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Problem 2.1: Convexity Properties of Sets

(a) Let {Si}i∈M be a collection ofM = {1, . . . ,m} convex sets in Rn. Show that their intersection
S = ∩i∈MSi is also convex.

(b) Let S1 and S2 be closed convex sets in Rn. Show that their Minkowski sum

S = S1 + S2 = {x+ y : x ∈ S1, y ∈ S2}

is also convex. Also, show by an example that S1 + S2 is not necessarily closed.

Solution.

(a) Let x, y ∈ S and 0 ≤ λ ≤ 1. By the definition of S, we must have x, y ∈ Si for all i ∈ M .
Since each Si is convex, we must also have λx + (1 − λ)y ∈ Si for all i ∈ M . Therefore,
λx+ (1− λ)y ∈ ∩i∈MSi = S, and thus S is also convex (as we selected x, y ∈ S randomly).

(b) Let x1, x2 ∈ S1 and y1, y2 ∈ S2. Thus, we have x1 + y1 ∈ S1 + S2 and x2 + y2 ∈ S1 + S2.
Letting 0 ≤ λ ≤ 1 and applying the definition of convexity, we get

λ(x1 + y1) + (1− λ)(x2 + y2) = λx1 + λy1 + x2 + y2 − λx2 − λy2

= λx1 + (1− λ)x2︸ ︷︷ ︸
∈S1

+λy1 + (1− λ)y2︸ ︷︷ ︸
∈S2

∈ S1 + S2 = S

Since a convex combination of any two points (x1 + y1) ∈ S and (x2 + y2) ∈ S belongs to
S = S1 + S2, the set S must be convex.

Next, let us show by example that S1 + S2 is not necessarily closed even though S1 and S2

are closed. Let S1 and S2 be the following closed, convex sets:

S1 = {(x, y) ∈ R2 | y ≥ 1/x, x > 0}

S2 = {(x, y) ∈ R2 | x = 0, y ≤ 0}

Their Minkowski sum S = S1 + S2 = {(x, y) ∈ R2 : x > 0, y ∈ R} is open.
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Problem 2.2: Weierstrass’ Theorem

Consider the following nonlinear optimisation problem P :

(P ) : max.
x,y

1

x+ y

subject to: xy ≥ 1

x, y ≥ 0

(a) Show that P has a solution by applying Weierstrass’ theorem.

(b) Model the problem P with JuMP and try to find the global maximum.

Solution.

(a) The Weierstrass’ theorem is the following:

Theorem 1 (Weierstrass’ theorem) Let S ̸= ∅ be a compact set, and let f : S → R
be continuous on S. Then there is a maximizing solution to

(P ) : z = max. {f(x) : x ∈ S} .

Now we have

f(x, y) =
1

x+ y
and S = {(x, y) ∈ R2 : xy ≥ 1, x ≥ 0, y ≥ 0}

The function f(x, y) is continuous on S, but the feasible set S is not bounded and therefore
not compact. However, we can partition S into two parts, for example:

S = S1 ∪ S2 = {S : x+ y ≤ 6}︸ ︷︷ ︸
S1

∪{S : x+ y ≥ 6}︸ ︷︷ ︸
S2

S1 is closed and bounded and therefore compact, whereas S2 is closed but not bounded (and
thus not compact). Now from the definitions of S1 and S2, we get the following bounds

f(x, y) =
1

x+ y
≥ 1

6
, for all (x, y) ∈ S1

f(x, y) =
1

x+ y
≤ 1

6
, for all (x, y) ∈ S2

Thus, the optimal solution will be part of the set S1 since it always produces greater than or
equal objective function values than solutions in set S2, and we can focus solely on S1.

Now, as f(x, y) is continuous in S1 and S1 is compact (i.e., closed and bounded), Weierstrass’
theorem guarantees that the problem has a maximizing solution.

(b) In this case, the maximizing solution is (x, y) = (1, 1) with f(x, y) = 0.5. See the Julia code
which solves the optimization problem.

Problem 2.3: Portfolio Optimization

For this problem, use the data file prices.csv which contains daily prices of N = {1, . . . , n} stocks
over a time period of T = {1, . . . ,m} days. Let xi ≥ 0 denote the (long) position of stock i ∈ N in
a portfolio throughout the time period. The positions x = (x1, . . . , xn) in the portfolio are scaled
to represent fractions of the total investment, that is,∑

i∈N

xi = 1
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https://mycourses.aalto.fi/pluginfile.php/2131272/mod_folder/content/0/Exercise2.ipynb?forcedownload=1
https://mycourses.aalto.fi/pluginfile.php/2131272/mod_folder/content/0/prices.csv?forcedownload=1
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Let pti denote the daily price of stock i ∈ N for all t ∈ T , and let rti be the relative daily return of
stock i ∈ N for all t ∈ T \ {m}. These are computed as

rti =
pt+1
i − pti

pti
, ∀i ∈ N, ∀t ∈ T \ {m}

Let µ = (µ1, . . . , µn) denote the expected relative returns of the stocks N , and let Σ ∈ Rn×n be the
corresponding covariance matrix. Thus, the expected average return and variance of a portfolio
x = (x1, . . . , xn) are µ⊤x and x⊤Σx, respectively. Moreover, let σ ∈ Rn be the standard deviation
vector and ρ ∈ Rn×n the correlation matrix of the relative stock returns.

(a) Read the data and plot the price curves of each stock for the whole time period.

(b) Compute the expected average returns µ, the covariance matrix Σ, the correlation matrix ρ,
and the standard deviation vector σ using the Julia package Statistics.

(c) Sort the stocks in increasing order with respect to their expected returns. Using this order,
plot the expected returns µi and standard deviations σi of each stock i ∈ N in two different
plots but in the same figure. Look at Exercise 1.1 code for reference how to plot multiple
plots in the same figure using the Plots package. Note: plots might not appear in Jupyter
notebooks unless they are called at the last line of a cell. However, you can always save the
most recent plot as a pdf file, for example, by calling the function savefig("myplot.pdf").

(d) Using the same order as in (c), visualize the correlation matrix ρ using the PyPlot package
function imshow, and make a scatter plot of the the stocks’ expected returns vs. their
standard deviations, i.e., plot the points (σi, µi), for all i ∈ N . Note: to save the correlation
plot as a pdf file, you have to call PyPlot.savefig("corrplot.pdf") explicitly so that
Julia knows which plotting library was used. This is needed because Plots and PyPlot

both define this function with identical name and parameter types.

(e) Consider the following portfolio optimization problem

min.
x

x⊤Σx (1)

subject to: µ⊤x ≥ µmin (2)∑
i∈N

xi = 1 (3)

x ≥ 0 (4)

where the objective is to minimise the portfolio variance (i.e., risk) x⊤Σx by satisfying a
minimum expected return constraint (2). Model the problem (1) – (4) using JuMP and solve
the problem with different values of µmin. Use the Plots function bar to plot fractions of
capital invested in each stock in the resulting portfolio. You can try values of µmin between

0 ≤ µmin ≤ 0.000869.

(f) Compute the optimal portfolio with 50 different values of µmin between [0, 0.000869] and
plot the optimal trade-off curve, i.e., the expected returns or each portfolio as a function of
their standard deviations. Also, plot the points (σi, µi), for all i ∈ N , in the same figure for
comparison using the function scatter! from the Plots package.

Solution

See the Julia code. Note that we used a simplification in the computations where we don’t allow
short positions for the stocks, so the minimum risk portfolio obtained with µmin = 0, for example,
does not correspond to investing all capital to the lowest risk stock as one would expect. For
a more realistic case, there is a meaningful connection between the covariance matrix Σ and its
eigenvalues and eigenvectors. If you want to find out more information about this topic, here is a
one reference.
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https://mycourses.aalto.fi/pluginfile.php/2124989/mod_folder/content/0/Exercise1.ipynb?forcedownload=1
https://mycourses.aalto.fi/pluginfile.php/2131272/mod_folder/content/0/Exercise2.ipynb?forcedownload=1
http://srome.github.io/Eigenvesting-I-Linear-Algebra-Can-Help-You-Choose-Your-Stock-Portfolio/
http://srome.github.io/Eigenvesting-I-Linear-Algebra-Can-Help-You-Choose-Your-Stock-Portfolio/

