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Figure 1a shows a theorized sustainable energy cycle propa-
gated through the storage of renewable energies as CO2-
derived fuel. Such a process would provide relief to numerous 

environmental concerns, both current and impending1, and cur-
tail dependency on fossil fuel. The cycle is driven through aque-
ous CO2 electrolysis, wherein electrons and protons from water 
oxidation are used in the reduction of CO2 to hydrocarbons and 
alcohols. Contemporary research now seeks an efficient and inex-
pensive catalyst for this reduction.

Cu remains the paradigmatic surface for CO2 reduction, with 
the ability to produce C2 and C3 species, such as ethylene, ethanol 
and n-propanol2. The formation of such products has various ther-
modynamic and kinetic demands and requires multiple proton and 
electron transfers (Fig. 1b). These are readily facilitated in water, 
but proton reduction to H2 is more facile than CO2 reduction (red 
square in Fig. 1b)3. Water is also in substantial excess due to the 
low solubility of CO2 (33 mM at room temperature)4; as a result, Cu 
electrodes typically lose >30% of their Faradaic efficiency (FE) to 
H2 production5.

The fabrication of electrodes with high selectivity towards CO2 
reduction, particularly towards products that contain multiple 
carbons, remains a major priority in this field. Hitherto imple-
mented strategies include surface modifications6,7, adjusting sur-
face pH8 and the use of non-aqueous solvents9; however, the most 
effective approaches can be summarized into three categories: (1) 
Morphology: nanowires10, nanowhiskers11, nanoparticles12, nano-
prisms13 and nanodendrites14,15 present high catalytic surface areas 
that show appreciable selectivity. (2) Carbon supports: carbon 
frameworks and gas-diffusion layers loaded with Cu show the gen-
eration of C2 products with up to 80% FE16–19. (3) Oxide layers: sur-
face oxides serve as precursors to active Cu catalysts, which present 
FEs as high as 60% for ethylene formation20–22.

These strategies may also increase the hydrophobicity of an elec-
trode, but this is rarely discussed as a determinant on selectivity2. 
Submerged hydrophobic surfaces trap appreciable amounts of gas 
at the nanoscale23,24, and even at the microscale if the Cassie–Baxter 
regime is reached25, which would allow gaseous CO2 to accumulate 
at the Cu–solution interface. Recent reports have exploited gas–
electrode–solution triple-phase boundaries to increase the CO2 
reduction activity of Cu on gas-diffusion electrodes with hydro-
phobic polytetrafluoroethylene layers18,19; however, it is difficult to 
assign this enhancement solely to hydrophobicity over other factors, 
such as their porosity and increased mass transport of CO2

26. Here, 
we thus study hydrophobicity as an isolated parameter on a Cu sur-
face to establish its role in promoting gas trapping and consequently 
selective CO2 reduction.

Taking nature as inspiration, we introduce hydrophobicity based 
on the ‘plastron effect’ used by aquatic arachnids, such as the diving 
bell spider (Fig. 1c)27. These plastrons are composed of hydropho-
bic hairs that trap air and thereby allow the spider to respire under 
water. The gas-trapping phenomenon occurs when hydrophobicity 
is simultaneously presented on microscale and nanoscale surface 
structuration28. We achieved an analogous multiscale hydrophobic 
surface through modification of hierarchically structured dendritic 
Cu with a monolayer of waxy alkanethiol. The resultant electrode 
visibly trapped CO2 gas at the electrolyte–electrode interface to 
form a triple-phase boundary (Fig. 1d). As a result, H2 evolution on 
this surface was substantially lowered in CO2-saturated electrolyte 
compared to an unmodified hydrophilic equivalent, from 71% FE to 
10%, whereas CO2 reduction increased from 24% to 86%, of which 
C2 products comprised 74% FE. The drastically increased CO2 con-
centration at the hydrophobic Cu surface was identified as key to 
the increased catalytic selectivity, which we propose is present in 
other reported systems.
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Hydrophobic Cu dendrite preparation and characterization
Cu dendrite scaffolds were grown using previously reported 
aqueous electrodeposition procedures, which produced hier-
archical architectures with both micro- and nanoscale features 
(Supplementary Fig. 1)29,30. Powder X-ray diffraction measure-
ments confirmed the structure to be metallic Cu (Fig. 2a), although 
a small amount of Cu2O was visible (Supplementary Fig. 2). The 
hydrophobic treatment was undertaken by submersing the den-
dritic Cu into liquid 1-octadecanethiol at 60 °C for 15 minutes 
to form an alkanethiol layer. Transmission electron microscopy 
(TEM) of the dendritic Cu after treatment confirmed that the 
nanostructure remained intact (Fig. 2b) and was coated with a 
monolayer between 2 and 3 nm in thickness (Fig. 2c), consistent 
with a surface of 1-octadecanethiol molecules bound upright (the 
chain length is 2.3 nm between the surface-bound S and termi-
nal C). The carbonaceous nature of the coating was confirmed by 
energy-filtered transmission electron microscopy (EF-TEM) at the  
C-K edge (white regions in Fig. 2d). X-ray energy-dispersive spec-
troscopy of the area indicated in Fig. 2d (yellow circle) displayed 
S and C environments within the layer (Supplementary Fig. 3) 
and no carbonaceous layer was present on untreated Cu dendrite 
(Supplementary Fig. 4).

The alkanethiolation removes Cu oxide from the surface to 
leave Cu–S bonds, as illustrated by X-ray photoelectron spectros-
copy (XPS) (Fig. 2e)31. Before treatment, the Cu dendrite shows 
environments consistent with Cui

2O at 932.5/952.4 eV and CuiiO at 
934.6/955.0 eV and 942.8/962.7 eV. Analysis of the Cu LMM Auger 
showed no evidence of metallic Cu0 at the surface (Supplementary 
Fig. 5)32. After reaction with 1-octadecanethiol, all the Cuii envi-
ronments were removed to form a surface of Cui (Fig. 2e and 
Supplementary Table 1), and a new S 2p peak is visible at 163.0 eV, 
consistent with Cu–S bonds (Fig. 2f)32. The presence of the alka-
nethiol layer was further confirmed through attenuated total 
reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy 
(Supplementary Fig. 6).

Contact angle measurements illustrated that without the 1-octa-
decanethiol modification, the Cu dendrite surface is hydrophilic; a 
deposited water droplet sat with a contact angle of 17° (Fig. 2g). 
The alkanethiol-treated electrode is not susceptible to the same 
wetting, with a drastically increased contact angle of 153° (Fig. 2h). 
This falls into the regime of superhydrophobicity in which trapped 
gases are expected on both the micro- and nanoscale33. For clarity, 
these electrodes are referred to as the wettable dendrite and hydro-
phobic dendrite for the hydrophilic and hydrophobic dendritic Cu  
surfaces, respectively.

The initial characterization of the dendrites’ electrochemi-
cal properties revealed a significant decrease in electrochemically 
active surface area (ECSA) on the introduction of hydrophobicity. 
Capacitance measurements of the hydrophobic dendrite indicated 
the surface had very limited electrical contact with the solution 
as it displayed an ECSA of 3 × 10–3 cm2 cm–2, much lower than the 
21 cm2 cm–2 obtained on the wettable dendrite (where cm2 cm–2 
indicates the ECSA of the dendritic electrode versus that of a flat 
Cu electrode) (Supplementary Fig. 7). Brunauer–Emmett–Teller 
(BET) analysis through Kr-adsorption measurements revealed that 
the ECSA disparity is not from a loss in geometric surface area on 
alkanethiol treatment, as these remained similar: 90 cm2 cm–2 and 
92 cm2 cm–2 for the wettable dendrite and hydrophobic dendrite, 
respectively (where cm2 cm–2 indicates the BET-derived surface area 
of the dendritic electrode versus the area of a flat electrode). The 
decrease in ECSA is therefore induced by gas trapping at the inter-
face between the hydrophobic dendrite and the solution, as illus-
trated in Fig. 2j (top).

On the application of a reducing potential over 60 minutes in an 
aqueous electrolyte (0.1 M CsHCO3, CO2 saturated) the ECSA of 
the hydrophobic dendrite increased to 0.2 cm2 cm–2 (Supplementary 
Fig. 7c), which can also be seen through linear sweep voltammetry 
(LSV) (Supplementary Fig. 8). This increase is assigned to the loss 
of 1% of alkanethiol when labile Cu0 oxidation states are reached, 
as the ECSA is 1% of the wettable dendrite (21 cm2 cm–2). This  

Trapped gas

Aqueous
solution

Hydrophobic hairs

Hydrophobic Cu dendrites

H2O + CO2Fuel

Energy
out

Energy
in

CO2 reduction/ H2O oxidation

Combustion
a

b

c

d

O2 out

O2 in

Spider abdomen

Cu  surface

Trapped gas

Aqueous
solution

Submersed
Cu electrode

Trapped gas–0.3 –0.2 –0.1 0.0 0.1 0.2

2

Difficulty

4

6

8

10

12

K
in

et
ic

 r
eq

ui
re

m
en

t
H

+
 a

nd
 e

–  tr
an

sf
er

s

H2HCOOH CO

H2CO

H3COH

CH4

C2H4

H3CH2COH

E (V versus RHE)
Thermodynamic requirement

nCO2 + xH+ + xe– y product + zH2O

Fig. 1 | CO2 reduction as a source of sustainable fuel and an introduction to the plastron effect. a, The generation of renewable fuel through CO2 reduction 
and H2O oxidation. b, The kinetic versus thermodynamic requirement of various CO2 reduction reactions3. The plotted values are based on the reaction 
equation given above the graph, made stoichiometric according to the product composition. c,d, The plastron effect: the use of a hydrophobic surface 
to trap a layer of gas between the solution–solid interface. This is illustrated on a diving bell spider for subaquatic breathing in c and on a hydrophobic 
dendritic Cu surface for aqueous CO2 reduction in d. The photo of the diving bell spider is adapted from Seymour and Hetz42 with permission from The 
Company of Biologists.

Nature Materials | VOL 18 | NOVEMBER 2019 | 1222–1227 | www.nature.com/naturematerials 1223

http://www.nature.com/naturematerials


Articles NaTure MaTerials

loss occurs at the point of the electrode closest to the electrolyte, 
as suggested through scanning electron microscopy (SEM) images 
that show brighter Cu regions at the tips of the dendrite (Fig. 2i  
and Supplementary Fig. 9). Similar activation is documented on 
other hydrophobic electrodes25. The hydrophobic dendrite there-
fore requires an initial application of potential to generate a stable  
liquid–electrode–gas triple-phase boundary at the top of the den-
drite where electrochemical reactions take place, as illustrated in 
Fig. 2j. This activation was monitored through one day of repeated 
LSV scans, wherein the current at –1.4 V versus the reversible 
hydrogen electrode (RHE) stabilized 3–5 times lower than that of 
the wettable equivalent (Supplementary Fig. 10).

To ensure the hydrophobic dendrite maintained its hydrophobic-
ity on the application of a negative potential, contact angle measure-
ments were carried out after 12 hours of electrolysis at –15 mA cm–2 
(Supplementary Fig. 11). The resultant angle of 143° indicated that 
the hydrophobic surface treatment was not removed. Furthermore, 
1H-NMR spectroscopy showed no 1-octadecanethiol within the 
electrolyte after electrolysis (Supplementary Fig. 12), although some 
dissolved alkanethiol may have been present below the detection 
limit of the experiment. XPS analysis before and after the electrol-
ysis showed similar ratios of Cu:S on the sample (Supplementary 
Table 2); however, a portion of the 1-octadecanethiol was converted 
into alkanesulfonates (168.6 eV peak in Supplementary Fig. 5c), 
which is known to occur on the exposure of alkanethiol monolayers 
to air34. Nevertheless, high-resolution TEM and EF-TEM at the C-K 
edge (Fig. 2k–m) do show that the monolayer loses density and that 
large carbonaceous deposits are present on the nanostructure after 
electrolysis. We thus propose that the majority of the C18-alkane 
chain does not dissolve from the electrode surface, but a portion 
may move across the surface to form aliphatic agglomerates, which 
explains how the surface maintains hydrophobicity while cathodic 
current passes.

Catalytic activity of hydrophobic and wettable Cu dendrites
Figure 3a shows the LSV of the hydrophobic dendrite and equivalent 
wettable dendrite in a CO2-saturated CsHCO3 electrolyte (0.1 M, 
pH 6.8). Cs+ cations were used due to their superior ability to buffer 
pH changes at the electrode–solution interface during electrolysis 
compared to other cations35, which thereby eliminated changes in 
surface pH as a determinant on selectivity. To reach a current of 
–5 mA cm–2, the wettable dendrite required a potential of –0.68 V 
versus RHE, whereas the hydrophobic dendrite required a more 
negative potential of –1.38 V versus RHE. The lowered current at 
a given potential can be partly explained by the significantly lower 
ECSA of the hydrophobic dendrite, but should also be assigned to 
the lack of proton reduction activity exhibited by this electrode. 
Controlled potential electrolysis (CPE) confirmed this, as even at 
highly cathodic potentials the hydrophobic dendrite had a vastly 
lowered H2 evolution activity: at –1.6 V versus RHE, the hydropho-
bic dendrite displayed a H2 evolution FE below 10%, whereas the 
wettable one displayed values above 60% (Fig. 3b,c). In place of the 
H2 evolution, the hydrophobic dendrite presented a superior CO2 
reduction efficiency for both C1 and C2 products (Fig. 3b,c), except 
at –1.2 V versus RHE, at which point the current was too low to 
detect C2 products (Supplementary Fig. 13). To confirm that the 
optimal CO2 reduction selectivity on the wettable dendrite was not 
attained at lower potentials, CPE at less cathodic biases was carried 
out (Supplementary Fig. 14).

During electrolysis, CO2 was introduced as a stream of gas from 
the bottom of the cell (Supplementary Fig. 15). With the hydropho-
bic dendrite, the capture and retention of the gaseous CO2 stream 
was observed, which caused a bubble to engulf the entire electrode 
surface (Fig. 3e and Supplementary Video 1). If the gas flow was not 
incident to the hydrophobic dendrite to constantly refill this bubble, 
the formation of C1 and C2 products was severely reduced (Fig. 3d), 
which indicates that the captured CO2 at the electrode surface was 
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the predominant substrate of the hydrophobic dendrite. At lower 
partial pressures of CO2 in the gas stream the CO2 reduction rate 
dropped accordingly (Supplementary Fig. 16).

Control experiments without a hierarchical Cu surface mor-
phology were undertaken using a flat Cu electrode treated with 
1-octadecanethiol. Neither gas trapping nor large contact angles 
were observed (contact angle of 90°) (Supplementary Fig. 17) and 
the electrode did not show a drastic increase in selectivity for CO2 
reduction compared to a pristine Cu electrode (Supplementary 
Table 3). The combination of hydrophobic treatment and hierarchi-
cal morphology therefore facilitates gas trapping.

Controlled current electrolysis (CCE) at –30 mA cm–2 for the two 
Cu dendrites was undertaken to understand their selectivity while 
exerting the same mass transport pressure on the solution (Fig. 3f). 
The hydrophobic dendrite required a higher cathodic applied poten-
tial to reach –30 mA cm–2 (E = –1.1 to –1.5 V versus RHE, ohmic-
drop corrected), but had much higher FEs for CO2 reduction: CO 
(3% hydrophobic, 1% wettable), methane (7% hydrophobic, 0% 
wettable), ethylene (56% hydrophobic, 9% wettable), ethanol (17% 
hydrophobic, 4% wettable) and acetic acid (1% hydrophobic, 0.4% 
wettable). In contrast, the wettable dendrite required a less cathodic 
potential to reach –30 mA cm–2 (E = –0.8 to –1.0 V versus RHE, 
ohmic-drop corrected) as it carried out mostly H2 evolution (10% 
hydrophobic, 71% wettable); however, it also showed the highest 
selectivity for formate (2% hydrophobic, 7% wettable), ethane (0% 
hydrophobic, 0.5% wettable) and n-propanol formation (0% hydro-
phobic, 2% wettable, not pictured). The hydrophobic dendrite’s 
selectivity for C2 products (74% total) rivals that of state-of-the-art 
gas-diffusion electrode systems in alkaline conditions (66% ethylene,  

11% ethanol and 6% acetate)19; however, the achieved currents and 
required overpotentials are poorer in the neutral pH electrolyte.

Extended CO2 reduction on the hydrophobic dendrite over five 
hours at a controlled current density of –30 mA cm–2 showed high 
ethylene and ethanol FEs of 30–55% and 12–22%, respectively 
(Supplementary Fig. 18). During the experiment, C2-product for-
mation was again sensitive to interaction with inbound CO2: drops 
in C2 production were observed when the CO2 flow fell out of line 
with the electrode surface (Supplementary Fig. 18, as indicated), but 
the stream could be adjusted to restore activity. Despite this, a grad-
ual decrease in C2-production activity was apparent, coincident with 
the destruction of regions of the dendrite surface (Supplementary 
Fig. 19). This destruction was assigned to the mechanical stress 
imposed by the continual collision of bubbles with the electrode 
surface. Engineering efforts using vapour-fed electrodes to relieve 
this stress are ongoing.

The gas trapping of the hydrophobic dendrite could also be 
exploited for CO reduction, for which the low substrate concen-
tration is particularly problematic ([CO] = 1 mM at 1 atm at room 
temperature)4. The CCE at –30 mA cm–2 in a CO flow on the hydro-
phobic dendrite showed a 23.5% FE for CO reduction, compared to  
0.88% on the wettable dendrite in 1 M KOH (Supplementary Fig. 20 
and Supplementary Table 4). Further experiments showed that the 
C2 selectivity during CO reduction on the hydrophobic dendrite was 
greatly promoted in pH 14 solution (1 M KOH C1:C2 ratio = 1:24), 
in comparison to pH 7 (0.1 M potassium phosphate buffer (KPi) 
C1:C2 ratio = 1:1.7) (Supplementary Fig. 20). Additional CO2 reduc-
tion experiments in more acidic conditions (pH 4.6, CO2-saturated 
0.1 M KPi) similarly showed a decrease in C2 selectivity (C1:C2 
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ratio = 1:0.8) (Supplementary Fig. 21 and Supplementary Table 5).  
Formic acid reduction experiments produced only H2, which 
excludes it as a source of C2 products (Supplementary Table 6).

An explanation of the reported data is given in Fig. 4, which 
shows a single strand of the dendritic Cu in its wettable (Fig. 4a,b) 
and hydrophobic form (Fig. 4c,d). As highly cathodic potentials are 
applied, it is assumed that both the dendrites react rapidly with either 
H+ or CO2 to form Cu–H* or Cu–COOH* intermediates, respec-
tively36, and therefore selectivity is controlled by the mass transport 
of the two substrates. The wettable dendrite has a large liquid–elec-
trode interface and therefore only the aqueous H+/CO2 are substrates 
(Fig. 4a). A higher proportion of Cu–H* groups is then expected, 
which promotes H2 formation (Fig. 4b). Alternatively, the electrolyte  
is pushed away from the hydrophobic dendrite Cu surface to form an 
electrolyte–solid–gas triple-phase boundary at the electrode (Fig. 4c).  
CO2 mass transport is then omnidirectional, whereas H+ comes 
unilaterally from the bulk solution, which drastically increases the 
local CO2 concentration. The surface concentration of Cu–COOH* 
and the subsequently formed Cu–CO* is then greatly increased over 
that of Cu–H*. This promotes C–C coupling and therefore the effi-
ciency for C2 products is increased (Fig. 4d). The reduction of CO 
without coupling is also possible, which explains the enhanced CH4 
production. Based on the presented CO reduction experiments, the 
selectivity for C2 over CH4 can be increased with a high solution pH, 
which corroborates recent reports that C2 formation at a high over-
potential is dependent on high concentrations of Cu–CO*, whereas 

CH4 formation requires a rate-limiting electron–proton transfer to 
give a Cu–CHOH* intermediate37.

Perhaps more interesting are the products from CO2 reduction 
produced solely on the wettable dendrite, ethane and n-propanol, 
albeit in small quantities (below 5% FE). The lack of these prod-
ucts on the hydrophobic dendrite, as well as other highly efficient 
C2-forming electrodes19, suggests that hydrogen transfer is a rate-
limiting step in their formation and therefore they require a high 
concentration of Cu–H*. This is supported by recent reports that 
show high efficiencies for CO2 reduction to n-propanol with a rela-
tively high H2-evolution activity38 and also reports of ethane forma-
tion on surfaces that generate large quantities of H2 (ref. 39).

The presented experiments led us to consider other reported  
catalysts for C2 product formation, which traditionally have been 
Cu oxides22. Many explanations for their activity are available,  
but we hypothesize that the combination of nanostructured  
surfaces with hydrophobic Cu2O (ref. 40) forms similar voids that 
trap CO2 to create an electrolyte–electrode–gas triple-phase bound-
ary. Regions that are not in contact with electrolyte solution on these 
surfaces explain why oxides are still spectroscopically visible in ope-
rando11, despite their expected removal at the cathodic potential41. 
It may also explain the low long-term stability of such surfaces, as 
removal of the oxides increases surface wettability. Further support 
for this concept is illustrated by stable C2 product formation on gas-
diffusion electrodes19, whose hydrophobicity is not as susceptible 
to reduction and as such maintain their electrolyte–electrode–gas 
interfaces.

Conclusion
In summary, a hydrophobic coating of long-chain alkanethiols on 
dendritic Cu, with no further modification, led to a drastic increase 
in the CO2 reduction selectivity. The difference is a result of a plas-
tron effect; a gaseous layer trapped at the surface of the electrode 
that increases the local CO2 concentration, which allows the Cu 
dendrite to match the high selectivity for C2 products reported on 
Cu-loaded gas-diffusion electrodes19. In the present form, the elec-
trode suffers from some drawbacks for its implementation in tech-
nological devices and future work will focus on promoting stable 
hydrophobicity on high-surface-area microporous electrodes to 
further increase activity.

We conclude that hydrophobicity, and the resultant gas-filled 
voids that it introduces, is a governing factor of CO2 reduc-
tion selectivity on Cu and should be considered in the future  
design and understanding of electrocatalytic surfaces for both  
CO2 and CO reduction.
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Methods
General. SEM images were performed on a SU-70 Hitachi FEGSEM fitted with an 
X-Max 50 mm2 Oxford EDX spectrometer or a Hitachi S-4800 SEM. Powder X-ray 
diffraction was performed in a Bragg–Brentano geometry using a BRUKER D8 
Advance diffractometer with Cu Kα radiation (λ αK 1

 = 1.54056 Å, λ αK 2
 = 1.54439 Å) 

and a Lynxeye XE detector. Contact angle measurements were made on a slow-
motion video camera with 15 µl of H2O. XPS spectra were performed using a 
Thermo ESCALAB 250 X-ray photoelectron spectrometer with a monochromatic 
Al-Kα X-ray source (hν = 1,486.6 eV).

Preparation of Cu dendrites. Square Cu surfaces of 1 cm2 surface area were 
prepared from a Cu plate (99.999%, 1 mm thickness, GoodFellow) that had 
its sides, back and backside electrical contact encased in epoxy resin (Loctite, 
Henkel). The surface was polished mechanically using an alumina micropolish on 
a polishing cloth (3 μm, Struers) followed by copious rinsing in water. Dendrite 
deposition was subsequently undertaken by applying –0.5 A cm–2 to the electrode 
for 120 s in a solution that contained 0.1 M CuSO4·5H2O (99.9%, Sigma Aldrich) 
in 1.5 M H2SO4 (Sigma Aldrich) followed by rinsing under a gentle stream of water 
and then acetone. The electrode was then dried under a stream of air.

Alkanethiol deposition. Application of 1-octadecanethiol (98%, Sigma Aldrich) 
was undertaken by first melting the waxy solid under vacuum at 60 °C. The 
electrode to be treated was then submerged into the liquid under Ar and left for 
15 min at 60 °C. After this, the electrode was moved to a solution of ethyl acetate 
at 60 °C for 5 min to remove excess 1-octadecanethiol and then allowed to dry in 
ambient conditions.

Electrocatalytic analysis. Electrochemical analysis was carried out in an air-tight 
two compartment electrochemical cell separated by a Nafion membrane (N-115, 
Alfa Aesar) or bipolar membrane (Fumasep FBM, FuelCellStore). The counter 
electrode was a Pt wire (GoodFellow) and the reference a Ag/AgCl wire in 3 M 
KCl (PalmSens). The electrolyte was 0.1 M CsHCO3 (99.9%, Sigma Aldrich), 1 M 
KOH (Sigma Aldrich) or 0.1 M KPi (0.054 M K2HPO4 and 0.046 M KH2PO4, Carl 
Roth), which was deaerated/saturated with CO2/CO/Ar before each experiment by 
bubbling CO2 (≥99.998%, Linde), CO (Linde) or Ar (Linde) for at least 10 min.

During electrolysis the electrodes were placed such that the gas bubble flow 
from the bottom of the vessel was at a 45° angle of incidence, as this ensured all 
the gas bubbles collided with the electrode surface. Gas was flowed through the 
cathode compartment of the cell using a mass flow controller (Bronkhorst) and the 
solution was stirred. The headspace was connected to a gas chromatograph (GC) 
(discussed below) and was typically sampled at 10 and 30 min. The liquid phase 
was analysed for products by 1H NMR spectroscopy after 35 min (see below). FE 
was calculated based on the time before injection that was required to fill the GC 
sample injector loops (1 ml). This is summarized in equation (1):

=
× ×

−
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Q Q
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t t x

product electrons
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where nproduct is the product measured (mol), nelectrons is the number of electrons to 
make said product from CO2/H2O or CO/H2O, F is the Faraday constant (C mol–1), 
Qt=0 is the charge passed at the point of injection and Qt=x is the charge passed at x 
seconds before injection (C), x being the time required to fill the GC sample loop 
based on sample loop size and gas flow rate.

During the LSVs, the electrode was placed outside the CO2 inlet, no stirring 
was applied and the CO2 flow was decreased to 0.2 ml min–1.

Potentials were converted to the RHE using the relationship: E (RHE) = E 
(Ag/AgCl) + 0.197 + (pH × 0.059). The ohmic-drop correction of the potentials 
applied during the CCE was undertaken manually using the resistance measured 
immediately after the electrolysis was completed. The reported potentials are those 
measured at the time point of GC analysis (typically 10 or 30 min). An ohmic-drop 
correction was not applied during CPEs, LSVs or cyclic voltammograms.

ECSA measurements. The ECSA was measured through the capacitance of the 
electrodes in a 0.1 M solution of CsHCO3 (99.9%, Sigma Aldrich) saturated with CO2.  

The capacitance was measured by analysis of the electrode cyclic voltammogram at 
–0.15 V versus the standard hydrogen electrode using equation (2):

−
=

i i
Cv

2
(2)a c

where C is the capacitance (F), ia is the anodic current at –0.15 V versus the 
standard hydrogen electrode (A), ic is the equivalent cathodic current (A) and v is 
the scan rate (V s–1). The capacitance was found by plotting the left side of equation (2)  
against scan rate. The ECSA was then determined from the difference between the 
capacitance of the nanostructured surfaces relative to a flat 1 cm2 Cu surface.

GC analysis. GC was carried out on an SRI instruments MG#5 GC with an Ar 
carrier gas. H2 was quantified using a thermal conductivity detector and separated 
from other gases with a HaySepD precolumn attached to a 3 m molecular sieve 
column. All the carbon-based products were detected using a flame-ionization 
detector equipped with a methanizer and were separated using either a 3 m 
molecular sieve column (CO and CH4) or a 5 m HaySepD column (C2H4 and 
C2H6). Calibration was performed using a custom mixture of each gas in CO2.

1H-NMR spectroscopy. 1H-NMR spectroscopy was undertaken on a Bruker 
Avance III 300 MHz spectrometer at 300 K. A sample of the liquid phase electrolyte 
was taken and D2O was added as a locking solvent, along with an aqueous 
terephthalic acid solution that served as a reference for quantification. A Pre-
SAT180 water suppression method was carried out to remove the water peak from 
each spectrum43.

BET. Surface areas were obtained from analysis of Kr-adsorption isotherms 
measured on a BelSorp Max set-up at 77 K. Prior to the measurement, samples 
were treated under vacuum at 130 °C for at least 7 h. Surface areas were estimated 
using the BET model (Kr cross-sectional area 0.210 nm2). The BET sample was 
prepared by undertaking the described dendrite preparation procedure on a large 
Cu surface (3 × 3 cm2) to grow enough dendrite for the measurement. Alkanethiol 
treatment of the large electrode was carried out by covering the dendrite in a 
powder of 1-octadecanethiol and inserting the resultant surface horizontally in 
a vacuum oven at 100 °C for 15 min. The electrode was subsequently removed 
and left in a bath of warm ethyl acetate at 60 °C for 5 min. Once dry, the dendritic 
Cu was carefully scraped off the underlying Cu support for analysis. The value 
derived from the BET measurement, reported in m2 g–1, was converted to cm2 cm–2 
by multiplying it by the mass of deposited dendrite onto the 1 cm2 flat Cu support 
(5 mg for the wettable dendrite and 4 mg for the hydrophobic dendrite).

TEM/STEM. TEM images and chemical maps were acquired with a Jeol 2100 F 
microscope operated at 200 kV and equipped with a UHR pole piece. X-ray energy-
dispersive spectra were acquired in the STEM mode with the same microscope, 
equipped with a Jeol system for X-ray detection and cartography. EF-TEM images 
at zero loss and C-K edge data were acquired using a Gatan GIF 2991 spectrometer. 
Samples for TEM were prepared by shaking a lacey carbon TEM grid in a vial that 
contained a small amount of Cu dendrite powder.

ATR-FTIR spectroscopy. ATR-FTIR spectroscopy was carried on a 0.5 mm thick 
Si prism coated with 3–5 nm of Cu in a metal vacuum–evaporation apparatus. 
Alkanethiolation of the prism was undertaken as described above. ATR-FTIR 
spectroscopy was undertaken with the front of the prism exposed to a solution of 
0.1 M CsHCO3 under CO2.

Data availability
Raw data used in preparation of this manuscript is available to download at  
https://doi.org/10.7910/DVN/DSPZHE.
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