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Prof. Fabricio Oliveira, Fernando Dias

Exercise sheet 3
Thursday 30.09.2021

Note: You are not expected to know how to implement these exercises, but to try to implement
those yourself following the material. Doing so will set you to success for the upcoming assignments.
The first homework assignment will be published later this week.

Problem 3.1: Convexity of Functions

(a) A function f : Rn → R, denoted by f(x) = ||x||, is called a norm if it satisfies the following
four properties:

1. f(x) ≥ 0 for all x ∈ Rn

2. f(x) = 0 only if x = 0

3. f(tx) = |t|f(x), for all x ∈ Rn and t ∈ R (f is homogeneous of degree 1)

4. f(x+ y) ≤ f(x) + f(y), for all x ∈ Rn and y ∈ Rn (f satisfies triangle inequality)

Show that the norm f(x) = ||x|| is a convex function.

(b) Let fi : Rn → R be convex functions for i = 1, . . . , n, and let αi > 0 be positive scalars for
i = 1, . . . , n. Show that the function g : Rn → R, defined as

g(x) =

n∑
i=1

αifi(x)

is convex.

(c) Let I = {1, . . . , n} be an index set, and let fi : Rn → R be convex functions for all i ∈ I.
Show that the function g : Rn → R, defined as

g(x) = max
i∈I

{fi(x)}

is convex.

Problem 3.2: Convexity under Composition

Let S ⊆ Rn be a nonempty convex set. Let h : S → R be a convex function, and let g : R → R
be a monotonically non-decreasing convex function over the set {h(x) : x ∈ S}. Show that the
composition function

f(x) = g(h(x))

is convex.

Problem 3.3: Convexity of Optimization Problems

(a) Suppose we are given some data that can be separated into two sets in Rn:

X = {x1, . . . , xN} and Y = {y1, . . . , yM}.

We would like to construct a classifier that separates the points in X and Y into two distinct
sets based on some features. Ideally, the classifier could then be used to classify future data
points to the correct sets.

For example, X could represent spam email, Y regular email, and we would like to train a
classifier based on some features, such as word stems appearing in the email. If we can train
an accurate enough classifier based on some training data X and Y , we could then use the
classifier as an email spam filter to direct incoming emails to either inbox or trash.

In linear classification, we seek an affine function f(x) = a⊤x− b that correctly classifies the
points in X and Y , i.e.,

a⊤xi − b > 0, i = 1, . . . , N a⊤yi − b < 0, i = 1, . . . ,M (1)

1



MS-E2122 - Nonlinear optimization
Prof. Fabricio Oliveira, Fernando Dias

Exercise sheet 3
Thursday 30.09.2021

Geometrically, we seek a hyperplane that separates the points in X and Y . The unknown
variables are a ∈ Rn and b ∈ R, and we would like to find the best values for them.

Since there is always a possibility for misclassification, we can introduce a buffer zone to
trade some of the robustness of the classifier to outliers. We can do this by first rewriting
the strict inequalities in (1) as

a⊤xi − b ≥ 1, i = 1, . . . , N a⊤yi − b ≤ −1, i = 1, . . . ,M (2)

and then relax these constraints by introducing nonnegative variables u1, . . . , uN and v1, . . . , vM ,
and rewriting (2) as

a⊤xi − b ≥ 1− ui, i = 1, . . . , N a⊤yi − b ≤ −1 + vi, i = 1, . . . ,M (3)

We can think of ui and vi as measures which compute how much the corresponding points
xi and yi, respectively, are violated if they are misclassified.
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Figure 1: Classification results. Buffer zone corresponds to the area between the dotted pink lines.

Using this information, we can formulate the following robust classification problem presented
in Lecture 1:

min.

N∑
i=1

ui +

M∑
i=1

vi + γ||a||22 (4)

subject to: a⊤xi − b+ ui ≥ 1, i = 1, . . . , N (5)

a⊤yi − b− vi ≤ −1, i = 1, . . . ,M (6)

ui ≥ 0, i = 1, . . . , N (7)

vi ≥ 0, i = 1, . . . ,M. (8)

The first term in the objective (4) corresponds to the total classification error

N∑
i=1

ui +

M∑
i=1

vi

and second term ||a||22 is inversely proportional to the width of the buffer zone which is equal
to 2/||a||2 if ui = 0 for all i = 1, . . . , N and vi = 0 for all i = 1, . . . ,m (proof). Since we
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want to minimize the total classification error and to maximize the width of the buffer zone,
the objective function (4) achieves both of these goals. The parameter γ > 0 controls the
trade-off between these two goals.

Justify why the problem (4) – (8), also called a support vector machine, is a convex optimiza-
tion problem.

(b) Consider the following portfolio optimization problem with some scalar λ ∈ [0, 1]:

max.
x

λ(µ⊤x)− (1− λ)x⊤Σx

subject to:
∑
i∈N

xi = 1

x ≥ 0

which can be equivalently written as

min.
x

− λ(µ⊤x) + (1− λ)x⊤Σx (9)

subject to:
∑
i∈N

xi = 1 (10)

x ≥ 0 (11)

The objective (9) is to minimize a weighted sum of negative expected profit −µ⊤x (which
is equal to maximizing the actual expected profit µ⊤x) and the risk x⊤Σx (i.e., portfolio
variance). Notice that Σ is a positive semidefinite (covariance) matrix. Justify why the
problem (9) – (11) is a convex optimization problem.

(c) Consider the following linear optimization problem with x ∈ Rn:

min. c⊤x (12)

subject to: a⊤i x ≤ bi, i = 1, . . . ,m (13)

xi ≥ 0, i = 1, . . . , n (14)

in which c ∈ Rn and bi ∈ R are fixed, and ai ∈ Rn, for all i = 1, . . . ,m, are known to lie in
given ellipsoids:

ai ∈ Ei = {ai + Piu : ||u||2 ≤ Γi}, (15)

where

• ai is the nominal (average) value.

• Pi is the characteristic matrix of the ellipsoid Ei.
• Γi is the risk-aversion control parameter, or budget of uncertainty.

Suppose we want the constraints (13) to be satisfied for all possible values of the parameter
vectors ai ∈ Ei. This leads to the following robust linear optimization problem:

min. c⊤x (16)

subject to: max
ai∈Ei

{
a⊤i x

}
≤ bi, i = 1, . . . ,m (17)

xi ≥ 0, i = 1, . . . , n. (18)

By precomputing the lefthand side of constraints (17) as

max
ai∈Ei

{
a⊤i x

}
= a⊤i x+max

u

{
u⊤P⊤

i x : ||u||2 ≤ Γi

}
= a⊤i x+ Γi||P⊤

i x||2, (19)
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we can finally rewrite the problem (16) – (18) as the robust linear optimization problem with
ellipsoidal uncertainty presented in Lecture 1:

min. c⊤x (20)

subject to: a⊤i x+ Γi||P⊤
i x||2 ≤ bi, i = 1, . . . ,m (21)

xi ≥ 0, i = 1, . . . , n (22)

Justify why the problem (20) – (22) is a convex optimization problem.

Note: To see why (19) holds, we can solve max
u

{
u⊤P⊤

i x : ||u||2 ≤ Γi

}
simply by writing:

u⊤P⊤
i x ≤ ||u⊤||2||P⊤

i x||2 ≤ Γi||P⊤
i x||2 (23)

as ||u||2 ≤ Γi. Thus, we can see that the max value of u that satisfies (23) is obtained at

u = Γi
P⊤
i x

||P⊤
i x||2

since then u⊤P⊤
i x = Γi

(P⊤
i x)⊤P⊤

i x

||P⊤
i x||2

= Γi
||P⊤

i x||22
||P⊤

i x||2
= Γi||P⊤

i x||2

See also the following example Figure 2 from Lecture 1.
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Figure 2: Robust LP example with ellipsoidal uncertainty.
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