the correlation of feature-target pairs and choose the most
correlated ones.

4.2.8 Splitting the dataset to training set and test set

At some point, the dataset will be splitted into two groups: training set and test
set. Training set is used for building the model by utilizing some ML algorithm.
Test set is used later for evaluation purposes, it should be kind of absolutely
invincible during training process. In addition, there can also exist validation
set which purpose is to tune hyperparameter optimally (such as most suitable
ML algorithm) but if the model architecture or hyperparameters are already
decided or pre-determined, validation set is not necessary. [1]

In other words, the purpose of this train-test-splitting is to later quickly
evaluate the performance of the model and also to avoid overfitting (more about
this later). Having test set available is an inexpensive and efficient way to
evaluate the model after the training, instead of immediately testing the model
with new unseen dataset. For real final implementations after this evaluation
and optimal parameter tuning, we would use whole dataset for re-training a new
model. This will perform better with all available data than just subset of it.

The split ratio between training set and test set depends on the use case and
amount of the data available. The goal is often to minimize the variance of the
outcome but at the same time avoid overfitting.
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During pre-processing, regarding any data transformations (such as stan-
dardization) which might get information from the test set (such as mean or
variance): it is often good practice to only ”build” this transformation based on
training data only, and then apply the transformation to both sets. This way we
prevent any ”data leakage” for the training process, i.e., introducing any future
information during training process. Test set should not be part of any model
creation process, only training set is for that purpose.

Python and R also provide functions for splitting the instances to both sets if
this is needed, such as train test split() and createDataPartition(), respectively.

4.3 Training the model

After the dataset has been pre-processed, the actual model creation will take
place.

ML algorithm is applied to training set to fit a model to the dataset. There
are many ML algorithms available, such as linear regression, naive Bayes, Sup-
port Vector Machine (SVM), decision trees, random forest, K-means clustering,
K-nearest neighbor (KNN), and deep belief network. Every ML algorithms have
different approach to sort and prioritize set of features [10]. Some ML algo-
rithms are better suited than others, depending on the task we are aiming for.
For example, some works poorly with small dataset but excellently with massive
dataset. According to most recent studies, C4.5 decision tree has achieved best
results regarding Internet traffic classification [13], [5], [11].

For understanding the ML model training process in low level, see the extra
section at the end. In short, it is about finding optimal weight parameters that
minimize loss function for the model with gradient descent algorithm.

In Python, model training is done with fit() function. In R, model training
can be implemented with train() function. After the model have been created,
it will be evaluated to see if it was suitable at all.

4.4 Evaluating the model

Now that the model exist, it is time to validate if it is actually suitable or not.
This is usually done by utilizing the model on test set (which we can pretend to
be ’new unseen dataset’), and then compare its predicted target results to real
target values. It is very important that the model testing never happens on the
same trained dataset because it would be meaningless result since we would be
just using the model on dataset that it has already learned. The performance
of the model usually depends on the size of the dataset, selection of features,
and the used ML algorithm [6].

Widely used metrics for ’classification model’ evaluation are accuracy, pre-
cision, recall, confusion matrix, and k-fold cross-validation. Let’s take a look at
them in next subsections.
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Predicted
Ant Bird Cat Dog

A
c
tu

a
l Ant 4 0 1 0

Bird 1 3 0 1
Cat 0 1 3 1
Dog 0 0 0 5

Table 1: Confusion matrix for classifying four types of animals.

4.4.1 Confusion matrix

Confusion matrix is one of the effective methods to see immediately quick facts
regarding the performance of the model. It is important for traffic identification
measurement, for example. Let’s see a simple example about a confusion matrix
at Table 1 and interpret it.

In this confusion matrix, the predicted values are displayed vertically, and the
actual real values are displayed horizontally. This is how the scikit’s confusion
matrix method works by default (in R, this is vice-versa). We can interpret
that in reality, there was in total of 5 ants, 5 birds, 5 cats, and 5 dogs in the
dataset. However, the model predicted that there was 5 ants, 4 birds, 4 cats,
and 7 dogs in the dataset. Looking in more detail, we can see that the model
misclassified 1 bird as 1 ant, 1 cat as 1 bird, 1 ant as 1 cat, and both 1 bird and
1 cat as 2 dogs. In both Python and R, the confusion matrix can be achieved
with confusion matrix() and confusionMatrix() functions, respectively.

4.4.2 Accuracy, precision, and recall

In ML evaluation, there is concept of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN). TP means that the model labeled
an actual positive instance as positive, TN means that the model labeled an
actual negative instance as negative, FP means that the model labeled an actual
negative instance as positive, and FN means that the model labeled an actual
positive instance as negative (positive instance means that instance is X, and
negative instance means that instance is not X) [1]. In other words, model
is doing good if number of instances in TP or TN are high, and number of
instances in FP or FN are low. Let’s take a look at the confusion matrix below
and interpret it.

Accuracy score is globally same for whole model, whereas the precision or
recall depends on the target that are being examined. Accuracy of the model
means the ratio between correctly labeled instances and all instances. However,
be careful since accuracy alone might be misleading in case of, e.g., imbalanced
dataset. The intuitive meanings of precision and recall (also known as sensitiv-
ity) can be vague to grasp since they are calculated for each targets separately.
But all you need to know that the value of these three metrics mentioned range
from 0-1. The bigger value, the better model. The following formulas show the
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Predicted
Ant Bird Cat Dog

A
c
tu

a
l Ant TN TN FP TN

Bird TN TN FP TN
Cat FN FN TP FN
Dog TN TN FP TN

Table 2: Similar confusion matrix as earlier, but now aim is to calculate metrics
from cat’s perspective.

mathematical expression for the three metrics.

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Let’s take an example to calculate some metrics for the earlier model that
classified four types of animals. We are especially focusing on cat’s perspective
when considering the quantities for TP, TF, FP, and FN. Let’s first consider
how many TP instances there are. The model predicted 3 actual cats correctly
so there are in total of 3 TP instances. The model misclassified 1 ant as 1 cat,
and none of the birds nor dogs were mistook as cats, so there is in total of 1 FP
instance. The model misclassified two actual cats as something else, so there is
in total of 2 FN instances. The rest numbers are TN instances since the model
correctly labeled them as ’non-cats’, so in total there are 4+1+3+1+5=14 TN
instances. From the Table 2 we can intuitively see which cells belong to which
instance in case of cat’s perspective.

Therefore, the accuracy of the model would be TP+TN
TP+TN+FP+FN = 3+14

3+14+1+2 =

0.85, precision of the cat would be TP
TP+FP = 3

3+1 = 0.75, and recall score of

the cat would be TP
TP+FN = 3

3+2 = 0.60. Notice that only accuracy score alone
can describe the model in general, the other metrics takes certain target value’s
perspective.

In scikit library, all of these scores can be found with classification report()
method. In R, the you can calculate each metrics with separate functions.

4.4.3 K-fold cross-validation

Getting single result from this one particular test is not absolutely reliable.
What if the test set happened to be very easy to be predicted? Or what if test
set was difficult instead? This is why K-fold cross-validation, which is one of
the cross-validation methods, would be good option for evaluating the whole
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modeling process. K-fold cross-validation is very cost-efficient way to evaluate
the created ML model. This is also very good and valid way to compare different
kind of possibilities together and find the best among them. For example,
sometimes we have lots of different ML techniques to train the model such as
KNN, random forest, and naive Bayes. Or sometimes we have certain model but
unsure which hyperparameter would be the most optimal, such as number of
neighbors for KNN algorithm. Utilizing k-fold cross validation, we can quickly
find such hyperparameters. [4]

Let’s consider a dataset which is randomly splitted to k number same sized
sets. One of them will be test dataset and the rest will be the training dataset.
The model is created via training set, and then utilizing the test set, the accuracy
score is calculated. After each scoring, the training set and test set are shifted
in round-robin fashion and then second scoring for the second takes place. This
process is repeated until each test set have been tested (see Figure 3). Finally,
an average score could be taken to evaluate the model. This score is kind of
”honest” since it ensures that the evaluation did not depend on specific training
set or test set. Usually a decent parameter for k-fold cross-validation would be
k=10.

Figure 3: K-fold cross-validation, with parameter k=4

Remember, that K-fold cross-validation is only used for model evaluation
purposes (i.e., finding suitable hyperparameters), it does not build any model.
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4.4.4 Avoid underfitting and overfitting

Underfitting means that the model did not work well with training data, i.e.,
the resulted accuracy score was low [1]. Since training score was low, it means
that the model is not suitable for estimating the results. In order to avoid
underfitting, usually increasing dataset or using different ML algorithm would
fix it.

Overfitting is one of the fundamental problems regarding ML (and also
deep learning). It means that the created ML model fits too well to the given
training dataset but might not actually fit well to new unseen data [2]. In other
words, the model does not generalize the situation well because it ’memorizes’
the training data too well. One method to detect overfitting is to compare the
resulted training error and testing error. If testing error is significantly bigger
than training error, overfitting happened most likely.

Overfitting only depends on the complexity of the model, if it is too complex
then overfitting will happen. To see if overfitting exist, k-fold cross-validation
could be utilized or checking model’s training history if validation score becomes
too different to training score. To combat against overfitting, the dataset could
be collected at different times and measurement points, early stopping coulb be
performed, or regularization could be performed which is modifying loss function
to ignore certain high-ordered terms (more about loss function in Extra material
section).

See the Figure 4 for their intuition meaning.

Figure 4: Left: Underfitted model. Middle: ”Suitable” model. Right: Overfit-
ted model.

5 Extra material

So far we have understood in high level what the ML is about: utilizing training
set of feature/target pairs to create a model. But how the model creation
actually work in low level details?
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This extra section will introduce you to the concept of loss function to min-
imize the error of model performance, and gradient descent algorithm to find
suitable parameters for minimizing loss function. Having basic understanding
of calculus and linear algebra can be helpful for this section. This is all extra
material but they can be useful to understand for later deep learning section.

We will now consider very simple ML problem where we create suitable linear
model for the dataset with only one feature, based on a few training samples.
See Fig 5. The created linear model would be expressed as h(x) = w0 + w1x
, where both w0 and w1 are weight parameters, x is the single feature of the
dataset, and h(x) is called as hypothesis which in ML field means a candidate
model for mapping inputs to the outputs. In other words, we aim to approximate
such candidate model as well as possible. We want to find out the best weight
parameters for this model somehow so that it behaves according to the training
samples and, therefore, is able to generalize the situation.

Figure 5: Training samples of single-featured dataset, and the aim is to model
it linearly

5.1 Loss function

What kind of weight parameters should we choose so that model suits best for
the previous example? Answer: we want to choose such parameters so that the
error between the predicted result and real actual result is low as possible.

Loss function J(w0, w1) (also known as cost function) express the amount of
error between the predicted result and real actual result [12] . The exist many
kind of loss functions, such as hinge loss, mean absolute error (MAE), mean
squared error (MSE), and mean bias error (MBE). One of the most popular
loss function for regression problems is MSE where the errors are squared and
then normalized. For classification problems, cross entropy losses is often used.
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Each of the loss function look different. The following Figure 6 illustrates loss
function that would represent the previous linear regression example.

Figure 6: Loss function J(w0, w1) minimization with gradient descent

The aim is to minimize the error, so we need to minimize the loss function by
finding its best weight parameters. Minimizing loss function could be expressed
as following (in case of MSE):

min
w0,w1

J(w0, w1) = min
w0,w1

{ 1
n

n∑
(h(x)− y)2}

The intuitive meaning of the formula is to find weight parameters w0 and
w1 so that the cost function J(w0, w1) is minimized. But now another question
arises: how to find such weight parameters? The most used algorithm is gradient
descent (GD).

5.2 Gradient descent algorithm

Gradient descent algorithm is one of the widely used algorithms in many prob-
lems, including the ML problems. It is often used algorithm to find optimal
weight parameters for the loss function in order to minimize it [12] . Intuitive
way how it works: first it will pick a random starting point at the loss function.
Then it will step towards the direction that has steepest curve to the minimum
point of loss function. This iteration is repeated until the (local) minimum has
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been reached. The formula of GD algorithm for the previous loss function can
be expressed as:

wi = wi − α
∂

∂wi
J(w0, w1)

The parameter α in the formula is learning rate (i.e., ”step size”) and the
∂

∂wi
J(w0, w1) is partial derivative for certain weight to express the next steepest

direction towards to (local) minimum. The learning rate α is adjustable. If the
learning rate α is too small, the steps will be small and algorithm will converge
slowly (but surely) to the optimal point. If the learning rate α is too big,
the steps will be huge and algorithm might converge quickly or it might never
converge at all since it can oscillate forever.

In case of loss function in Figure 6, the GD algorithm would converge easily
since the loss function is convex, and starting from any point will always reach
to same minimum destination. Therefore, GD can handle such single-featured
linear regression problems easily.

However, generally in case of non-convex loss functions (something that re-
sembles the one in Figure 7), they are harder to optimize. The GD algorithm
might converge in local minimum instead of global minimum, or it might get
stuck on ’saddle points’, depending on its starting point. But in practice these
problems do not matter since local minimum is often good enough [7]. There
are also other algorithms than GD for finding best weight parameters, such as
conjugate GD, BFGS, and L-BFGS. They are usually more efficient for certain
kind of models but much more complicated to understand intuitively and to
implement. Some of the algorithms are less greedy, i.e., they look more around
the minimum they achieved to find better minimum, but the drawback is the
increased computation time.

So in short, we will first have some sort of ’candidate model’ which we will
feed with data (input-output pairs). As the time goes on, the weights of the
’candidate model’ will be adjusted until it optimally can model the training set
with minimal errors. Next step would be the model evaluation for test data or
real unseen data.

5.3 Multiple features, logistic regression

So far, we went through linear regression (with single feature) example in order
to understand how the ML modeling works at low level: At first, some kind of
model expression (i.e., function) is assumed. Next the optimal parameters for
such model need to be found so that the resulted loss function is minimized.
Such optimal parameters are found with GD algorithm, and then we will have
the model fully created.

Modeling such dataset containing single feature were simple to illustrate via
graphs. However, usually in ML we are dealing with dataset containing multiple
different features. In case of linear regression for multiple features x, it could
be expressed as following:
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Figure 7: Loss function J(w0, w1) (non-convex)

h(x) = w0 + w1x1 + · · ·+ wnxn

In this case, loss function are much harder illustrate via graphs because the
overall error is calculated using many dimensions. However, GD algorithm could
still be used to find the optimal weight values. Therefore, the model creation
process is still same. The non-linear decision boundaries can be achieved with
higher order hypothesis. For example, in the Figure 8 we have two features
available, and the suitable model would be something like h = f(w0 + w1x1 +
w2x2 + w3x

2
1 + w4x

2
2) .

5.4 Logistic regression and multiclass classification

Our example was about linear regression which outputs continuous real values,
so it deals with regression problems. In case of classification problems, we could
use logistic regression (despite its name, it actually deals with binary classifi-
cation problems). Since we are dealing with classification instead of regression,
a decision boundary will be implemented to classify each values to their own
category. Logistic regression’s hypothesis is almost similar to linear regression,
but in addition, the final value will be scaled to specific range with activation
function (such as sigmoid function f(z) = 1

1+e−z ). So, the hypothesis of logis-
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Figure 8: Two target classes distributed in such way that non-linear modeling
is required

tic regression would be h(x) = f(w0 + w1x) =
1

1+e−(w0+w1x) . The output being

in specific range and the decision boundary (created by the weight parameters
in hypothesis) will then determine how the instance will be classified.

In case of multiclass classification (e.g., recognizing handwriting digits, rec-
ognizing type of Internet traffic), the problem is actually solved by breaking
it into multiple binary classification problems. Therefore, we will get multiple
hypothesis functions. We will see that one of the models seem to maximize its
value, so we then classify such instance to the class which the model belongs to.
In case of Internet traffic classification, it is good to note that as the number of
applications grow, the classification accuracy will decrease since it is more likely
that the new application features might be more similar to the existing ones [6].
For example, it is easier to distinguish Youtube and OneDrive traffic compared
to distinguishing Youtube and Vimeo traffic.

5.5 Classification and regression metrics

To further clarify some metrics used in different situations, next we will list
some common metrics used in both cases.

In case of classification (i.e., dealing with discrete target values), usual met-
rics are accuracy, recall, precision, confusion matrix, logistic regression, and
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categorical cross-entropy. [1]
In case of regression (i.e., dealing with continuous target values), usual met-

rics are MAE, MSE, and RMSE. [1]

5.6 ML algorithms for model training

Each ML algorithms have its own mathematical method to train a model. They
all have strengths and weaknesses, for example, some algorithms work better for
bigger sized data and some algorithms can train model faster. There is no ’best’
ML algorithm for every situation, which is the reason to try many different ones
to find most suitable for particular case. In general regarding Internet traffic
classification, it has been often concluded that C4.5 decision tree would be one
of top choices.

Let’s now take a look at few ML algorithms and how they work at high level:
support vector machines (SVM) and k-nearest neighbor (KNN).

5.6.1 SVM

SVM models are type of models that try to estimate a hyperplane (which dimen-
sion is one less that whole dataset) that could separate different instances from
each other as best as possible. Using different kinds of kernel tricks, the hyper-
plane can become non-linear. SVM algorithms can be used both for regression
or classification tasks.

In case of linear SVM, it assumes that the created model’s inputs and out-
puts have linear relationship. The created model could be easily used for clas-
sification problems. Let’s have a look on simple example where we have a
classification problem. We have to decide if certain point in the space should be
classified as ’orange’ or as ’blue’ based on their two features (X-coordinate and
Y-coordinate). We are given in total of 100 training samples and we are training
the model with LinearSVC algorithm (see Figure 9). As a result, the model
will be able to solve the problem in linearly as we can see from the picture.
Values that are on the orange area (below the decision line) will be classified as
’orange’ and values on the blue area (above decision boundary) will be classified
as ’blue’. The linear regression algorithms are stable (i.e., not likely overfitted)
but sometimes inaccurate.

5.6.2 KNN

KNN algorithm doesn’t make any assumption regarding the relationship be-
tween model’s inputs or outputs. All that KNN cares about is the Euklidean
distance from training sample to other training sample. Depending on its hy-
perparameter’s, KNN is able to classify if certain area belongs to certain target
by taking into account the k nearest neighbors. In case of 2-class classifications,
usually the hyperparameter is odd-valued in order to avoid tie situations, in
which the coinflip will decide the result. Simple example at Figure 10 demon-
strates that the unknown point belongs to ’blue’ because most of its three nearest
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Figure 9: Dataspace with orange (gaussian, mean=0, var=2) and blue (gaussian,
mean=2, var=2) training samples classified with LinearSVC algorithm

neighbors were ’blue’ (2 were ’blue’, 1 was ’orange’).
KNN can be accurate but sometimes unstable (i.e., overfitting. So, avoid

using k=1 at least). Nearest neighbor modeling might struggle if there are
lot of features because the algorithms need to calculate each neighbors distance.
Therefore, search trees could be used for finding neighbors efficiently. Figure 11
demonstrates how KNN have created the classification decision for all possible
areas. KNN is very scalable and it works well with any sized dataset.
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