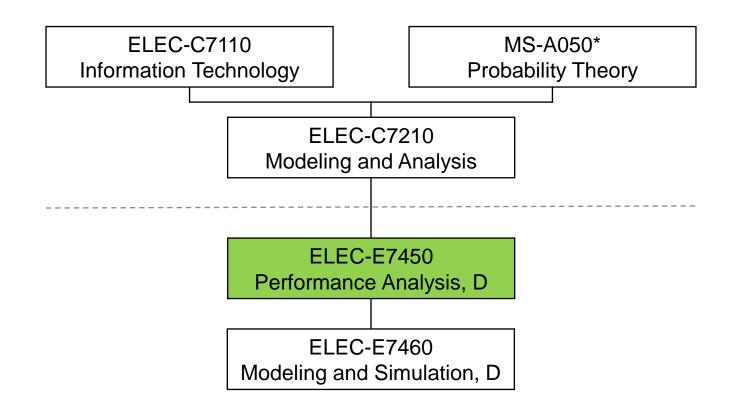


ELEC-E7450 Performance Analysis P (5 cr) Spring 2024

Samuli Aalto Department of Information and Communications Engineering


General information

- Objective of the course:
 - ELEC-E7450 Performance Analysis covers basic queueing models (such as M/G/1 and queueing networks) used to analyse and optimise the performance of various computer and communication systems.
- Lectures and exercises:
 - Samuli Aalto, samuli.aalto@aalto.fi
- Course material:
 - lectures and exercises available on MyCourses:

https://mycourses.aalto.fi/course/view.php?id=40554

Status

ELEC-E7450 Performance Analysis Spring 2024

Learning outcomes

- After taking the course, the student ...
 - Is able to apply Markov processes and regenerative processes to model various computer and communication systems
 - Is able to construct, analyse and optimise stochastic queueing models to evaluate the performance of the system
 - Comprehends selected applications of the performance analysis of modern computer and communication systems

Lectures, exercises, and exam

- Lectures (6 hours/week):
 - on Tuesdays at 9-12 in TUAS room AS4 (starting on 23 Apr)
 - on Thursdays at 9-12 in TUAS room AS4
- Exercises (2 hours/week):
 - on Wednesdays at 16-18 in TUAS room AS4 (starting on 24 Apr)
- Examination (3 hours):
 - on Wednesday, 5 Jun
 - 5 problems, max. 30 points
 - one retrial examination (Aug/Sep)
- Course completion:
 - get at least 12 homework points, and
 - pass the examination

More details on the exercises

Homework exercises:

- 6 problems per week to be solved before the exercise class
- available on *MyCourses* about a week before the exercise class
- Grading of problems:
 - no retrieval of solutions
 - instead, you have to be present at the exercise class
 - in the beginning of the exercise class, mark the problems you have solved
 - you are allowed to mark
 if you are ready to present and defend your solution
 - 1 homework point per mark

More details on the exercises (cont.)

• Bonus points:

- 12 homework points = minimum requirement to pass the course
- 18 homework points = 1 bonus point in the examination
- 24 homework points = 2 bonus points in the examination
- 30 homework points = 3 bonus points in the examination
- Bonus points valid until December 2024

Week	17	18	19	20	21	22	23
Lectures	1,2	3,4	5 (Tue)	6,7	8,9	10,11	Exam (Wed)
Exercise classes	1	2 (Mon!)	3	4	5	6	

Planned contents

- Week 17: ELEC-C7210 recap
 - basic queueing models, Poisson process, Markov processes, M/M/1
- Week 18: Single server queue M/G/1
 - regenerative processes, analysis, FIFO, PS
- Week 19: Queueing networks
 - tandem queue, open queueing networks, closed queueing networks
- Week 20: Processor sharing networks
 - elastic traffic, fairness concepts
- Week 21: Processor sharing networks (continues)
 - Whittle networks, balanced fairness
- Week 22: Summary and exam demos
- Week 23: Exam