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Exercises Session 2: Solution

Exercise 1
A parameter x is measured with correlated (rather than independent) addi-
tive Gaussian noises, such that:

zk = x + wk,

where, k = 1 . . . n and the mean value of the noise at instant k is E[wk] = 0,
while the variances are:

E[wkwj] =


1, if k = j

ρ, if |k − j| = 1
0, if |k − j| > 1

For n = 2 :

1. Compute the likelihood function of the parameter x

2. Find the MLE of x.

3. Find the CRLB for the estimation of x.

4. Is the MLE efficient?
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Solution Exercise 1
1. The likelihood function
The likelihood function is the probability density function of the measure-
ment conditioned on the parameter of interest. For n = 2, the likelihood
function is given by:

Λ(x) = p(z|x)
= p(z1, z2|x)
= ce− 1

2 Q(x)

With:

Q(x) = (z − x)T P −1(z − x)

=
[
z1 − x z2 − x

]
P −1

[
z1 − x
z2 − x

]

Where P is the covariance matrix associated with the noise vector w =
[w1 w2]T . P is computed as:

P = E[wwT ]

= E

[[
w1
w2

] [
w1 w2

]]

= E

[[
w1w1 w1w2
w2w1 w2w2

]]

From the problem statement we have: E[w1w1] = E[w2w2] = 1 and E[w1w2] =
E[w2w1] = ρ. So

P =
[
1 ρ
ρ 1

]

And

P −1 = 1
1 − ρ2

[
1 −ρ

−ρ 1

]
(∀ρ ̸= 1)

2. The MLE of x
The maximum likelihood estimate of the parameter x is given by:

x̂
ML

= arg max
x

Λ(x) = arg min
x

Q(x)
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x̂
ML

can be found by taking the derivatives of Q(x) with respect to the
parameter x and set it to zero:

∂

∂x
Q(x) = ∂

∂x

([
z1 − x z2 − x

]
P −1

[
z1 − x
z2 − x

])

=
[

∂(z1−x)
∂x

∂(z2−x)
∂x

]
P −1

[
z1 − x
z2 − x

]
+
[
z1 − x z2 − x

]
P −1

[
∂(z1−x)

∂x
∂(z2−x)

∂x

]

=
[
−1 −1

]
P −1

[
z1 − x
z2 − x

]
+
[
z1 − x z2 − x

]
P −1

[
−1
−1

]

Note that Q(x) is a scalar. And the derivative with respect to a scalar is also
a scalar. In the last expression of the derivative, the two terms are scalars
and transpose of each other (It is the case because P is a symmetric matrix,
P = P T ). We can write the following:

∂

∂x
Q(x) = −2

[
1 1

]
P −1

[
z1 − x
z2 − x

]
= 0

= −2(z1 + z2 − 2x) 1 − ρ

1 − ρ2 = 0

Then x̂
ML

= 1
2(z1 + z2) ∀|ρ| ≠ 1

3. The CRLB of the estimation According to the lecture slide, and
the textbook of the course (page 109), the CRLB can be computed by tak-
ing the second derivative of the log-likelihood function with respect to the
variable that is being estimated.

J = −E
[

∂2lnΛ(x)
∂x2

]
|x=x0 (See textbook 2.7.2.2, or the updated lecture slide 2a)

J = −E
[
−1

2
∂2Q(x)

∂x2

]
We already computed the first derivative of the Q(x) in the previous question:
∂

∂x
Q(x) = −2(z1 + z2 − 2x) 1−ρ

1−ρ2 . We can then take another derivative and
get the second derivative expression as follows.

J = −E
[
−1

2(4 1−ρ
1−ρ2 )

]
J = 2

1 + ρ

J−1 = 1 + ρ

2

3



4. Efficiency of the MLE

x̂
ML

= 1
2(z1 + z2)

= 1
2(2x + w1 + w2)

= x + 1
2(w1 + w2)

By taking the mean of the above we have E[x̂
ML

] = E[x], the estimator is
unbiased. The variance of the estimator is:

σ2 = E[12(w1 + w2)2]

= 1
4E[(w1 + w2)2] = 1

4
(
E[w2

1) + E[w2
2] + 2E[w1w2]

)
(see the definition of P for each terms)

= 1 + ρ

2 = J−1

The MLE is efficient.

Exercise 2
Given z = x + w, where all the variables are n-vectors, with:

w ∼ N (0, P ) x ∼ N (x̄, P0)

x and w are independent. Find the MAP estimator of x in terms of z and
the covariance of this estimator.

Solution Exercise 2
The posterior pdf is given by:

p(x|z) = p(z|x)p(x)
p(z)

= N (z, x, P )N (x, x̄, P0)
p(z)

∝
exp

(
−1
2

(
(z − x)T P −1(z − x) + (x − x̄)T P −1

0 (x − x̄)
))

p(z)

∝
exp

(
−1
2 Q(x)

)
p(z)
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with Q(x) = (z − x)T P −1(z − x) + (x − x̄)T P −1
0 (x − x̄).

The MAP is defined as:

x̂
MAP

= arg max
x

p(x|z)

= arg min Q(x)

This can be achieved by taking the gradient of Q(x) with respect to x and
setting it to zero.

∇xQ(x) = −P −1(z − x) + P −1
0 (x − x̄) = 0

Which results in:

x̂
MAP

= (P −1
0 + P −1)−1(P −1z + P −1

0 x̄)

The above expression can be simplified using the Searle Set of Identities (see
the matrix cookbook 3.2.5, identity 163, link to pdf https://www.math.
uwaterloo.ca/~hwolkowi/matrixcookbook.pdf).

(P −1 + P −1
0 )−1 = P0(P0 + P )−1P

So the expression for x̂
MAP

becomes:

x̂
MAP

= (P −1
0 + P −1)−1(P −1z + P −1

0 x̄)
x̂

MAP
= P0(P0 + P )−1P (P −1z + P −1

0 x̄)
x̂

MAP
= P0(P0 + P )−1(z + PP −1

0 x̄)
x̂

MAP
= P0(P0 + P )−1(z−x̄ + x̄ + PP −1

0 x̄)
x̂

MAP
= P0(P0 + P )−1(z − x̄) + P0(P0 + P )−1(x̄ + PP −1

0 x̄)
x̂

MAP
= P0(P0 + P )−1(z − x̄) + P0(P0 + P )−1(I + PP −1

0 )x̄
x̂

MAP
= P0(P0 + P )−1(z − x̄) + P0(P0 + P )−1(P0P

−1
0 + PP −1

0 )x̄ ; (We replaced I by P0P
−1
0 )

x̂
MAP

= P0(P0 + P )−1(z − x̄) + P0(P0 + P )−1(P0 + P )P −1
0 x̄

x̂
MAP

= P0(P0 + P )−1(z − x̄) + x̄; because P0(P0 + P )−1(P0 + P )P −1
0 = I

The covariance is given by (see 1.4.14-18):

cov(x̂
MAP

) = Pxx − PxzP −1
zz Pzx

= P0 − P0(P + P0)−1P0

You could also compute the covariance starting from the definition:

cov(x̂
MAP

) = E
[
(x̂

MAP
− E[x̂

MAP
])(x̂

MAP
− E[x̂

MAP
])T
]

From the expression of x̂
MAP

, we know that E[x̂
MAP

] = x̄.
So x̂

MAP
−E[x̂

MAP
] = P0(P0+P )−1(z−x̄). Using this expression in the covari-

ance computation expression, and doing some simple algebraic manipulation,
you should arrive at the same solution for the covariance given above.
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Exercise 3
The model for a vehicle moving at a constant speed is yi = vti + ei. The
position is measured as a function of time as shown in the Table below:

Time 0 1 2 3 4 10 12 18
Distance 4.71 9 15 19 20 45 55 78

The noise ei are such that E[e2
i ] = Ri = 0.98−i. Use the batch least square

method to estimate the velocity. (Write a Matlab script)

Solution Exercise 3
The observation model yi = vti +ei can be written as in the lecture textbook:

z(i) = H(i)x + w(i)

According to (3.4.1-9, page 130 textbook), the solution of the batch least
square estimate is given by:

x̂(k) =
[
Hk′(Rk)−1Hk

]−1
Hk′(Rk)−1zk

This can be computed using the following matlab script:
%% Batch LS Estimator .
time = [0 1 2 3 4 10 12 18] ’; H = time;
Dist = [4.71 9 15 19 20 45 55 78] ’; z = Dist;
invR = diag (0.9.^(7: -1:0) );
% The estimate of the speed.
v_batch = (H’* invR*H)^-1*H’* invR*z;

Exercise 4
Use the recursive least square method to estimate the velocity in the above
problem. (Write a Matlab script)

Solution Exercise 4
The recursive least square algorithm is given in lecture slide 2b and in the
textbook (page 132 to 134). The following matlab script compute the recur-
sive least square solution:
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%% Recursive LS Estimator
P = 1e6; % Initial covariance .
v_recursive = 0; % First estimate .
v_recursive_plot = zeros (1 ,8);
P_vector = zeros (1 ,8);
% LS estimator algorithm
for i = 1:8

S = H(i ,:)*P*H(i ,:) ’ + inv(invR(i,i));
W = P*H(i ,:) ’*S^-1;
P = P - W*S*W’;
P_vector (i) = P;
v_recursive = v_recursive + W*(z(i)-H(i ,:)* v_recursive );
% Recursive speed estimation each recursion
v_recursive_plot (i) = v_recursive ;

end

Figure 1 shows the comparison of the two different techniques to compute
the LS estimator. In the recursive algorithm, the information at instant
k + 1 equals the sum of the information at k and the new information about
x obtained from new measurement z(k + 1).

Notice that the LS estimate x̂ values from both algorithms become similar
at the last time instant. Also, the recursive algorithm requires an initial
value of the x̂ and covariance matrix P . In this case, we selected x̂init = 0
with P = 1.0 × 106. Setting a high initial covariance (of the LS estimate)
means that our initial value is just a guess and might not be accurate. The
big initial covariance will help the algorithm to converge quickly to the first
measurement.
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Figure 1: Top: Comparison of Batch and Recursive LS estimators. Bot-
tom: Illustration of how the covariance evolves as the LS estimator does the
estimation.
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