
MS-E2122 - Nonlinear optimization
Prof. Fabricio Oliveira, Fernando Dias

Exercise sheet 3
Thursday 21.09.2023

This week’s homework https://mycourses.aalto.fi/mod/assign/view.php?id=1094237 is
due no later than Monday 9.10.2021 23:55.

Problem 3.1: Convexity of Functions

(a) A function f : Rn → R, denoted by f(x) = ||x||, is called a norm if it satisfies the following
four properties:

1. f(x) ≥ 0 for all x ∈ Rn

2. f(x) = 0 only if x = 0

3. f(tx) = |t|f(x), for all x ∈ Rn and t ∈ R (f is homogeneous of degree 1)

4. f(x+ y) ≤ f(x) + f(y), for all x ∈ Rn and y ∈ Rn (f satisfies triangle inequality)

Show that the norm f(x) = ||x|| is a convex function.

(b) Let fi : Rn → R be convex functions for i = 1, . . . , n, and let αi > 0 be positive scalars for
i = 1, . . . , n. Show that the function g : Rn → R, defined as

g(x) =

n∑
i=1

αifi(x)

is convex.

(c) Let I = {1, . . . , n} be an index set, and let fi : Rn → R be convex functions for all i ∈ I.
Show that the function g : Rn → R, defined as

g(x) = max
i∈I

{fi(x)}

is convex.

Solution.

(a) Let x, y ∈ Rn and λ ∈ [0, 1]. By the definition of convexity, we have to show that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y). (1)

Using properties 3 and 4, we get

||λx+ (1− λ)y|| ≤ ||λx||+ ||(1− λ)y|| = λ||x||+ (1− λ)||y||.

which is exactly (1), thus verifying the convexity of f .

(b) Let x, y ∈ Rn and λ ∈ [0, 1]. Applying the convexity of f , we get

g(λx+ (1− λ)y) =

n∑
i=1

αifi(λx+ (1− λ)y)

≤
n∑

i=1

αi(λfi(x) + (1− λ)fi(y))

= λ

n∑
i=1

αifi(x) + (1− λ)

n∑
i=1

αifi(y))

= λg(x) + (1− λ)g(y)

from which we can conclude that g is convex.

(c) The epigraph of g is defined as

epi(g) = {(x, y) : x ∈ Rn, y ∈ R, g(x) ≤ y} ⊆ Rn+1.
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We have (x, y) ∈ epi(g) if and only if g(x) ≤ y, which holds if and only if fi(x) ≤ y
for all i ∈ I (by definition of g). By defining

epi(fi) = {(x, y) : x ∈ Rn, y ∈ R, fi(x) ≤ y} ⊆ Rn+1

we get the following equivalence:

(x, y) ∈ epi(g) ⇔ (x, y) ∈
⋂
i∈I

epi(fi). (2)

Recall from Lecture 3 that a function f is convex if and only if its epigraph epi(f) is con-
vex. Thus, epi(fi) is convex for all i ∈ I, and since the intersection of convex sets is also
convex (see Exercise 2.1),

⋂
i∈I epi(fi) is also convex. Finally, epi(g) is convex based on (2),

thus implying that g is convex.

Problem 3.2: Convexity under Composition

Let S ⊆ Rn be a nonempty convex set. Let h : S → R be a convex function, and let g : R → R
be a monotonically non-decreasing convex function over the set {h(x) : x ∈ S}. Show that the
composition function

f(x) = g(h(x))

is convex.

Solution.

Let x, y ∈ S and λ ∈ [0, 1]. Applying the convexity of h and the monotonicity of g, we get

f(λx+ (1− λ)y) = g
(
h(λx+ (1− λ)y)

)
≤ g

(
λh(x) + (1− λ)h(y)

)
(3)

≤ λg
(
h(x)

)
+ (1− λ)g

(
h(y)

)
(4)

= λf(x) + (1− λ)f(y)

which implies that f = g(h(x)) is convex. The first inequality (3) follows from the convexity of h
and from the monotonicity of g. The second inequality (4) follows from the convexity of g.

Problem 3.3: Convexity of Optimization Problems

(a) Suppose we are given some data that can be separated into two sets in Rn:

X = {x1, . . . , xN} and Y = {y1, . . . , yM}.

We would like to construct a classifier that separates the points in X and Y into two distinct
sets based on some features. Ideally, the classifier could then be used to classify future data
points to the correct sets.

For example, X could represent spam email, Y regular email, and we would like to train a
classifier based on some features, such as word stems appearing in the email. If we can train
an accurate enough classifier based on some training data X and Y , we could then use the
classifier as an email spam filter to direct incoming emails to either inbox or trash.

In linear classification, we seek an affine function f(x) = a⊤x− b that correctly classifies the
points in X and Y , i.e.,

a⊤xi − b > 0, i = 1, . . . , N a⊤yi − b < 0, i = 1, . . . ,M (5)
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Geometrically, we seek a hyperplane that separates the points in X and Y . The unknown
variables are a ∈ Rn and b ∈ R, and we would like to find the best values for them.

Since there is always a possibility for misclassification, we can introduce a buffer zone to
trade some of the robustness of the classifier to outliers. We can do this by first rewriting
the strict inequalities in (5) as

a⊤xi − b ≥ 1, i = 1, . . . , N a⊤yi − b ≤ −1, i = 1, . . . ,M (6)

and then relax these constraints by introducing nonnegative variables u1, . . . , uN and v1, . . . , vM ,
and rewriting (6) as

a⊤xi − b ≥ 1− ui, i = 1, . . . , N a⊤yi − b ≤ −1 + vi, i = 1, . . . ,M (7)

We can think of ui and vi as measures which compute how much the corresponding points
xi and yi, respectively, are violated if they are misclassified.
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Figure 1: Classification results. Buffer zone corresponds to the area between the dotted pink lines.

Using this information, we can formulate the following robust classification problem presented
in Lecture 1:

min.

N∑
i=1

ui +

M∑
i=1

vi + γ||a||22 (8)

subject to: a⊤xi − b+ ui ≥ 1, i = 1, . . . , N (9)

a⊤yi − b− vi ≤ −1, i = 1, . . . ,M (10)

ui ≥ 0, i = 1, . . . , N (11)

vi ≥ 0, i = 1, . . . ,M. (12)

The first term in the objective (8) corresponds to the total classification error

N∑
i=1

ui +

M∑
i=1

vi

and second term ||a||22 is inversely proportional to the width of the buffer zone which is equal
to 2/||a||2 if ui = 0 for all i = 1, . . . , N and vi = 0 for all i = 1, . . . ,m (proof). Since we
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want to minimize the total classification error and to maximize the width of the buffer zone,
the objective function (8) achieves both of these goals. The parameter γ > 0 controls the
trade-off between these two goals.

Justify why the problem (8) – (12), also called a support vector machine, is a convex opti-
mization problem.

(b) Consider the following portfolio optimization problem with some scalar λ ∈ [0, 1]:

max.
x

λ(µ⊤x)− (1− λ)x⊤Σx

subject to:
∑
i∈N

xi = 1

x ≥ 0

which can be equivalently written as

min.
x

− λ(µ⊤x) + (1− λ)x⊤Σx (13)

subject to:
∑
i∈N

xi = 1 (14)

x ≥ 0 (15)

The objective (13) is to minimize a weighted sum of negative expected profit −µ⊤x (which
is equal to maximizing the actual expected profit µ⊤x) and the risk x⊤Σx (i.e., portfolio
variance). Notice that Σ is a positive semidefinite (covariance) matrix. Justify why the
problem (13) – (15) is a convex optimization problem.

(c) Consider the following linear optimization problem with x ∈ Rn:

min. c⊤x (16)

subject to: a⊤i x ≤ bi, i = 1, . . . ,m (17)

xi ≥ 0, i = 1, . . . , n (18)

in which c ∈ Rn and bi ∈ R are fixed, and ai ∈ Rn, for all i = 1, . . . ,m, are known to lie in
given ellipsoids:

ai ∈ Ei = {ai + Piu : ||u||2 ≤ Γi}, (19)

where

• ai is the nominal (average) value.

• Pi is the characteristic matrix of the ellipsoid Ei.
• Γi is the risk-aversion control parameter, or budget of uncertainty.

Suppose we want the constraints (17) to be satisfied for all possible values of the parameter
vectors ai ∈ Ei. This leads to the following robust linear optimization problem:

min. c⊤x (20)

subject to: max
ai∈Ei

{
a⊤i x

}
≤ bi, i = 1, . . . ,m (21)

xi ≥ 0, i = 1, . . . , n. (22)

By precomputing the lefthand side of constraints (21) as

max
ai∈Ei

{
a⊤i x

}
= a⊤i x+max

u

{
u⊤P⊤

i x : ||u||2 ≤ Γi

}
= a⊤i x+ Γi||P⊤

i x||2, (23)
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we can finally rewrite the problem (20) – (22) as the robust linear optimization problem with
ellipsoidal uncertainty presented in Lecture 1:

min. c⊤x (24)

subject to: a⊤i x+ Γi||P⊤
i x||2 ≤ bi, i = 1, . . . ,m (25)

xi ≥ 0, i = 1, . . . , n (26)

Justify why the problem (24) – (26) is a convex optimization problem.

Note: To see why (23) holds, we can solve max
u

{
u⊤P⊤

i x : ||u||2 ≤ Γi

}
simply by writing:

u⊤P⊤
i x ≤ ||u⊤||2||P⊤

i x||2 ≤ Γi||P⊤
i x||2 (27)

as ||u||2 ≤ Γi. Thus, we can see that the max value of u that satisfies (27) is obtained at

u = Γi
P⊤
i x

||P⊤
i x||2

since then u⊤P⊤
i x = Γi

(P⊤
i x)⊤P⊤

i x

||P⊤
i x||2

= Γi
||P⊤

i x||22
||P⊤

i x||2
= Γi||P⊤

i x||2

See also the following example Figure 2 from Lecture 1.
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Figure 2: Robust LP example with ellipsoidal uncertainty.

Solution.

(a) To see why the objective function (8) is convex, consider the first term

N∑
i=1

ui +

M∑
i=1

vi

All ui for i = 1, . . . , N and vi for i = 1, . . . ,M are linear functions which are both convex and
concave. The second term γ||a||22 is a norm which is a convex function
(see Exercise 3.1 (a)) multiplied by a positive scalar γ. Multiplying a convex function with
a positive scalar is also convex (see Exercise 3.1 (b)), and therefore γ||a||22 is convex.
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The objective (8) is thus a sum of convex functions multiplied by positive scalars so it is
convex (see Exercise 3.1 (b)). The constraints (9) – (10) are affine functions which are both
convex (also concave), and (11) – (12) are linear functions which are also convex. Together
these form a feasible region which is a convex set (see Figure ?? for an example).

The problem (8) – (12) consists of minimizing a convex function over a convex set, so it is a
convex optimization problem. Another way to justify why it convex is because the objective
function is convex and all inequality constraints are convex functions. But we will learn more
about this characterization later in the course.

(b) Here the objective function (13) is a sum of two convex functions −µ⊤x and x⊤Σx multiplied
by positive constants λ and (1− λ), respectively.

To prove that x⊤Σx is convex, the following inequality must hold

(λx+ (1− λ)y)⊤Σ(λx+ (1− λ)y) ≤ λx⊤Σx+ (1− λ)y⊤Σy

0 ≤ λx⊤Σx+ (1− λ)y⊤Σy − λ2x⊤Σx− (1− λ)2y⊤Σy − λ(1− λ)x⊤Σy − λ(1− λ)y⊤Σx =

(λ− λ2)x⊤Σx+ (λ− λ2)y⊤Σy − (λ− λ2)x⊤Σy − (λ− λ2)y⊤Σx =

(λ− λ2)[x⊤Σx+ y⊤Σy − x⊤Σy − y⊤Σx].

The term λ− λ2 is nonnegative due to the fact that 0 ≤ λ ≤ 1. Similarly

x⊤Σx+y⊤Σy−x⊤Σy−y⊤Σx = x⊤Σ(x−y)+y⊤Σ(y−x) = x⊤Σ(x−y)−y⊤Σ(x−y) = (x−y)⊤Σ(x−y).

Since Σ is a positive semidefinte matrix, (x − y)⊤Σ(x − y) ≥ 0, thus proving the convexity
x⊤Σx.

Therefore the objective (13) is a convex function (see Exercise 3.1 (b)). Justification why the
individual terms are convex: The first term −µ⊤x is a linear function and therefore convex,
and the second term x⊤Σx is a quadratic function with a positive semidefinite matrix Σ and
thus convex.

Also, the constraint (14) is an affine function and thus convex, while the constraint (15) is
a linear function and also convex. These constraints form an |N | − 1 dimensional simplex
which is a convex set.

Thus, the problem (13) – (15) consists of minimizing a convex function over a convex set and
is therefore a convex optimization problem. Here, an alternative characterization would be
that (13) – (15) is convex, because its objective is convex, all of its equality constraints are
affine functions, and all of its inequality constraints are convex functions.

(c) In this example, the objective (24) is linear and therefore convex, and the inequality con-
straints (25) – (26) represent an ellipsoid which is a convex set (see Figure 2 for an example).
So here again we’re minimizing a convex function over a convex set, wherefore (24) – (26)
is a convex optimization problem. The other characterization which we will learn more
about later, would be that the problem is convex since the objective is convex and all of its
inequalities are convex functions.
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