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ABSTRACT: The NdFeB permanent magnet is a critical material in digital
electronics and clean energy industry. Traditional recovery processes based on
the solvent extraction technique would consume high energy and large
amounts of chemicals as well as resulting in abundant secondary organic
wastes. In this work, a green process using deep eutectic solvents (DESs) in
the selective leaching technology was designed to recover NdFeB permanent
magnets. Nine kinds of DESs composed of guanidine were prepared and
screened as the leachants. The guanidine hydrochloride−lactic acid (GUC−
LAC) combined DES achieved the highest separation factor (>1300) between
neodymium and iron through simple dissolution of their corresponding oxide
mixture. The mass concentration of Nd dissolved in the GUC−LAC DES
could reach 6.7 × 104 ppm. The viscosity of this type of DES at 50 °C was 36
cP, which was comparable to many common organic solvents. In a practical
recovery of roasted magnet powders, the Nd2O3 product with 99% purity was
facilely obtained with only one dissolution step, followed by a stripping process with oxalic acid. Even after 3 cycles, the GUC−LAC
DES kept the same dissolution property and chemical stability. With such superior performances in selective leaching of rare earth
elements from transition metals, the GUC−LAC DES is greatly promising in the rare earth element recovery field.

■ INTRODUCTION
In modern society, rare earth elements (REEs) play an
essential role in electric cars, wind turbines, electronics,
photovoltaic films, catalysts, glass, ceramics, metallurgy/alloys,
etc. These wide and critical applications are based on the
unique magnetic, catalyst, and phosphorescent properties of
REEs, leading to the high demand of raw REE materials, such
as permanent magnets, hydrogen storage alloys, and phosphor
powders.1−3 In these materials, a neodymium−iron−boron
(NdFeB) magnet is essential in digital electronics and clean
energy industry because of its higher maximum energy product
than a traditional permanent magnet.4,5 In the leading REE
production country, China,6 praseodymium and neodymium
occupy less than 30% of the production but contribute to more
than 70% of the benefits. The gap between the high industrial
demand for REEs in magnets and their low relative abundance
in carbonatite deposits requires new resources of these
elements other than traditional REE ores.7 Recycling REEs
from end-of-life materials generated from the production and
consumption provides an option for closing the material flow
loop, diversifying supply sources, and creating added economic
value.8 However, less than 1% REEs used today are recycled,
given the challenge of collecting and low efficiencies in the
recycling processes.9,10

Various technologies have been developed to recover REEs
from end-of-life magnets, including hydrometallurgy, electro-
chemistry, gas-phase extraction, membrane separation, bio-

logical extraction, and pyrometallurgy.1,3,11−14 Among them,
the solvent extraction technique, a typical hydrometallurgy
technique applied in the rare earth ore processing, is widely
considered to be more suitable for recovering REEs on a large
scale.15−17 The solvent extraction has some advantages, such as
high processing capacity, low cost, and continuous production,
but it also generates severe environmental burden as a result of
using high volumes of acid/base reagents and volatile organic
solvents.2,9,18,19 Thus, some more environmentally friendly
REE recycling processes are highly desirable.20

One method is replacing the hazardous acids and organic
solvents with ecologically friendly solvents, such as ionic
liquids (ILs) or deep eutectic solvents (DESs), in the solvent
extraction process.21−25 For example, Riano and Binnemans
used a IL, trihexyl(tetradecyl)phosphonium nitrate, as the
organic phase to extract REEs from iron-free leachate of a
NdFeB permanent magnet.26 In comparison to the traditional
organic solvents, the ILs and DESs are green solvents with low
volatility or biodegradable in nature, avoiding the large
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secondary chemical wastes.27−29 The inorganic acid used in
complete leaching could also be replaced by greener ILs or
DESs to reduce the amounts of wastewaters.30,31 Another
method to improve the separation process is a process
optimization, which replaces complete leaching with selective
leaching.32−34 Because the target metals are selectively leached
from the solid materials, the solvent extraction procedure is not
necessary for this method, which endows it with great
strengths in compact and green processes.35,36 The flowcharts
of the solvent extraction and selective leaching processes are
comparatively shown in Scheme 1.
The DESs are solvents formed by the hydrogen-bond linking

between hydrogen-bond acceptors (HBAs) and hydrogen-
bond donors (HBDs).37,38 These solvents have melting points
lower than any of their individual components. In comparison
to ILs, as emerging types of green solvents, the DESs have
advantages of low cost, easy preparation, and lower
biotoxicity,39,40 making them more promising in the recovery
and separation of valuable metals.41−44 Until now, the
application of DESs in the recovery of end-of-life REE
materials has still been focused on the complete leaching,
followed by liquid/liquid extraction.30 To the best of our
knowledge, there has been no reports on the selective leaching
of REEs from NdFeB permanent magnets by DESs thus far.
Herein, we developed a simple selective leaching process for
efficient recovery of REEs from end-of-life NdFeB permanent
magnets based on some novel DESs composed of guanidines
and organic acids.

■ MATERIALS AND METHODS
DES Preparations. The HBA and HBD used in this work

were listed as follows: HBA, guanidine hydrochloride (GUC),
1-aminoguanidine hydrochloride (AGU), 1,3-diaminoguani-
dine hydrochloride (DAG), and choline chloride (CC); HBD,
glycolic acid (GA), ethylene glycol (EG), malic acid (MA), L-
lactic acid (LAC), and glycerol (GLY). The DESs were
prepared according to the method mentioned in ref 37. The
HBD was simply combined with the corresponding HBA in a
flask at 70 °C under stirring conditions until a homogeneous
transparent liquid was formed. After reaction, the formed
liquid was naturally cooled to room temperature. In the cases
of GUC−MA, AGU−GA, and DAG−GA, the reaction

temperature was 90 °C. The molar ratio of HBA/HBD was
1:2 in most DESs, except 1:3 for GUC−MA and GUC−GLY.

Metal Dissolution Experiments. The metal oxides and
DESs were added to a 10 mL bottle with a solid/liquid ratio of
1:50 and sealed carefully. The mixture was then shaken in a
water bath shaking table at 50 °C for 24 h, except for the time
and temperature experiments. After dissolution, the liquid and
undissolved solids were separated by centrifugation at 12 000
rpm. Finally, the DES containing metals was digested with
concentrated nitric acid in a microwave digestion system, and
the concentration of metals was analyzed by inductively
coupled plasma optical emission spectrometry (ICP−OES).
In the practical recovery process, roasted NdFeB powders

were dissolved in DES: GUC−LAC (1:2) with a solid/liquid
ratio of 1:10 at 40 °C for 6 h. After phase separation by
centrifugation, the solid oxalic acid was added to the Nd-
loaded DESs with a solid/liquid ratio of 1:100 and reacted at
the same conditions of dissolution. Nd was stripped from the
DESs by oxalic acid during this reaction. After centrifugation, a
white precipitation was obtained and calcinated at 900 °C for 3
h to obtain the Nd2O3 products, which was redissolved in
hydrochloric acid solution to analyze the content. The recycle
of GUC−LAC was achieved during the stripping of Nd. The
residual contents of Nd and Fe of recycled GUC−LAC were
listed in Table S3 of the Supporting Information. In the test of
GUC−LAC recycling, GUC−LAC used in the practical
recovery process of NdFeB powders was defined as cycle 0.
GUC−LAC obtained via stripping Nd by oxalic acid was
defined as cycle 1. Then, cycle 1 GUC−LAC was reacted with
the roasted NdFeB powders in the same operation of the
practical recovery process to test the dissolution and separation
property of the recycled DES. This recycle of GUC−LAC was
conducted 3 times in total. The following two GUC−LAC
obtained by stripping were defined as cycles 2 and 3. The
residual contents of Nd and Fe were also listed in Table S3 of
the Supporting Information.
The dissolution ratio was calculated via dividing the total

mass of metals dissolved in the DES by the mass of initial
metal added to the dissolution reaction. The uncertainties were
mainly caused by the analysis of the metal concentration in
DES by ICP−OES; thus, it was calculated by the standard
deviation of triplex analyzing values of the metal concentration

Scheme 1. Flowcharts for Recovering End-of-Life REEs
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in the DES. The uncertainties of dissolution ratios were listed
in Table S1 of the Supporting Information. The dissolution
ratio (D) and separation factor (SF) of metals were calculated
by the following equations:

= ×D
w m

m
100%M,d DES

M,r (1)

=
−
−

D D

D D
SF

/(1 )

/(1 )
M,A M,A

M,B M,B (2)

where wM,d denotes the mass concentration of metal in DES
with the unit of g g−1, mDES means the mass of DES after
dissolution, mM,r is the original mass of metal before
dissolution, and DM,A and DM,B represent the dissolution ratios
of metals A and B, respectively.

■ RESULTS AND DISCUSSION
Preparation and Physical Properties of Guanidine-

Based DESs. Selective leaching is an environmentally friendly
process to recover end-of-life NdFeB permanent magnets.
However, the DESs reported in the literature always showed
similar dissolution properties toward both Nd and Fe metals.30

To develop selective leaching reagents, we prepared nine novel
DESs based on guanidines, including GUC−GA, GUC−LAC,

GUC−MA, GUC−EG, GUC−GLY, AGU−GA, AGU−LAC,
DAG−GA, and DAG−LAC. In these DESs, all of the HBAs
were guanidines, including GUC, AGU, and DAG, while GA,
LAC, MA, EG, and GLY acted as HBDs. The molar ratio
between HBA and HBD in GUC−MA and GUC−GLY was
1:3, and it was 1:2 in other DESs. The chemical structure of
the component of these DESs is listed in Figure 1a. The
photographs of these DESs are shown in Figure 1b. In our
experiment, the DESs exhibited a glass transition rather than
freezing and melting at low temperatures. The glass transition
temperature of DESs was collected from differential scanning
calorimetry (DSC) curves and shown in Figure 2a and Figures
S1−S11 of the Supporting Information. The glass transition
temperature of all of the DESs was lower than 0 °C, except
DAG−GA, which was 2.7 °C (Figure 1c). These DESs had
much lower Tg than the melting temperature of their individual
components. When GUC−LAC DES is taken as an example
(Figures 2b), its Tg dropped more than 100 °C from a HBA/
HBD ratio of 1:2 to 1:8. The very close four points in Figure
2b did not exhibit an explicit eutectic point of GUC−LAC
because it had a glass transition temperature rather than the
melting point at a low temperature. These phenomena were
very common in many other DES systems.42,45 According to
the thermogravimetry−differential scanning calorimetry (TG−
DSC) data, all of the DESs were not decomposed before 100

Figure 1. (a) Chemical structures of HBA and HBD molecules used in this work, (b) photograph of prepared DESs, and (c) glass transition
temperature (Tg), onset decomposition temperature (Tonset), and viscosity (γ) at 25 °C of guanidine-based DESs.
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°C, indicating that they were quite stable under our tested
temperature.
The viscosity of these DESs was greatly associated with the

HBAs. As shown in Figure 2c, the viscosity of DAG-based
DESs was larger than 30 000 cP, whereas those of AGU and
GUC DESs were 1 or 2 orders of magnitude smaller. DAG−
GA exhibited an extremely high viscosity compared to other
DESs, and the viscosity increased with the temperature after 37
°C because it formed a paste rather than a real fluid above this
temperature. The viscosity of all of the other DESs decreased
rapidly with the increasing temperature. At 50 °C, the
temperature of dissolution experiments in this work, the
viscosity of GUC−LAC was lower than 40 cP, which was
comparable to many common organic solvents.
The forming of hydrogen bonds was characterized from the

Fourier transform infrared (FTIR) spectra and nuclear
magnetic resonance (NMR) spectra, which are shown in
Figures 3 and 4 and Figures S12−S21 of the Supporting
Information. The HBAs were guanidine-based hydrochloride,
while the HBDs were three hydroxycarboxylic acids and two
polyols in this work. It could be inferred that the hydrogen
bonds were mainly formed between chloride of HBAs and
hydrogen of HBDs. The change of spectra between the DESs
and their individual components were similar. When GUC−
GA was taken as an example, in the FTIR spectra, GUC, GA,
and GUC−GA all exhibited abundant hydrogen bonds at the
peaks around 3300 cm−1. The C−O stretching vibration of GA

appeared at 1732 and 1434 cm−1, both showing a red shift to
1667 and 1404 cm−1 after forming DES, indicative of the
formation of new hydrogen bonds. The peaks of N−H bonds
of GUC in the DES were influenced by the peaks of −COOH.
Thus, it is difficult to judge whether it formed new hydrogen
bonds. However, the N−H stretching vibration of −NH2

+ in
GUC at 2157 and 1537 cm−1 almost disappeared in the DES.
This change clearly indicated that there was a strong
interaction between the counter Cl− and carboxylic acids. In
the 1H NMR spectra, the chemical shifts of −OH and −NH in
GUC−GA also moved downfield in comparison to the
individual compounds, giving an obvious sign of forming
hydrogen bonds. In comparison to GUC, the AGU and DAG
DESs with the same HBDs exhibited larger changes in the peak
shapes of FTIR spectra and chemical shifts in NMR spectra.
This tendency might indicate that stronger hydrogen bonds
were formed with an increase of the amino group in the HBAs.
The application of DESs in the dissolution was mainly

associated with the viscosity. A large viscosity always leads to
high energy consumption in the industry.31,46 After screening,
only the DESs with low viscosity tested the dissolution
properties. The initial dissolution results of Nd2O3 and Fe2O3
by several screened guanidine DESs and two traditional CC
DESs are depicted in Figure 2d. Only the DESs prepared from
GA and LAC could efficiently dissolve Nd2O3. GUC−GLY
and CC−EG dissolved less than 1% Nd or Fe into the bulk
solvents. Among all of the DESs, GUC−LAC had the highest

Figure 2. (a) TG and DSC curves of GUC−LAC, (b) phase diagram of GUC−LAC, (c) viscosity−temperature curves of guanidine-based DESs,
and (d) initial dissolution results of Nd and Fe by different DESs.
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dissolution ratio of Nd and separation factor for Nd/Fe. Thus,
this DES was screened out for the following dissolution and
leaching experiments.
Dissolution of Nd and Fe. To obtain the optimal

conditions of the selective leaching method, we investigated
the effects of the HBD ratio, solid/liquid ratio, reaction time,
and temperature on the dissolution ratios and separation
factors, which were calculated from eqs 1 and 2. As shown in
Figure 5a, the solid/liquid ratio in the experimental range has
almost no effect on the dissolution ratio of Nd. However, the
dissolution ratio of Fe decreased with the increase of the solid/
liquid ratio. This phenomenon might be due to the different
solubilities of Nd and Fe. The solubility of Nd ions in GUC−
LAC reached 6.7 × 104 ppm at the solid/liquid ratio of 7:50,
which was larger than the value in other DESs.42 However, for
Fe, its solubility was only 727 ppm and the dissolution was
close to the equilibrium at the solid/liquid ratio of 1:50. As the
solid/liquid ratio increased, the dissolution ratios of Fe were
decreased. However, a larger solid−liquid ratio also led to a
high Nd concentration in the DESs, causing higher viscosity,
which was unfavorable for the practical separation process.46

To obtain the optimum separation factor between Nd and Fe,
a solid−liquid ratio of 1:10 was suggested for the dissolution
procedure.
As seen in Figure 5b, the dissolution ratios of Nd and Fe

both increased with the increasing temperature. The
dissolution ratio of Nd (DNd) reached 84% at 30 °C and
then increased very slowly. On the contrary, DFe increased very
slowly below 50 °C but multiplied after that. From Figure 5c,
DNd increased rapidly with the reaction time before 6 h and

then reached equilibrium, while DFe kept increasing, even after
6 h. Considering a balance between the dissolution ratio and
separation factor, a dissolution temperature of 40 °C and a
reaction time of 6 h might be appropriate for the selective
leaching process.
The HBD ratio also changed the dissolution ratio of metals,

because GUC and LAC acted in different roles in the
dissolution reaction. As shown in Figure 5d, although GUC
was Brønsted acid, it was too weak to react with metal oxides.
Both DNd and DFe were less than 1% by just using GUC. LAC
was only strong enough to dissolve ∼10% Nd, while DFe was
still lower than 1%. Because Nd2O3 is more ionic compared to
Fe2O3, it exhibited a larger dissolution ratio.41 Another reason
might be due to the smaller size of Fe3+ (0.69 Å compared to
1.12 Å of Nd3+) having a stronger electrostatic attraction with
O2−, which resulted in a weaker chemical reactivity with
acids.47,48 After the formation of DES, the hydrogen bond
activated H+ of lactic acid, largely increasing both DNd (7
times) and DFe (2 times). The larger increasing rate of DNd
promised the possibility of selective separation between Nd
and Fe. Keeping the increase of the HBD ratio would reduce
the hydrogen bond numbers and lead to a decrease of both
DNd and the separation factor. Thus, a 1:2 HBA/HBD ratio
was selected as the working condition in this case.
The change of FTIR spectra (Figure 6a) after the dissolution

of Nd and Fe confirmed the interaction between LAC and
metal oxides. The vibrational band of −COOH around 1731
cm−1 became weaker than that of −COO− around 1667 cm−1.
It should be noticed that the spectrum of Fe almost did not
change compared to the original DES because dissolved Fe was

Figure 3. 1H NMR spectra of DESs and their corresponding pure HBA and HBD components.
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too small. Similar to the FTIR spectra, the NMR spectrum of
Fe-loaded DES was also the same as the pristine DES. The
dissolution of Nd caused the δ value of −NH2 to move
downfield (Figure 6b), which indicated that GUC not only
acted as the HBA, but also participated in the dissolution
reaction.
To verify this hypothesis, the ultraviolet−visible (UV−vis)

spectra of Nd-loaded DES are collected and shown in Figure
6c. The absorption band of Nd(III) around 575 nm is sensitive
to the coordination environment.49 As the ligands changed
from Cl− to LAC− (solutions 4 and 5) in aqueous solution, the
absorption band changed from 575 to 577.6 nm. However, the
difference among absorption bands of solutions 1 (Nd2O3-
dissolved GUC−LAC), 2 (NdCl3-dissolved GUC−GLY), and
3 (NdCl3-dissolved GUC−LAC) was only 0.6 nm, which
indicated that they had a similar coordination environment of
Nd(III) in these solutions, especially between solutions 2 and
3. Because the dissociation of hydroxy GLY could be ignored
in this case, it was reasonable to infer that Nd(III) was only
coordinated with Cl− in solution 2. Thus, in GUC−LAC DES,
Nd(III) was mainly coordinated with Cl− besides trace LAC−

generated in the dissolution reaction, which caused this slight
change. Some previous studies revealed that most metal
cations were coordinated with Cl− to form complex anions in
ILs and DESs.30,41,50 In combination with the literature and
our analysis, we can conclude that Nd(III) was dissolved in
GUC−LAC DES in the form of anionic [NdClx]

3−x species.
Selective Leaching and DES Recycle. A practical

recovery process for the end-of-life NdFeB permanent magnets
was proposed. The roasted NdFeB magnet powder was
composed of a mixture of Nd2O3 and Fe2O3 with a mole

ratio of 1:7. This powder was dissolved in GUC−LAC with a
solid/liquid ratio of 1:10 at 40 °C for 6 h. The liquid DES was
then separated from the solid by centrifugation. The isolated
solid was reddish brown, which might be mainly composed of
Fe2O3. Because most Nd was dissolved in the DESs, from a
mass balance view, only a few Nd were left in the solid. Nd-
loaded GUC−LAC was regenerated with the stripping by solid
oxalic acid to yield a Nd2(C2O4)3 precipitate, which has an
average particle size of 7.76 μm (Figure S24 of the Supporting
Information). The energy-dispersive X-ray spectroscopy
(EDS) result (Table S5 of the Supporting Information)
indicated that this precipitate did not contain any Fe, and its
structure was confirmed by the powder X-ray diffraction
(PXRD) pattern (Figure S25 of the Supporting Information).
Nd2(C2O4)3 was further calcinated to prepare the Nd2O3
product. Nd2O3 had an average particle size of 5.83 μm
(Figure S29 of the Supporting Information), and also no Fe
appeared in the EDS analysis (Table S6 of the Supporting
Information). As shown in Figure S30 of the Supporting
Information, the diffraction peaks of the obtained Nd2O3
product agreed well with the standard X-ray diffraction
(XRD) patterns of Nd2O3 [Joint Committee on Powder
Diffraction Standards (JCPDS) card number 75-2255]. The
total recovery rate of Nd in the whole process was 83.1%. The
purity of Nd was 99.56% (the detailed metal composition was
listed in Table S4 of the Supporting Information) confirmed by
ICP−OES, which was enough to be a raw material for the
NdFeB magnet production. Regenerated GUC−LAC was
retested for the dissolution property. After running for 3 cycles,
the dissolution ratio and separation factor were almost the
same as the original DES. In combination with the following

Figure 4. FTIR spectra of DESs and pure HBA and HBD components.
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reasons, we could infer that the HBA/HBD ratio of this DES
did not change after recycling. First, the boiling points of GUC
and LAC were 173 and 122 °C, which were far from the
working dissolution temperature. Second, the TG analysis in
Figure 2a indicated that GUC−LAC was stable before 100 °C.
Third, from Figures S22 and S23 of the Supporting
Information, the chemical shift in 1H NMR practically did
not change and there were almost no differences in the FTIR
spectra for each recycled DES.
Environmental Implications. The recovery of REEs from

end-of life material is beneficial from both economic and
environment aspects. However, the total recovery rate was low
as a result of the lack of an efficient and clean recovery
technique. The state-of-the-art recovery process based on
hydrometallurgy methods, solvent extraction, is a heavy burden
to the environment. Besides the emission of volatile solvents
and ammonia waste gas, the inorganic acids adopted in the
complete leaching and liquid−liquid extraction procedures
contributed significantly to the ozone depletion, human
toxicity potential, marine aquatic eco-toxicity potential,
eutrophication, greenhouse gas emission, and material cost of
the total hydrometallurgy process.20,51−53 The selective
leaching process was regarded as an efficient technique to
decrease the acid consumptions. In the recovery of a NdFeB
permanent magnet, the acids needed in the selective leaching
were only 1/8 of the complete leaching theoretically (the
calculation details were shown in the Supporting Information).
If considering the acids and bases consumed in the solvent
extraction, stripping, and pH adjustment of the solvent

extraction process, this gap would be much greater. Replacing
the inorganic acids by green solvents would make this process
friendly to the environment. The existing green solvents,
including ILs, adopted in the leaching of a NdFeB permanent
magnet exhibit not enough difference in the solubility between
Nd and Fe, which made them improper to be applied in the
selective leaching process.
According to this point, we prepared several novel DESs

based on guanidine to establish a selective leaching process for
the recovery of a NdFeB permanent magnet, aiming to achieve
a green recycle process for this critical material. Only few
guanidine-based DESs were reported before, and none of them
was applied in the separation of metals.54−59 Criteria such as
glass transition temperature, decomposition temperature,
viscosity, solubility, and separation ratio were adopted to
choose proper DESs to recover Nd. Among these nine DESs,
GUC−LAC has low viscosity, low glass transition temperature,
and high selectivity to dissolve Nd compared to Fe. In the
dissolution of roasted NdFeB magnet powders, over 95% Nd
was dissolved in GUC−LAC with less than 1% dissolution of
Fe. In most cases, the separation factors between these two
elements were larger than 400. This separation process could
be achieved using a simple dissolution procedure and would
not consume high energy and toxic chemicals, like the
traditional solvent extraction process. Nd-loaded GUC−LAC
could also be regenerated by stripping of Nd with oxalic acid,
and the recycled DES kept the same dissolution performance.
Nd2O3 produced in this recovery process had a purity larger
than 99%, which was suitable for the direct NdFeB production.

Figure 5. Effect of (a) solid/liquid ratio, (b) temperature, (c) reaction time, and (d) HBD ratio on the dissolution ratios and separation factors of
Nd and Fe.
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The closed loop of both chemicals in the separation and life
cycle of NdFeB materials could be achieved in this recovery
process. The DESs, such as GUC−LAC and GUC−GA, also
exhibited high dissolution toward transition oxides, such as
V2O5 and CrO3, and rare earth oxides, such as La2O3, which
indicated that these DESs might be widely applied in the
treatment of hazardous solid wastes and recovery of other
valuable metal resources.
In addition, the DESs adopted in this work are facilely

prepared from cheap as-obtained materials. For example, the
reference prices of GUC and LAC were $2500/ton60 and
$1300/ton,45 which were much cheaper than most ILs. The
hydrogen ion in the DES was provided by lactic acid, which
was produced by bacterial fermentation of sugar and starch,
causing a lower environmental impact than inorganic acids.45
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