
Traffic classification programming example

Tran Thien Thi

June 2019

Contents

1 Example 1: traffic classification 1
1.1 Pre-processing . 2
1.2 Model training . 6
1.3 Evaluation . 7
1.4 All code for this example 1 . 8

2 Example 2: further evaluations 10
2.1 All codes for this example 2 . 12

3 Example 3: R version of both examples 12
3.1 R version of Example 1 . 13
3.2 R version of Example 2 . 17

Introduction

In this document, we will go through case where we handle the dataset with
Python scikit-learn library. The dataset contains Youtube and web browsing
data in flows. The process is supervised learning, and the aim is traffic classi-
fication. The coding contains three steps: Pre-processing, training model, and
evaluation.

Generally about scikit library, it performs well handling both dataframes or
arrays, so that’s why sometimes switching to the arrays was not necessary in
this example. However, other programming languages or libraries might not be
able to do same. Therefore, usually it is good idea to convert dataframes to
arrays in order to have less computation times or avoid possible errors.

1 Template f o r codes and outputs

1 Example 1: traffic classification

In this first example, we go through how the Internet traffic of captured traf-
fic can be classified using Python’s Scikit-library. The traffic was captured for

1

youtube traffic (capturing packets while video was running 30min) and for reg-
ular web browsing (30min).

The pre-processing phase contains following procedures: feature extraction,
sampling, categorization, imputing missing values, standardization, and feature
selection. After pre-processing, there will be model training and basic evaluation
with score metrics and confusion matrix.

1.1 Pre-processing

Let’s assume that we have only different .pcap files for two different applications
available at the beginning.

First we need to extract some useful features from the .pcap file, such as
average packet sizes, etc. Using NetMate, we are able to easily extract 44
features (the description of the features can be found from its doumentation
page). You could also use CoralReef for extracting 11 features but some of
them can be useless unless you build more features manually based on them.

NetMate can be cloned from github repo, installed on school computers
without admin rights (make sure the installation folder is at somewhere your

home directory, and update the path variable ”PATH=$PATH:/̃bin”). After
installation, you need to have the .pcap file and the rule file (XML) at the
same directory. You can use the example rule file but make sure to change the
Netmate output location in that rule file so you can find it later.

Then you should be able to run the following command:

1 $netmate −r [XML FILE] −f [PCAP FILE]

This will then create new csv-file-like with 44 different columns. Keep in
mind: if you utilize the command again, it will append the new output instead
of overwriting, so good idea would be to rename the output file immediately
once you have used the command. There are no headers so you can add them
manually, see the Netmate documentation for each headers.

Currently, the dataset is unlabeled you need to label each .pcap file individ-
ually. For example, by adding additional column containing the specific label
for youtube traffic or web browsing traffic. After this, you could combine all
dataset together for one .csv file. I recommend programming a code that adds
headers, labels, and combine datasets to simplify this process until this. Here
before pre-processing, the .csv file contains the output of Netmate, and also the
additional column ”label” for the classification target value. Youtube traffic was
labeled as ”youtube” and web browsing was labeled as ”webBrow”.

Now we should have labeled but raw dataset available. Let’s import the
labeled and combined data and see how it initially looks like. (We also save the
headers so that we can use them later)

1 d i r e c t o r y = ’ ˜/Documents/ datase t . csv ’
2 raw df = pd . r ead c sv (d i r e c t o r y)
3 headers = raw df . columns . va lue s
4 pr in t (raw df . head (n=3))
5 pr in t (”Shape o f whole datase t : ” , raw df . shape)

2

1 s r c i p s r cpo r t d s t ip . . . t o t a l f h l e n t o t a l bh l en l a b e l

2 0 130 .233 .145 .193 51738 109 .105 . 98 . 204 . . . 476 476 youtube

3 1 130 .233 .145 .193 38766 130 .233 . 227 . 12 . . . 320 216 youtube

4 2 130 .233 .145 .193 56320 130 . 233 . 251 . 6 . . . 268 204 youtube

5

6 [3 rows x 45 columns]

7 Shape o f whole dataset : (705 , 45)

Let’s check initial stats regarding amount of flows that belong to Youtube
or web browsing.

1 pr in t (raw df . groupby ([’ l a b e l ’]) . s i z e ())

1 l a b e l

2 webBrow 234

3 youtube 471

We can see that Youtube has much more flows than web browsing, so let’s
balance the dataset. Since this particular dataset is small (about 700 flows in
total), we will perform oversampling for web browsing. However, it is good to
keep in mind that in general, oversampling might lead to overfitting.

In the code below, we create two new temporary dataframes that contains
only youtube or web browsing flows. Since youtube has more flows, we will
take that amount and sample it from webBrow category. Then we combine
both together and display its statistics, where we can see the oversampling went
correctly.

1 df youtube = raw df [raw df [’ l a b e l ’] == ’ youtube ’]
2 df web = raw df [raw df [’ l a b e l ’] == ’webBrow ’]
3

4 amount = (raw df [’ l a b e l ’]== ’ youtube ’) . sum()
5 df web = df web . sample (amount , r ep l a c e=True)
6

7 raw df = pd . concat ([df youtube , df web] , ax i s=0)
8

9 pr in t (raw df . groupby ([’ l a b e l ’]) . s i z e ())

1 l a b e l

2 webBrow 471

3 youtube 471

4 Shape o f whole dataset a f t e r oversampling : (942 , 45)

Our dataset contains only three particular columns which are not numer-
ical, let’s encode them. However, keep in mind that we already know what
the dataset look like, which is the reason for such hard-coding. Normally we
should implement the code to detect non-numerical column contents and encode
only them. There are several other more advanced encoding methods to avoid
such situations, for example: OneHotEncoder(). But for simple demonstration
regarding Internet traffic classification, let’s just use LabelEncoder().

(In case at some point you need to decode the numbers, you can use in-
verse transform() function to look at the original values)

1 l e = LabelEncoder ()
2 raw df [’ s r c i p ’] = l e . f i t t r a n s f o rm (raw df [’ s r c i p ’])
3 raw df [’ d s t i p ’] = l e . f i t t r a n s f o rm (raw df [’ d s t i p ’])
4 raw df [’ l a b e l ’] = l e . f i t t r a n s f o rm (raw df [’ l a b e l ’])
5 pr in t (raw df . head (n=3))

3

6

7 #pr in t (l e . i nv e r s e t r an s f o rm (raw df [’ l a b e l ’]))

1 s r c i p s r cpo r t d s t ip dstport . . . burg cnt t o t a l f h l e n t o t a l bh l en l a b e l

2 0 35 51738 7 443 . . . 0 476 476 1

3 1 35 38766 17 111 . . . 0 320 216 1

4 2 35 56320 21 88 . . . 0 268 204 1

5

6 [3 rows x 45 columns]

As we can see from the output, ”youtube” was coded as 1(and ”webBrow”
was coded as 0).

Next the dataframes will be converted to arrays to handle the code easier.
Shuffling is to ensure the diversity of the sets since the dataset was originally or-
dered since youtube flows were at the beginning of the dataset and web browsing
flows at the end.

Then we are going to split the data to training set and test set before data
transformations. The reason for this is to avoid ’data leakage’ by separating
the test set completely before adjusting the transformations. The split ratio
between training set and test set usually depends on the application, let’s now
keep it 9:1 because the whole dataset is quite small already

In addition, since this is classification problem, it is often good idea
to perform transformations only for the feature set (and not target
value). That’s why we also separate the features (X) and targets (Y) from each
others. We also reshape the target column because in Python, array shape of
ABC(x,) and ABC(x,1) is different. The former is vector (1D array) and the
latter is matrix (2D array with one ’column’). This matrix form is preferred in
some of Python library functions.

1 raw df = raw df . to numpy ()
2 raw df = s h u f f l e (raw df)
3 pr in t (raw df)
4 pr in t (”Shape o f whole datase t : ” , raw df . shape)
5

6 t r a i n s i z e = in t (l en (raw df) ∗ 0 . 90)
7 t r a i n = raw df [: t r a i n s i z e , :]
8 t e s t = raw df [t r a i n s i z e : , :]
9 pr in t (”Shape o f t r a i n i n g datase t : ” , t r a i n . shape)

10 pr in t (”Shape o f t e s t datase t : ” , t e s t . shape)
11

12 X tra in = t r a i n [: , :−1]
13 Y tra in = t r a i n [: , −1]
14 Y tra in = Y tra in . reshape (Y tra in . shape [0] , 1)
15

16 X test = t e s t [: , :−1]
17 Y test = t e s t [: , −1]
18 Y test = Y tes t . reshape (Y tes t . shape [0] , 1)
19

20 pr in t (”Shape o f t r a i n i n g datase t (t a r g e t s) : ” , Y tra in . shape)
21 pr in t (”Shape o f t r a i n i n g datase t (f e a t u r e s) : ” , X tra in . shape)
22 pr in t (X tra in)

1 [[8 68 73 . . . 128 0 1]

2 [35 54970 16 . . . 372 372 0]

3 [29 138 14 . . . 148 0 1]

4

4 . . .

5]]

6 Shape o f whole dataset : (942 , 45)

7 Shape o f t r a i n i n g dataset : (847 , 45)

8 Shape o f t e s t dataset : (95 , 45)

9 Shape o f t r a i n i n g dataset (t a r g e t s) : (847 , 1)

10 Shape o f t r a i n i n g dataset (f e a t u r e s) : (847 , 44)

11 [[8 68 73 . . . 0 128 0]

12 [35 54970 16 . . . 0 372 372]

13 [29 138 14 . . . 0 148 0]

14 . . .

15]]

Next we will fill empty data values (NaN). Even though the imported dataset
might not have any NaN values, it is good idea to perform ”data-imputing” just
in case.

This is done by taking means of their respective column. There are also
other ways to do this, such as dropping such rows or taking median or using
particular learning algorithm that takes into account all features, but let’s just
keep it simple example. In scikit-library, SimpleImputer() is used for univariate
values, i.e., target value depends on a single column.

We fit the imputer scaler with only training data, and then apply the imputer
scaler to both training set and test set to avoid any data leakages.

1 s i = SimpleImputer (s t r a t e gy = ’mean ’)
2 s i = s i . f i t (X tra in)
3 X tra in = s i . t rans form (X tra in)
4 X test = s i . t rans form (X tes t)

Next we will perform standardization for the data, i.e., making it more
Gaussian like. Again, same strategy is applied here: fitting the scaler with only
training dataset, and then apply it to both sets.

1 s t anda rd s c a l e r = StandardSca ler ()
2 s t anda rd s c a l e r = s t anda rd s c a l e r . f i t (X tra in)
3 X tra in = s t anda rd s c a l e r . t rans form (X tra in)
4 X test = s t anda rd s c a l e r . t rans form (X tes t)
5

6 pr in t (X tra in)

1 [[−2.13142727 −1.54998456 1.7602874 . . . 0 . −0.06690683 −0.07138781]

2 [−0.08044645 0.84177445 −0.58296051 . . . 0 . −0.0612467 −0.06234995]

3 [−0.53621996 −1.54693507 −0.66517974 . . . 0 . −0.06644288 −0.07138781]

4 . . .

5]]

As we can see above, every values were normalized according to their columns.
Next we will perform feature selection, i.e., choosing only few best features

from the existing ones that will be used for training. Motivation for this is to
reduce the amount of processed data without losing much accuracy.

Scikit-library have many algorithms for estimating best features from whole
dataset. Popular algorithms used are, for example, chi2. However, keep in mind
that chi2 only work with non-negative values.

In the code snippet below, we choose ten most relevant columns, i.e., highly
correlated to the target column. Again, same strategy here: adjust the scaler
only using training data, and then apply it to both sets.

5

1 number o f des i r ed = 10
2 s e l e c t o r = SelectKBest (f c l a s s i f , k=number o f des i r ed)
3 s e l e c t o r = s e l e c t o r . f i t (X train , Y tra in)
4 X tra in = s e l e c t o r . t rans form (X tra in)
5 X test = s e l e c t o r . t rans form (X tes t)
6

7 pr in t (X tra in)
8 pr in t (X tra in . shape)

1 [[1 .7602874 1.15470054 −0.38110055 . . . −0.40034708 −0.3117161 −0.42675503]

2 [−0.58296051 −0.8660254 −0.32595765 . . . −0.38645449 −0.3117161 −0.17678165]

3 [−0.66517974 1.15470054 −0.38110055 . . . −0.40034708 −0.3117161 −0.42675503]

4 . . .

5]]

6 (847 , 10)

We can see that there are now 10 most relevant features (instead of whole
44 features).

Now that we have all pre-processing done, we could save the resulted dataset
in order to use it again later for other cases. Having such clean dataset would
not require any further pre-processing then.

So, let’s combine all training sets and test sets back together as new clean
dataframe. The new clean dataframe doesn’t have headers, so we also add the
selected column names for it.

1 t r a i n = np . concatenate ((X train , Y tra in) , ax i s=1)
2 t e s t = np . concatenate ((X test , Y tes t) , ax i s=1)
3 c l e an d f = np . concatenate ((t ra in , t e s t) , ax i s=0)
4

5 c l e an d f = pd . DataFrame (c l e an d f)
6

7 c o l s = s e l e c t o r . g e t suppor t (i n d i c e s=True)
8 s e l e c t ed co lumns = headers [c o l s]
9 s e l e c t ed co lumns = np . append (se l e c ted co lumns , ’ t a r g e t ’)

10 c l e an d f . columns = [s e l e c t ed co lumns]
11

12 pr in t (c l e an d f . head (n=3))
13 pr in t (c l e an d f . shape)
14

15 c l e an d f . t o c sv (’ ˜/Documents/ c l e an da t a s e t . csv ’ , encoding=’ utf−8 ’
, index=False)

1 ds t ip proto mean bpktl max bpktl s td bpkt l mean biat max biat s t d b i a t

s t d a c t i v e fp sh cnt ta rge t

2 1.760287 1.154701 −0.381101 −0.355844 −0.424496 −0.358467 −0.387996 −0.400347

−0.311716 −0.426755 1 .0

3 −0.582961 −0.866025 −0.325958 −0.330491 −0.394012 −0.340772 −0.378973 −0.386454

−0.311716 −0.176782 0 .0

4 −0.665180 1.154701 −0.381101 −0.355844 −0.424496 −0.358467 −0.387996 −0.400347

−0.311716 −0.426755 1 .0

5 (942 , 11)

1.2 Model training

Then the actual training to create the model. We will use KNN as ML technique
to train the model. There are also many other options available, feel free to
choose other options among scikit-library. However, when using KNN, make

6

sure that the neighbor parameter is odd-numbered due to the nature of the
algorithm (in order to avoid tie results).

Also remember that the training is only performed for the training set, we
will keep test set out of this.

1 model = KNe ighbo r sC la s s i f i e r (n ne ighbors=5)
2 model . f i t (X train , Y tra in)

1.3 Evaluation

Next we will perform model evaluation if it seems good enough. We will let the
model to predict the test set for which Internet traffic type it belongs to. Then
we see how correct its predictions were compared to the real test set values. The
following code snippet gives accuracy score, confusion matrix, and classification
report.

1 pred icted Y = model . p r ed i c t (X tes t)
2

3 s c o r e = accu racy s co r e (Y test , pred icted Y)
4 pr in t (”KNN accurary s co r e i s : ” + s t r (s c o r e))
5

6 conf mat = con fus i on mat r ix (y t rue=Y test , y pred=pred icted Y)
7 pr in t (’ Confusion matrix :\n ’ , conf mat)
8

9 c l a s s r e p o r t = c l a s s i f i c a t i o n r e p o r t (y t rue=Y test , y pred=
pred icted Y)

10 pr in t (’ C l a s s i f i c a t i o n r epor t :\n ’ , c l a s s r e p o r t)

1 KNN accurary sco r e i s : 0.7157894736842105

2 Confusion matrix :

3 [[3 6 20]

4 [7 3 2]]

5 C l a s s i f i c a t i o n repor t :

6 p r e c i s i o n r e c a l l f1−s co r e support

7

8 0 0 .84 0 .64 0 .73 56

9 1 0 .62 0 .82 0 .70 39

10

11 micro avg 0 .72 0 .72 0 .72 95

12 macro avg 0 .73 0 .73 0 .72 95

13 weighted avg 0 .75 0 .72 0 .72 95

By default, the scikit’s confusion matrix() method sorts the values according
to their labels in increasing order (from left to right and from up to down: 0 to
infinite).

Remember that web browsing traffic was labeled as 0 and youtube as 1. From
the confusion matrix output can be seen, that the created model thought that
there were 36+7=43 instances of web traffic and 20+32=52 instances of Youtube
traffic in this test set. However, in reality there was 36+20=56 instances of web
traffic and 7+32=39 instances of Youtube traffic in this test set.

The scikit’s classification report() method is quite useful for seeing scores
for accuracy, precisions, and recalls.

Finally, save the model for later use if needed. For example, using it for
another new unseen data (which has been pre-processed in similar fashion).

7

1 mode l f i l e = input (”Name o f your model? Use . sav format .\n”)
2 j o b l i b . dump(model , mod e l f i l e)

When you later load the particular for new test set, you can do the following.
Also, make sure that the Python version is similar as when first saved your model
in order to ensure the compability of the model.

1 loaded model = j o b l i b . load (’ knn . sav ’)
2 pred icted Y = loaded model . p r ed i c t (X tes t)
3 . . .

1.4 All code for this example 1

1 # Importing needed l i b r a r i e s
2 import numpy as np
3 import pandas as pd
4 from sk l e a rn . p r ep ro c e s s i ng import LabelEncoder
5 from sk l e a rn . impute import SimpleImputer
6 from sk l e a rn . p r ep ro c e s s i ng import StandardSca ler
7 from sk l e a rn . f e a t u r e s e l e c t i o n import SelectKBest
8 from sk l e a rn . f e a t u r e s e l e c t i o n import f c l a s s i f
9 from sk l e a rn . mode l s e l e c t i on import t r a i n t e s t s p l i t

10 from sk l e a rn . u t i l s import s h u f f l e
11 from sk l e a rn . ne ighbors import KNe ighbo r sC la s s i f i e r
12 from sk l e a rn . met r i c s import a c cu racy s co r e
13 from sk l e a rn . met r i c s import con fu s i on mat r ix
14 from sk l e a rn . met r i c s import c l a s s i f i c a t i o n r e p o r t
15 from sk l e a rn . e x t e r n a l s import j o b l i b
16

17 de f main () :
18

19 # Making the r e s u l t s r ep roduc ib l e f o r t e s t i n g purposes
20 np . random . seed (1)
21

22 # Importing the l ab e l ed raw datase t
23 d i r e c t o r y = ’ ˜/Documents/ datase t . csv ’
24 raw df = pd . r ead c sv (d i r e c t o r y)
25 headers = raw df . columns . va lue s
26

27

28 # Sampling (oversampl ing)
29 df youtube = raw df [raw df [’ l a b e l ’] == ’ youtube ’]
30 df web = raw df [raw df [’ l a b e l ’] == ’webBrow ’]
31 amount = (raw df [’ l a b e l ’]== ’ youtube ’) . sum()
32 df web = df web . sample (amount , r ep l a c e=True)
33 raw df = pd . concat ([df youtube , df web] , ax i s=0) # merge

v e r t i c a l l y
34

35

36 # Catego r i za t i on
37 l e = LabelEncoder ()
38 raw df [’ s r c i p ’] = l e . f i t t r a n s f o rm (raw df [’ s r c i p ’])
39 raw df [’ d s t i p ’] = l e . f i t t r a n s f o rm (raw df [’ d s t i p ’])
40 raw df [’ l a b e l ’] = l e . f i t t r a n s f o rm (raw df [’ l a b e l ’])
41

42 # Divid ing to t r a i n i n g and t e s t s e t

8

43 raw df = raw df . to numpy ()
44 raw df = s h u f f l e (raw df)
45 t r a i n s i z e = in t (l en (raw df) ∗ 0 . 90)
46 t r a i n = raw df [: t r a i n s i z e , :]
47 t e s t = raw df [t r a i n s i z e : , :]
48

49 # Divid ing both s e t s to f e a t u r e s and ta r g e t va lue
50 X tra in = t r a i n [: , :−1]
51 Y tra in = t r a i n [: , −1]
52 Y tra in = Y tra in . reshape (Y tra in . shape [0] , 1) # change vec to r

in to matrix
53 X test = t e s t [: , :−1]
54 Y test = t e s t [: , −1]
55 Y test = Y tes t . reshape (Y tes t . shape [0] , 1)
56

57 # Imputing miss ing va lue s (f o r f e a t u r e s only)
58 s i = SimpleImputer (s t r a t e gy = ’mean ’)
59 s i = s i . f i t (X tra in)
60 X tra in = s i . t rans form (X tra in)
61 X test = s i . t rans form (X tes t)
62

63 # Standard i za t i on (f o r f e a t u r e s only)
64 s t anda rd s c a l e r = StandardSca ler ()
65 s t anda rd s c a l e r = s t anda rd s c a l e r . f i t (X tra in)
66 X tra in = s t anda rd s c a l e r . t rans form (X tra in)
67 X test = s t anda rd s c a l e r . t rans form (X tes t)
68

69 # Feature s e l e c t i o n (f o r f e a t u r e s only)
70 number o f des i r ed = 10
71 s e l e c t o r = SelectKBest (f c l a s s i f , k=number o f des i r ed)
72 s e l e c t o r = s e l e c t o r . f i t (X train , Y tra in)
73 X tra in = s e l e c t o r . t rans form (X tra in)
74 X test = s e l e c t o r . t rans form (X tes t)
75

76 # Saving the pre−proces sed datase t
77 t r a i n = np . concatenate ((X train , Y tra in) , ax i s=1) # merge

h o r i z o n t a l l y
78 t e s t = np . concatenate ((X test , Y tes t) , ax i s=1)
79 c l e an d f = np . concatenate ((t ra in , t e s t) , ax i s=0) # merge

v e r t i c a l l y
80 c l e an d f = pd . DataFrame (c l e an d f) # change array in to dataframe
81 c o l s = s e l e c t o r . g e t suppor t (i n d i c e s=True)
82 s e l e c t ed co lumns = headers [c o l s]
83 s e l e c t ed co lumns = np . append (se l e c ted co lumns , ’ t a r g e t ’)
84 c l e an d f . columns = [s e l e c t ed co lumns] # add column names f o r

dataframe
85 c l e an d f . t o c sv (’ ˜/Documents/ c l e an da t a s e t . csv ’ , encoding=’ utf−8 ’

, index=False)
86

87

88 # Training the model
89 model = KNe ighbo r sC la s s i f i e r (n ne ighbors=5)
90 model . f i t (X train , Y tra in)
91

92 # Evaluat ion o f the model
93 pred icted Y = model . p r ed i c t (X tes t)
94 s c o r e = accu racy s co r e (Y test , pred icted Y)

9

95 pr in t (s co r e)
96 conf mat = con fus i on mat r ix (y t rue=Y test , y pred=pred icted Y)
97 pr in t (conf mat)
98 c l a s s r e p o r t = c l a s s i f i c a t i o n r e p o r t (y t rue=Y test , y pred=

pred icted Y)
99 pr in t (c l a s s r e p o r t)

100

101 # Saving the model
102 mode l f i l e = input (”Name o f your model? Use . sav format .\n”)
103 j o b l i b . dump(model , mod e l f i l e)
104

105

106 # Running the main func t i on
107 i f name == ” main ” :
108 main ()

2 Example 2: further evaluations

In this example, nice evaluation method K-fold CV is demonstrated.
Let’s now continue further from Example 1 case. In addition to KNN al-

gorithm, now you would want also to test other algorithms too: linear support
vector classification and Naive Bayes. The reason would be to see which ML
algorithm performs best and would be best for your training your model.

However, creating just one model for each case and taking the single result
from it might lead to different results after each run since the model training
is stochastic process. Better idea would be to train multiple models for each
algorithms, and then take average score from them. This result would be more
stable and comparable. K-fold CV would be suitable for this kind of evaluation.

First, we will load the clean dataset that we did earlier in Example 1 so that
we do not need to write the pre-processing code part again. We also separate
the dataset from features column and target column.

1 c l e an d f = pd . r ead c sv (’ ˜/Documents/ c l e an da t a s e t . csv ’ , header=0)
2 c l e an d f = c l e an d f . to numpy ()
3 X = c l e an d f [: , :−1]
4 Y = c l e an d f [: , −1]
5 pr in t (”Shape o f whole datase t : ” , c l e a n d f . shape)
6 pr in t (”Shape o f whole datase t (f e a t u r e s) : ” , X. shape)
7 pr in t (”Shape o f whole datase t (t a r g e t) : ” , Y. shape)

1 Shape o f whole dataset : (942 , 11)

2 Shape o f whole dataset (f e a t u r e s) : (942 , 10)

3 Shape o f whole dataset (t a rge t) : (942 ,)

Then, we configure the K-fold CV to split the dataset to 10 instances. There-
fore, we will train 10 different models for each algorithms, and finally take the
average score from them. In this first case, we perform K-fold CV for KNN
algorithm. It is recommended to read the theory section regarding K-fold CV
in order to understand the code below properly.

1 kf = KFold (n s p l i t s = 10)
2 s c o r e s = l i s t ()

10

3 f o r t r a in index , t e s t i n d e x in k f . s p l i t (X) :
4 X train , X tes t = X[t r a i n i nd ex] , X[t e s t i n d e x]
5 Y train , Y tes t = Y[t r a i n i nd ex] , Y[t e s t i n d e x]
6 model = KNe ighbo r sC la s s i f i e r (n ne ighbors=5)
7 model . f i t (X train , Y tra in)
8 pred icted Y = model . p r ed i c t (X tes t)
9 s c o r e s . append (ac cu racy s co r e (Y test , pred icted Y))

10

11 pr in t (”Al l KNN sco r e s : ” , s c o r e s)
12 pr in t (”Average KNN sco r e i s : ” , sum(s c o r e s) / l en (s c o r e s))

1 Al l KNN sco r e s : [0 .7263157894736842 , 0.7368421052631579 , 0.8297872340425532 ,

0.7127659574468085 , 0.6702127659574468 , 0.648936170212766 , 0.7978723404255319 ,

0.776595744680851 , 0.776595744680851 , 0 .7446808510638298]

2 Average KNN score i s : 0.742060470324748

The previous code could have been shortened drastically by using function
cross val score(). We need to tell this algorithm that which training algorithm,
the features, the target, and also the cross validation method will be used. We
will use now this cross val score() for the rest algorithms.

1 kf = KFold (n s p l i t s = 10)
2 model = KNe ighbo r sC la s s i f i e r (n ne ighbors=5)
3 k c r o s s s c o r e = c r o s s v a l s c o r e (model , X, Y, cv=kf)
4 pr in t (”Al l c r o s s v a l s c o r e s : ” , k c r o s s s c o r e)
5 pr in t (” c r o s s v a l s c o r e on average i s : ” , k c r o s s s c o r e .mean ())

1 Al l c r o s s v a l s c o r e s : [0 .72631579 0.73684211 0.82978723 0.71276596 0.67021277

0.64893617

2 0.79787234 0.77659574 0.77659574 0 .74468085]

3 c r o s s v a l s c o r e on average i s : 0.742060470324748

Now we repeat the same procedure for the rest of the algorithms LinearSVC
and Naive Bayes, respectively.

1 model2 = svm . LinearSVC (max iter =100000)
2 k c r o s s s c o r e = c r o s s v a l s c o r e (model2 , X, Y, cv=kf)
3 pr in t (”Al l c r o s s v a l s c o r e s : ” , k c r o s s s c o r e)
4 pr in t (” c r o s s v a l s c o r e on average i s : ” , k c r o s s s c o r e .mean ())
5

6 model3 = GaussianNB ()
7 k c r o s s s c o r e = c r o s s v a l s c o r e (model3 , X, Y, cv=kf)
8 pr in t (”Al l c r o s s v a l s c o r e s : ” , k c r o s s s c o r e)
9 pr in t (” c r o s s v a l s c o r e on average i s : ” , k c r o s s s c o r e .mean ())

1 Al l c r o s s v a l s c o r e s : [0 .74736842 0.71578947 0.76595745 0.72340426 0.74468085

0.69148936

2 0.77659574 0.76595745 0.73404255 0 .70212766]

3 c r o s s v a l s c o r e on average i s : 0.7367413213885778

4 Al l c r o s s v a l s c o r e s : [0 .69473684 0.70526316 0.76595745 0.62765957 0.74468085

0.54255319

5 0.75531915 0.71276596 0.70212766 0 .60638298]

6 c r o s s v a l s c o r e on average i s : 0.6857446808510639

As from the result can be seen, KNN algorithm seems to give best average
scores in case of K-fold CV. Therefore in practice, when building final model,
we would choose KNN algorithm for training WHOLE dataset (no need to split
to training or test anymore).

K-fold CV can be used other things than choosing between different models.
It could be also used for tuning one particular model’s parameters, such as
number of neighbors in case of KNN algorithm.

11

2.1 All codes for this example 2

1

2 # Importing the needed l i b r a r i e s
3 import numpy as np
4 import pandas as pd
5 from sk l e a rn . met r i c s import a c cu racy s co r e
6 from sk l e a rn . ne ighbors import KNe ighbo r sC la s s i f i e r
7 from sk l e a rn import svm
8 from sk l e a rn . na ive bayes import GaussianNB
9 from sk l e a rn . mode l s e l e c t i on import KFold

10 from sk l e a rn . mode l s e l e c t i on import c r o s s v a l s c o r e
11

12 de f main () :
13

14 # Importing the c l ean datase t (a l r eady pre−proces sed)
15 c l e an d f = pd . r ead c sv (’ ˜/Documents/ c l e an da t a s e t . csv ’ , header=0)
16 c l e an d f = c l e an d f . to numpy ()
17 X = c l e an d f [: , :−1]
18 Y = c l e an d f [: , −1]
19

20 # K−f o l d CV with 10 d i f f e r e n t s e t s
21 kf = KFold (n s p l i t s = 10)
22

23 # K−f o l d CV f o r KNN algor i thm
24 model = KNe ighbo r sC la s s i f i e r (n ne ighbors=5)
25 k c r o s s s c o r e = c r o s s v a l s c o r e (model , X, Y, cv=kf)
26 pr in t (” c r o s s v a l s c o r e on average i s : ” , k c r o s s s c o r e .mean ())
27

28 # K−f o l d CV f o r LinearSVC algor i thm
29 model2 = svm . LinearSVC (max iter =100000)
30 k c r o s s s c o r e = c r o s s v a l s c o r e (model2 , X, Y, cv=kf)
31 pr in t (” c r o s s v a l s c o r e on average i s : ” , k c r o s s s c o r e .mean ())
32

33 # K−f o l d CV f o r Naive Bayes a lgor i thm
34 model3 = GaussianNB ()
35 k c r o s s s c o r e = c r o s s v a l s c o r e (model3 , X, Y, cv=kf)
36 pr in t (” c r o s s v a l s c o r e on average i s : ” , k c r o s s s c o r e .mean ())
37

38

39 i f name == ” main ” :
40 main ()

3 Example 3: R version of both examples

There are several major differences between R and Python language, here are
the most relevant ones in general:

• Regarding indexing in R, it is one-based (Python was zero-based). Index-
ing overall can be different. For example, in case of 2D array data: In R,
choosing all rows only from 2nd column would be like [, 2]. In Python it
would be [: , 1].

12

• Regarding variable assignment in R, usually ’<-’ is safer to use than ’=’
to avoid scope confusions and ensuring compabilities of most R packages.

• Regarding indentation in R, they don’t matter at all (but it is good prac-
tice to keep code readable)

• Many R libraries can handle dataframes (since dataframes are big part of
R) but usually converting them to arrays will make computation faster.

• In R, lists ’list()’ or vectors ’c()’ are often used to represent 1D arrays.
Vector consists of elements of same types whereas the list can consist
different type of elements. For higher dimension arrays, matrices are used.

• Regarding machine learning libraries, R has a lot of them. On the other
hand, this may lead to compability issues so check what type of inputs
the library functions require. For example, some ML functions only take
arrays as input, some only takes dataframes as input, some can handle
both. Feel free to use as many different packages as you want to get
the desired results, but check their documentation and examples if you
encounter errors.

3.1 R version of Example 1

In this subsection, we will briefly go through similar kind of process as in Ex-
ample 1 but this time with R programming language. Regarding the code
implementation, the major differences or interesting notes are:

• ’caret’ package is used as classification here. ’Caret’ is one popular ML
package for R language but it is basically bunch of different ML packages
packed together, so carefully handle the compability of the functions.

• Instead of oversampling of web browsing traffic, we will instead take same
amount of random samples as there are youtube flows.

• When dealing with categorical values (srcip and dstip), we convert these
IP-addresses into integer using a function ’ip to numeric’ from ’iptools’
package

• The function ’preProcess’ from ’caret’ is very versatile, it can be used for
many preprocessing steps such as dealing with missing values, standard-
ization, normalization, ..., etc. In addition, this function can perform the
tuning of hyperparameters at the same time and choose the most optimal
ones automatically.

• When dealing with missing values, the possible NaN values are replaced
with ’knnImpute’ which by default takes the average value of 5 closest
neighbors in Euclideaan space. This is more advanced simply taking mean
of the column. When we actually use ’knnImpute’, it also standardizes the
dataset beforehand, so there actually happens method=c(’center’, ’scale’,

13

’knnImpute’). Therefore, we don’t need to standardize the dataset this
time.

• The feature selection is done using Recursive Feature Elimination (RFE)
which takes all features and removes them one-by-one until there are de-
sired amount of features. This ’rfe’ function from ’caret’ package could
perform many things automatically, such as repeating the process many
times and finding most optimal amount of features. However, we will
keep it simple with one repeat and no cross-validation. And also force
it to choose desired amount of features by indexing even though it may
prefer more with its ’predictors’ result.

• When saving clean dataset for later use, we use completely new variable
(Y train new) instead of reusing old variable (Y train) in order to avoid
compability issues. (Feature selection and training process seem to work
if the target column is as vector and not matrix).

• Similarly in training process, a lot of things happen automatically and
cross-validation is also implemented even though we do not necessarily
care about it this time.

• Regarding confusion matrix, it is read vice-versa in R. The predictions
are from the left side and the real test values are upper side. (In Python
predictions are upper side and the real test values are left side.)

1 # Importing the needed libraries

2 library(caret)

3 library(ade4)

4 library(iptools)

5

6 main <- function ()

7 {

8 # Importing the labeled dataset

9 directory <- ’~/ Documents/kesaduuni_comnet/capturing_

packets/combined010203_raw.csv’

10 raw_df <- read.csv(directory , header=TRUE)

11

12 # Random sampling on web browsing traffic so that same

number as youtube traffic

13 df_youtube <- raw_df[raw_df$label == ’youtube ’,]

14 df_web <- raw_df[raw_df$label == ’webBrow ’,]

15 amount <- sum(raw_df$label == ’youtube ’)

16 df_web <- df_web[sample(nrow(df_web), size=amount , replace

=TRUE),]

17 raw_df <- rbind(df_youtube , df_web)

18

19 # Categorization (convert the ip -addresses to the integers

)

20 raw_df$srcip <- ip_to_numeric(as.character(raw_df$srcip))

14

21 raw_df$dstip <- ip_to_numeric(as.character(raw_df$dstip))
22

23 # Shuffling the dataset row instances before splitting

24 raw_df <- raw_df[sample(nrow(raw_df), size=nrow(raw_df),

replace=FALSE),]

25

26 # Splitting to training and test set

27 split_index <- createDataPartition(raw_df$label , p=0.90,

list=FALSE)

28 train <- raw_df[split_index ,]

29 test <- raw_df[-split_index ,]

30

31 # Splitting both sets to features and target value

32 X_train <- train[, 1:44] # matrix

33 Y_train <- train[, 45] # vector

34

35 X_test <- test[, 1:44]

36 Y_test <- test[, 45]

37

38 # Standardizing values , and imputing missing values (for

features only).

39 imputer <- preProcess(X_train , method=c(’knnImpute ’))

40 X_train <- predict(imputer , X_train)

41 X_test <- predict(imputer , X_test)

42

43 # Feature selection (for features only , using recursive

elimination)

44 number_of_desired <- 10

45 config <- rfeControl(functions=rfFuncs , number=1, p=1.0)

46 feature_selected <- rfe(X_train , Y_train , size=number_of_

desired , rfeControl=config)

47 X_train <- X_train[, predictors(feature_selected)[1:number

_of_desired]] # ensure to choose only 10 best features (

number_of_desired=10)

48 X_test <- X_test[, predictors(feature_selected)[1:number_

of_desired]]

49

50 # Saving clean dataset

51 Y_train_new <- as.matrix(Y_train) # change vector to

matrix

52 Y_test_new <- as.matrix(Y_test)

53 colnames(Y_train_new) <- "target" # rename the

column

54 colnames(Y_test_new) <- "target"

55 train <- cbind(X_train , Y_train_new) # merge

horizontally

56 test <- cbind(X_test , Y_test_new)

57 clean_df <- rbind(train , test) # merge vertically

58 print(dim(clean_df))

59 write.csv(clean_df , file = "clean_dataset2.csv", row.names

15

=FALSE)

60

61 # Training the model (KNN algorithm)

62 train_config <- trainControl(method="cv", number=10)

63 metric <- "Accuracy"

64 model <- train(x=X_train , y=Y_train , method="knn", metric=

metric , trControl=train_config)

65

66 # Making predictions

67 predictions <- predict(model , X_test)

68

69 # Evaluating with confusion matrix

70 print(confusionMatrix(predictions , Y_test))

71

72 # Saving the model

73 saveRDS(model , file="model.rda")

74 }

75 # Running the main function

76 main()

1 s r c i p s r cpo r t d s t ip dstport proto . . . l a b e l

2 1 130 . 233 . 145 . 193 51738 109 . 105 . 98 . 204 443 6 . . . youtube

3 2 130 . 233 . 145 . 193 38766 130 . 233 . 227 . 12 111 6 . . . youtube

4 3 130 . 233 . 145 . 193 56320 130 . 233 . 251 . 6 88 6 . . . youtube

5

6 f r eq

7 webBrow 234

8 youtube 471

9

10 [1] 705 45

11

12 f r eq

13 webBrow 471

14 youtube 471

15

16 [1] 942 45

17

18

19 s r c i p s r cpo r t d s t ip dstport proto . . . l a b e l

20 1 2196345281 51738 1835623116 443 6 . . . youtube

21 2 2196345281 38766 2196366092 111 6 . . . youtube

22 3 2196345281 56320 2196372230 88 6 . . . youtube

23

24 [1] 848 45

25

26 [1] 94 45

27

28

29 s r c i p s r cpo r t ds t ip . . . t o t a l bhlen

30 520 0 . 07170268 0 . 8807267 −0 . 1971636 . . . −0 . 06614489

31 321 . 2 0 . 07170232 −1 . 6056712 −0 . 1971971 . . . −0 . 07110173

32 448 0 . 07170268 0 . 6253052 −0 . 1971712 . . . −0 . 06458981

33

34 [1] 848 44

35

36 s r cpo r t mean f pk t l max f pk t l . . . t o t a l fvolume

37 520 0 . 8807267 −0 . 2591967 −0 . 1203912 . . . −0 . 08717880

38 321 . 2 −1 . 6056712 0 . 2906930 −0 . 2383398 . . . −0 . 09392991

39 448 0 . 6253052 −0 . 5492484 −0 . 3158242 . . . −0 . 09052567

40

41 [1] 848 10

42

43 [1] 942 11

44

45 Confusion Matrix and S t a t i s t i c s

46

47 Reference

16

48 Pred i c t i on webBrow youtube

49 webBrow 38 3

50 youtube 9 44

51

52 Accuracy : 0 . 8723

53 95% CI : (0 . 7876 , 0 . 9323)

54 No Informat ion Rate : 0 . 5

55 P−Value [Acc > NIR] : 2 . 811e−14

56

57 Kappa : 0 . 7447

58

59 Mcnemar ’ s Test P−Value : 0 . 1489

60

61 S e n s i t i v i t y : 0 . 8085

62 S p e c i f i c i t y : 0 . 9362

63 Pos Pred Value : 0 . 9268

64 Neg Pred Value : 0 . 8302

65 Prevalence : 0 . 5000

66 Detect ion Rate : 0 . 4043

67 Detect ion Prevalence : 0 . 4362

68 Balanced Accuracy : 0 . 8723

69

70 ’ Po s i t i v e ’ Class : webBrow

As for interpreting the confusion matrix, remember that confusion matrix in
R is little different than in Python since here predictions are on the left and the
actual real values are up. We can see that the trained model predicted 38+3=41
flows belonging to web browsing and 9+44=53 flows belonging to Youtube traf-
fic. In reality, 38+9=47 belonged to web browsing traffic and 3+44=47 belonged
to Youtube traffic.

3.2 R version of Example 2

In this subsection, we will briefly go through similar kind of process as in Ex-
ample 2 K-fold CV but this time with R programming language. This time we
want to see which of three different ML algorithms (KNN, LinearSVM, Naive
Bayes) would be most suitable for our model to handle the same cleaned dataset
gotten from previous example.

In R’s caret package, the K-fold CV evaluation can be implemented during
training process.

1 # Importing the needed libraries

2 library(caret)

3 library(kernlab)

4 library(klaR)

5

6 main <- function ()

7 {

8 # Importing the clean dataset (already pre -processed)

9 clean_df <- read.csv(’clean_dataset2.csv’)

10 X <- clean_df[, 1:(ncol(clean_df)-1)]

11 Y <- clean_df[, ncol(clean_df)]

12 print(dim(clean_df))

13 print(dim(X))

14 print(dim(Y)) # vector ’s shape is displayed as NULL

15

16 # K-fold CV with 10 different sets and one repeat for each

cases

17

17 train_config <- trainControl(method="cv", number=10)

18 metric <- "Accuracy"

19

20 # KNN model

21 set.seed(1) # seeding to keep results more ’comparable ’

22 model1 <- train(x=X, y=Y, method="knn", trControl=train_

config)

23

24 # Linear SVM model

25 set.seed(1)

26 model2 <- train(x=X, y=Y, method="svmLinear", trControl=

train_config)

27

28 # Naive Bayes model

29 set.seed(1)

30 model3 <- train(x=X, y=Y, method="nb", trControl=train_

config)

31

32 # Display the results

33 results <- resamples(list(KNN=model1, LinearSVM=model2, NB

=model3))

34 print(summary(results))

35 }

36 # Run the main function

37 main()

1 [1] 942 11

2 [1] 942 10

3 NULL

4

5

6 Models : KNN, LinearSVM , NB

7 Number o f resamples : 10

8

9 Accuracy

10 Min . 1 s t Qu. Median Mean 3rd Qu. Max. NA’ s

11 KNN 0 . 7447 0 . 7872 0 . 8085 0 . 7983 0 . 8115 0 . 8617 0

12 LinearSVM 0 . 6383 0 . 6622 0 . 6862 0 . 6931 0 . 7101 0 . 7604 0

13 NB 0 . 6809 0 . 6941 0 . 7128 0 . 7291 0 . 7527 0 . 8085 0

14

15 Kappa

16 Min . 1 s t Qu. Median Mean 3rd Qu. Max. NA’ s

17 KNN 0 . 4894 0 . 5745 0 . 6170 0 . 5965 0 . 6230 0 . 7234 0

18 LinearSVM 0 . 2766 0 . 3245 0 . 3723 0 . 3861 0 . 4202 0 . 5208 0

19 NB 0 . 3617 0 . 3883 0 . 4255 0 . 4583 0 . 5053 0 . 6170 0

As we can see from the results, the KNN trained model seem to have best
average accuracy score, so this would be our choice in this case.

18

