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Exercises Session 2: Solution

Exercise 1

A parameter x is measured with correlated (rather than independent) addi-
tive Gaussian noises, such that:

Zkzl"i‘wk,

where, £k = 1...n and the mean value of the noise at instant k is E[wg] = 0,
while the variances are:

ifk=y
Eluyw;] = p, if|k—j] =1
0, ifl[k—j|>1
For n =2 :
1. Compute the likelihood function of the parameter x
2. Find the MLE of x.
3. Find the CRLB for the estimation of z.

4. Is the MLE efficient?



Solution Exercise 1

1. The likelihood function

The likelihood function is the probability density function of the measure-
ment conditioned on the parameter of interest. For n = 2, the likelihood
function is given by:

A(z) = p(z|x)
= p(z1, 22/z)
— ce—3Q)
With:
Qx) = (2 =)' P! (z — x)

= [zl—x z2—x}P*1 [Z:ﬂ

Where P is the covariance matrix associated with the noise vector w =
[wy  wy]T. P is computed as:

P = E[ww’]

— ][] for ]
|

From the problem statement we have: Flwiw;| = Elwows] = 1 and E[wyws] =
Elwywq] = p. So

And
_ 1 1 —p
pl=_— \ 1
2. The MLE of x

The maximum likelihood estimate of the parameter z is given by:

z,,, = argmax A(x) = argmin Q(z)



A

z,,, can be found by taking the derivatives of Q(z) with respect to the
parameter x and set it to zero:
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Note that Q(x) is a scalar. And the derivative with respect to a scalar is also
a scalar. In the last expression of the derivative, the two terms are scalars
and transpose of each other (It is the case because P is a symmetric matrix,
P = PT). We can write the following:

29 — X

i@(m) =-2[1 1] P! [zl - x] =0

1—
:—2(214‘22—21’)1_;

=0

Then .f'ML :%(214—22) \V/’p’ 751

3. The CRLB of the estimation According to the lecture slide, and
the textbook of the course (page 109), the CRLB can be computed by tak-
ing the second derivative of the log-likelihood function with respect to the
variable that is being estimated.

J=—-F [%} le=zo  (See textbook 2.7.2.2; or the updated lecture slide 2a)
J=—E[-1200]

Oz2

We already computed the first derivative of the Q(x) in the previous question:

[% () = —2(z1 + 22 — 27) 11__pp2. We can then take another derivative and

get the second derivative expression as follows.

J=—E[-3(4175)]
2
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4. Efficiency of the MLE

:%ML = 5(21 + ’22)

1
= 5(23: + wy + wy)

1
=x + 5(1111 —|'U)2)

By taking the mean of the above we have E[Z,,,] = E[x], the estimator is

unbiased. The variance of the estimator is:

ML

o = E[l(wl + wy)?]

2
1 1
= ZE[(wl +wy)? = 2 (E[w%) + Ew3] + 2E[w1w2]> (see the definition of P for each termis
L+p -1
= - = J
2

The MLE is efficient.

Exercise 2
Given z = x + w, where all the variables are n-vectors, with:
w~N(O,P) x~N(Z,P)
x and w are independent. Find the MAP estimator of x in terms of z and
the covariance of this estimator.

Solution Exercise 2

The posterior pdf is given by:

p(z|z)p(x)
plzlz) = W
_ N(z,z, P)N(x,%, Fy)
p(2)
exp (_71 ((z —)'P Yz —2)+ (v —2)" Py o — :Z')))
h p(z)
e (5Q)



with Q(z) = (z — 2)TP~ Yz —2) + (z — )T Py ' (z — 7).
The MAP is defined as:

':%J\/IAP = arginaxp(ﬂz)

= argmin Q(z)

This can be achieved by taking the gradient of Q(z) with respect to x and
setting it to zero.

V.Qr)=-P'z—2)+ P (z—2)=0
Which results in:
By = (Pt + PH NP2+ P l)

MAP

The above expression can be simplified using the Searle Set of Identities (see
the matrix cookbook 3.2.5, identity 163, link to pdf https://www.math.
uwaterloo.ca/~hwolkowi/matrixcookbook.pdf).

(P '+ P Y ' =PR(R+P)'P

So the expression for Z,,,, becomes:

Toap = Pyt + PYHY NP2+ P'a)

Zyup = Po(Py+ P)'P(P 'z + Py ')

Zyup = Po(Py+ P) Y2+ PPy ')

Zyup = Po(Po+ P) Y (2~ + 7+ PPy ')

Zyup = Po(Py+ P) Y2 — ) + Py(Py + P)"Y(z + PPy ')

Zyup = Po(Po+ P) Yz =)+ Po(Py+ P)"Y(I + PPy )z

2.0 = Po(Po+ P)Y Yz —2)+ Py(Py + P)”(POPO*1 + PP(;I):E ; (We replaced I by POPO’l)
Zoup = Po(Po+P) Yz —2)+ Py(Py+ P) ' (Py+ P)Py 'z

Zyup = Po(Po+ P) Y (2 — ) +1; because Py(Py+ P) "(Py+ P)Pyt =1

The covariance is given by (see 1.4.14-18):
cov(Zy,4p) = Prw — szP{zlem
=P — P(P+PR) 'R

You could also compute the covariance starting from the definition:
COU(fMAP) =LB [('%MAP - E[:%MAP])(QAZMAP - E[QA:MAP])T}

From the expression of #,,,,, we know that E[Z,,,,.] = Z.

So &, ,p—E[Z,,.p] = Po(Po+P)'(z—z). Using this expression in the covari-
ance computation expression, and doing some simple algebraic manipulation,

you should arrive at the same solution for the covariance given above.

b}



Exercise 3

The model for a vehicle moving at a constant speed is y; = vt; + ¢;. The
position is measured as a function of time as shown in the Table below:

Time 0O |12 ]3]|4/]10]12]18
Distance | 4.71 | 9 | 15|19 | 20 | 45 | 55 | 78

The noise e; are such that E[e?] = R; = 0.9%7°. Use the batch least square

method to estimate the velocity. (Write a Matlab script)

Solution Exercise 3

The observation model y; = vt; +e; can be written as in the lecture textbook:
z(i) = H(i)x + w(i)

According to (3.4.1-9, page 130 textbook), the solution of the batch least
square estimate is given by:

(k) = {Hk'(Rk)qu}*l HY (RF)~12F

This can be computed using the following matlab script:

%% Batch LS Estimator.

time = [0 1 2 3 4 10 12 18]’; H = time;
Dist = [4.71 9 15 19 20 45 55 78]’; z = Dist;
invR = diag(0.9.7(7:-1:0));

% The estimate of the speed.
v_batch = (H’*invR*H) "-1*H’*invR*z;

Exercise 4

Use the recursive least square method to estimate the velocity in the above
problem. (Write a Matlab script)

Solution Exercise 4

The recursive least square algorithm is given in lecture slide 2b and in the
textbook (page 132 to 134). The following matlab script compute the recur-
sive least square solution:




%% Recursive LS Estimator
P = 1e6; % Initial covariance.
v_recursive = 0; % First estimate.
v_recursive_plot = zeros(1,8);
P_vector = zeros(1,8);
% LS estimator algorithm
for i = 1:8
S = H(i,:)*PxH(i,:)’ + inv(invR(i,i));
W PxH(i,:)’*S"-1;
P =P - WxSxW’;
P_vector (i) = P;

v_recursive = v_recursive + W*x(z(i)-H(i,:)*v_recursive);
% Recursive speed estimation each recursion
v_recursive_plot (i) = v_recursive;

end

Figure 1 shows the comparison of the two different techniques to compute
the LS estimator. In the recursive algorithm, the information at instant
k 4+ 1 equals the sum of the information at k£ and the new information about
x obtained from new measurement z(k + 1).

Notice that the LS estimate z values from both algorithms become similar
at the last time instant. Also, the recursive algorithm requires an initial
value of the & and covariance matrix P. In this case, we selected Zj,; = 0
with P = 1.0 x 10%. Setting a high initial covariance (of the LS estimate)
means that our initial value is just a guess and might not be accurate. The
big initial covariance will help the algorithm to converge quickly to the first
measurement.




Speed profile of the vehicle.
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Figure 1: Top: Comparison of Batch and Recursive LS estimators. Bot-
tom: Illustration of how the covariance evolves as the LS estimator does the
estimation.



