

PRODUCT SPECIFICATIONS

Program

- About us
- Establishing target specifications
- **S** <u>Prepare the list of metrics</u> Collect Competitive Benchmarking
- **Information**
- <u>Set ideal and marginally acceptable</u> target values
- **S** <u>Reflect on the results and the process</u>
- Setting the final specifications
 - Develop technical models of the product • <u>Develop a cost model of the product</u> • <u>Refine the specifications, making trade-offs</u> where necessary Flow down the specifications as <u>appropriate</u>

 - <u>Reflect on the results and the process</u>

• What are specifications and when are established?

About us

EMANUELE BERTE' Exchange Master's student from Politecnico di Torino (IT) - Advanced Energy Solutions at Aalto University of Technology (FI).

MICHELE GARZONE

Exchange Master's student from Politecnico di Torino (IT) - Mechanical Engineering at Aalto University of Technology (FI).

CORRADO MAZZOLATTI

Exchange Master's student from Politecnico di Milano (IT) - Mechanical Engineering at Aalto University of Technology (FI).

IBRAHEM CHMIEL

Exchange Master's student from Politecnico di Milano (IT) - Mechanical Engineering at Aalto University of Technology (FI).

NOA PORTIER

Exchange Master's student from INSA Lyon (FR) - Mechanical Engineering at Aalto University of Technology (FI).

ANTONIO DE ROSE

Exchange Master's student from Politecnico di Milano (IT) - Mechanical Engineering at Aalto University of Technology (FI).

NICOLAS OTT

Exchange Master's student from INSA Lyon (FR) - Mechanical Engineering at Aalto University of Technology (FI).

WHAT ARE SPECIFICATIONS?

Key Features

Compatibility

Certifications and Compliance

Usage Instructions

ESTABLISHING TARGET SPECIFICATIONS

Set ideal and marginally acceptable target values

1.

Collect competitive benchmarking information

Preapare the list of metrics

Reflect on the results and the process

PREPARE THE LIST OF METRICS

WHAT?

Metrics should directly reflect the degree of customer satisfaction and are nothing more than a number. They can be in absolute value or as a percentage.

WHY?

Metrics are essential for understanding, improving, and guiding decisions in business and product development, acting as a map in an unfamiliar terrain.

Achievable

USEFUL METRICS

Accessible

Verifiable

The needs-metrics matrix

Boston Dynamics		METRIC						
		DRIVE SYSTEM	GEOMETRICAL DEXTERITY	PATH MEASURING SYSTEM	ROBOT SIZE	MATERIAL OF ROBOT	WEIGHT OF ROBOT	INITIAL OPERATING COST OF ROBOT
	1. PAYLOAD							
N E E	2. ACCURACY							
	3. LIFE-EXPECTANCY							
	4. VELOCITY OF ROBOT							
D	5. PROGRAMMING FLEXIBILITY							
	6. TOTAL COST							

STRONG

MODERATE

WEAK

Aalto University School of Engineering

Table of GUIDELINES

Metrics should be complete

Step 1

Metrics should be dependent, not indipendent variables

02

Some needs cannot easily be translated into quantifiable metrics

04

The metrics should include the popular criteria for comparison in the marketplace

05

Metrics should be practical

03

COLLECT COMPETITIVE BENCHMARKING INFORMATION

Step 2

Competitive Landscape

Market Share

Identification of Best Practices

Innovation and Continous Improvement

Step 2

A!

ANYmal

Mobility

Stability

Sensor

Spot

Environmental resistance

Adaptability

Vision

Step 2

Waygate Technologies and PETRONAS

Test Yourself

Set ideal and marginally acceptable target values

Aalto University School of Engineering

Step 3

Marginally acceptable

Targets Values

Ideal

Step 3

Target values for a metric CLASSIFICATION

- AT LEAST
- AT MOST
- BETWEEN
- EXACTLY
- SET OF DISCRETE VALUES

An assessment on the specifications set

- Any specification missing?
- Any specification useless or incomplete?
- Do they define a viable product?

SETTING THE FINAL SPECIFICATIONS

Refinement

Final Specifications

SETTING THE FINAL SPECIFICATIONS

Refinement CONSTRAINS Technology Production costs

TRADE-OFFS

- Metric-Metric
- Metric-Cost

Aalto University School of Engineering

Five-step Process

- 1. Develop technical models of the product
- 2. <u>Develop a cost model of the product</u>
- 3. <u>Refine the specifications, making trade-offs where necessary</u>
- 4. Flow down the specifications as appropriate
- 5. <u>Reflect on the results and the process</u>

STEP 1

DEVELOP TECHNICAL MODELS OF THE PRODUCT

Design Varaible (Input)

" Prototyping "

Physical

Metric (Output)

DEVELOP A COST MODEL OF THE PRODUCT

How much do you think the Spot and ANYmal robots cost?

DEVELOP A COST MODEL OF THE PRODUCT

How much do you think the Spot and ANYmal robots cost?

\$150,000

<u>Why are these robots so expensive??</u>

Join at slido.com

advanced mobility

advanced sensors

battery autonomy

specialized applications

Aalto University School of Engineering

Adequate profits

keeping in mind a range of uncertainty in the estimates

Iterative bill of materials

unknown number/type of components in the final product

Target Cost looking for a competitive price

In the end, which robot would you buy?

• How many pieces do you think were sold, each year, since the release date of the product?

In the end, which robot would you buy?

• How many pieces do you think were sold, each year, since the release date of the product?

M botics • **400** pieces per year

REFINE THE SPECIFICATIONS, MAKING TRADE-OFFS WHERE NECESSARY

- Redefinition of final specifications
- Specification convergence and customer needs
- Competitive map/trade-off map

Laikago

Xiaomi Cyberdog

Robot response time [s]

FLOW DOWN THE SPECIFICATIONS AS APPROPRIATE

"Flow down" specifications

From overall specifications

to

sub-system specifications

We need match to reach design goals

Specifications

Velocity

Precision

1 - Make Estimations:
Attainable technique
Cost model precision

2 - Make a marketing analyse :

- Needs
- Game
- Competitive product

Technical model

Market

Benchmarking

Thank you for your attention!

Boston Dynamics

QUESTIONS ?

