
ELEC-E8116  Model-based control 
systems (5 cr. )

Kai Zenger, TuAs 3574,  kai.zenger(at)aalto.fi
Lectures on Wednesdays at 12.15 – 14.00  hall T3 (C206), Computer 
building (T-house). 

Amin Modabberian, TuAs, 3571, amin.modabberian(at)aalto.fi
Exercises on Thursdays at 14.15 – 16.00  TU4 (1174-1176), TuAs
building

Books (related to course topics) :
1. Glad, Ljung:  Control Theory, (multivariable and

nonlinear methods), Taylor and Francis, 2000.  Textbook of the course.
2. Skogestad, Postlethwaite: Multivariable Feedback Control, 

(Analysis and Design), Wiley, 2005.
3. Kirk: Optimal Control Theory, An Introduction, Dover, 2004. 
Optional: Material on model predictive control (MPC) 
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Passing the course
• Two intermediate exams or one full exam are needed to pass the 

course.  The intermediate exams have 3 problems each, max 15+15 = 
30 points.  The full exam has five problems, max. 30 points altogether.

• First intermediate exam on Thursday 19.10.2023, 14:00-16:00.  The 
second intermediate exam on Thursday 7.12.2023, 14:00-16:00.  
Intermediate exams cannot be repeated.  The first full exam is on 
Tuesday, 12.12.2023, 13:00 – 16:00.  You can participate to all above
exams without separate registration (the registration to the course is 
sufficient).  To all later exams you have to register (next: 8.1.2024). 

• Six homework problems are given during the course. You must do
and leave for evaluation at least three homework problems.  
However, to get more homework points it is reasonable to do as many
homework exercises as possible, preferably them all. The homework
results are scaled to give a maximum of 6 points to be added to the 
exam result.    The final grade is determined based on the sum of two
intermediate exams (or full exam) and the homework points. The grade
evaluation is done based on 0-36 points.  18 points is always enough to 
pass.



• The lectures and exercise hours are arranged in classroom.    
The course information is given in MyCourses regularly.

• Note that there are regular lectures and exercise hours in the 
course.  Homework problems are published separately in 
MyCourses (Assignments).  They must be done and returned in 
MyCourses according to a given time-table. Help to the 
homework problems can be received by contacting the assistant 
or lecturer.

• The homework points and intermediate exam results remain 
valid, until the course lectures start again (Fall 2024).  The 
exercises discussed in the exercise hours are not evaluated (no 
grading).

• Lecture slides and problems with solutions appear on the course 
pages in the MyCourses portal. 

• Use the Sisu system to register yourself to the course.  It is not 
necessary to register to the exams 19.10, 7.12 and 12.12.  You 
must however register to the next full exams after that. (E.g. the 
full exam in January 2024).



- Firm knowledge of basic control theory of continuous

time systems (e.g. ELEC-C1230 Control Engineering).

- A knowledge on digital control is desirable, but not absolutely
necessary (e.g. ELEC-E8101 Digital and Optimal control).

- If you have not studied optimal control at all (LQ theory), you
have to study a bit harder here.

Prerequisites to the course
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Main idea of the course

• Classical control theory: SISO-systems, linear or 
linearized system models

• Extension to multivariable (MIMO) systems

• Performance and limitations of control

• Uncertainty and robustness,

• IMC-control,

• LQ and LQG control

• Optimal control

• Introduction to Model Predictive Control
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Basics....

• Basics in continuous control theory, e.g. Dorf, Bishop: 
”Modern Control Systems”.

• Basics in discrete time control theory,
e.g. Åström, Wittenmark: ”Computer-Controlled
Systems, theory and design”, Franklin, Powell, 
Workman: ”Digital Control of Dynamic Systems”.

• one more book about control:
(Glad, Ljung:  Control Theory)

• Wang: Model Predictive Control System Design and 
Implementation Using MATLAB



More books on Model Predictive Control 
(MPC)

• Maciejowski, J.M.: Predictive Control with 
Constraints, Pearson Education, 2002. (well-
known, much used book by engineers).

• Rawlings, J. B., Mayne, D. Q., Diehl, M. M.: 
Model Predictive Control: Theory, Computation, 
and Design, 2. Ed., free availability in Internet. 
(well-known and used by scientists, hard stuff).
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Example 1
Multivariable system:
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Two inputs,  two outputs.  General multivariable system.
MIMO = multiple inputs, multiple outputs
Interconnections between the two loops
”Pairing problem”
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The result is as good as expected.
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The good response is lost, when both controllers are
operating, Reason?   Interconnections?  Analysis?
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But we can always change the pairing
(control 1 – output 2), (control 2 – output1) 
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This leads to the transfer function (ref. 1 – output1):
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In order to be stable, the coefficients in the denominator
must be positive; K1 or K2 must be negative.

Difficult to tune.
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Analysis will later show that the difficulties are because
the system has a RHP-zero (zero in the right half plane).
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Example 2
Control signal limitations

Double integrator )()( tuty 
1)( tuin which the control is limited as
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Cross-over frequency 3 rad/s, phase margin 55 degrees.
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The output deteriorates clearly because of the control signal
limitation.
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The control problem

”Given a system S and measurements y.  Determine a 
control u such that the controlled variable z follows
the reference (set point) r  as close as possible irrespective
of process disturbances w and measurement disturbances n.”
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In order to design the controller (R), the system (S) and
disturbances w must be described (modelling, 
identification).

On the other hand, there must be different design methods
and approaches for different model classes
(continuous/discrete, SISO/MIMO, linear/nonlinear).

Modeling, classification of models, and analysis and 
synthesis methods of a wide application area are needed.



18

System
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causal/non-causal, static/dynamic,
continuous/discrete, SISO/MIMO, time-invariant/time-
varying, linear/nonlinear.
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”The regulator must be such that it compensates
measurable disturbances, and the effect of non-
measurable disturbances is as small as possible.”
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Signal and system ”sizes”

If the signal z is a n-dimensional vector, its ”size”
at time t can be defined as the Euclidean vector norm
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The size of the whole signal can be measured e.g. by
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Gain:

The matrix equation

Axy 
can be understood as a system,
in which the matrix A maps
the input x to the output y.

The operator (or matrix) A norm is defined as the largest
possible gain, as x changes
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More generally: consider the system S
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The  gain of the system is defined as
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in which u covers all possible signals with a finite
2-norm.  The gain can be infinite, too.  

For a cascade connection of systems

2121 )( SSSS 
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Ex. ))(()( tufty  static nonlinear system

in which xKxf )(

and where the equality holds for some *xx 

We obtain
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The gain is then smaller or equal to K.  But choose
*)( xtu  so that the gain is K.
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Ex.  Integrator

Consider the system 
t
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and choose the input
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which has the 2-norm equal to 1.  The output is identically
1, when 1t

The 2-norm is infinite and the gain of the integrator is thus
infinite.
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Ex.  Linear SISO system

)()()(  iUiGiY 

By Parseval’s equation it follows
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Then it follows
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The gain is smaller or equal to K and in fact
this value can be approached arbitrarily close.  The
gain is then
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which is denoted as G (H-infinity norm)

The system norm is the same as
the matrix norm of )( iG
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Stability and the ”Small Gain Theorem”

The system is called input-output stable
(BIBO-stable), if it has a finite gain.

+

+

+

+

S1

S2

r1 e1 y1

r2e2y2

Inputs:  r1, r2 Outputs:  e1, e2, y1, y2
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”Small Gain Theorem”:  The closed loop system is 
BIBO
stable, if the product of the system gains is smaller
than1.
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If S1 and S2 are linear, a weaker condition follows
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”Proof”:  Writing the system equations
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gives by the triangle inequality

 112211 eSrSre 

and

12

221
1 1 SS

rSr
e






The gain from r1 and r2 to the output e1 is finite.
Other cases correspondingly.

Obs.  It does not matter, whether the feedbacks are positive
or negative (the norms of S and –S are the same).

The result is ”conservative” ?
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Ex.  Nonlinear static feedback
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If K < 2.5 the system is
stable for sure
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Slope is K
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It was discussed....

• Introduction of the course

• Example of a multivariable system; analysis is 
difficult by classical SISO methods

• Example of a nonlinear system; analysis difficult

• General system models

• Signal and system norms

• Small Gain Theorem


