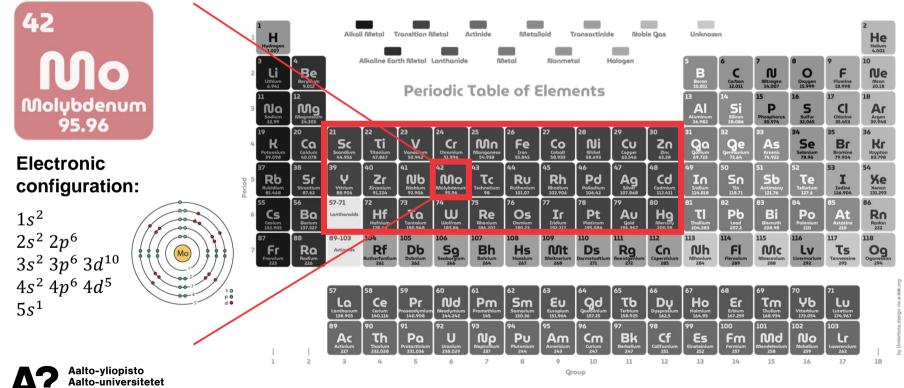

Molybdenum

Maryam Jafari Saara Siekkinen 25.9.2023

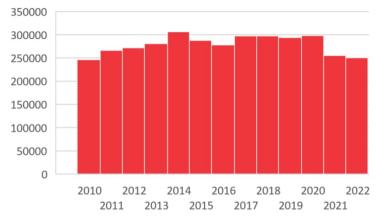

Aalto-yliopisto Aalto-universitetet Aalto University

Molybdenum in the Periodic Table

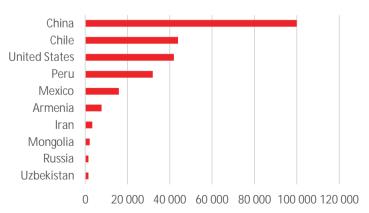
Aalto-universite
 Aalto University

Discovery Q

- The name is based on Ancient Greek, "Molybdos", meaning lead-like
- First Discovered by Carl Welhelm Scheele, a Swedish chemist, in 1778
- Molybdenum was isolated by Peter Jacob Hjelm in 1781


Aalto University Lide, David R., ed. (1994). "Molybdenum". CRC Handbook of Chemistry and Physics. Lepora N (2007) The Elements: Molybdenum. New York, USA; Marshall Cavendish. ISBN: 0761422013

Production


- Other elements are combined with Molybdenum in nature
- Most common form is MoS₂
- Usually found with sulfide minerals, notably Cu
- Mo mines are classified based on minerals in ore body:
 - Primary mines
 - By-product
 - Co-product mines

Top 10 Mo Producers

Properties of Molybdenum

42 Nolubdenum 95.96

SS0

- Not found as a free metal, usually in minerals
- An essential trace element (co-factor)

• Metal alloys:

- Strenght
- Acid resistance

Aalto-yliopisto Aalto-universitetet Aalto University •Electronegativity 2.16

Chemical

properties

- •Oxidation states:
- -4, -2, -1, 0, +1, +2, +3, +4, +5, +6
- •Low solubility in water, except Mo04²⁻

 Melting point 2623 °C (6th highest)

Physical

properties

- •Boiling point 4639 °C
- •Density 10,28 g/cm³
- High thermal and electrical conductivity

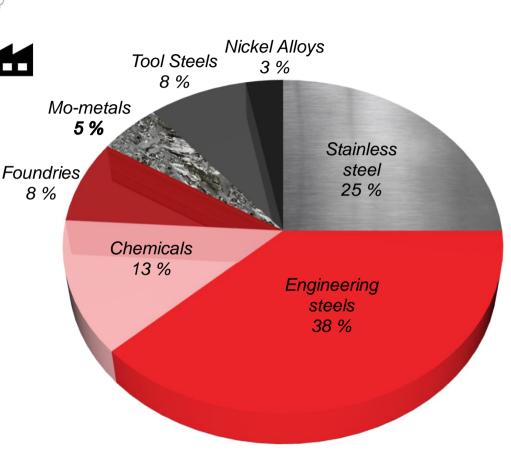
Isotopes

- •Mo-98 most abundant isotope
- •Mo-99, fission product

 Octahedral or tetrahedral

<u>0°C</u>

 Complexes with anionic species

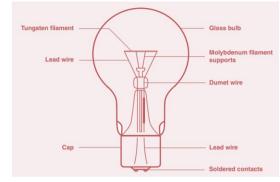

Geometry

→ Colorful solutions (ascorbic acid)

SS0 https://woelen.homescience.net/science/chem/exps/colorfulmolybdenum/index.html Siekkinen Saara; 2023-09-23T18:27:04.347

Application

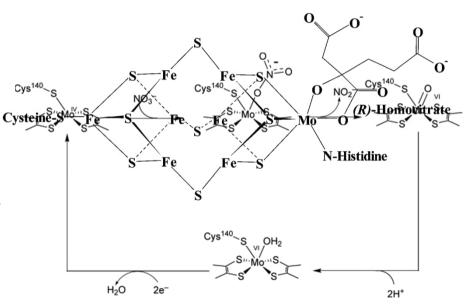
- Steel and Alloys
- Chemical Industry
- Electrical and Electronic
- Medicine
- Agriculture



The First Mo Application

- Incandecent lighting (1940)
- Ideal to glass-to-metal seals
- Can be used in high intensity lamps and as a reflector
 - High-temperature strength, mechanical stability, resistance to corrosion and low thermal expansion
 - Maintain the strength and stability up to 1900 °C
- Today we mainly use compact fluorescent lamps (CFL) and light-emitting diode (LED) lamps
 - Nowadays: support wire and glass feed-throughs in halogen lamps and as mandrel wire

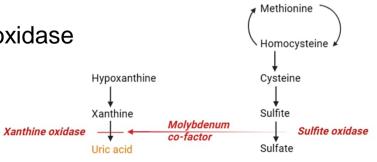
Molybdenum in Plants


- Molybdenum act as an electron carrier in enzymes
- Essential in plant enzymes
 - Nitrogenase: Enzymes in bacteria that reduce N₂ to NH₃ → nitrogen fixation

 $N_2 + 8e^- + 8H^+ \rightarrow 2NH_3$

 Nitrate Reductase: molybdoenzymes that reduce nitrate (NO₃⁻) to nitrite (NO₂⁻)

$$NO_3^- + 2H_2O + 2e^- \rightarrow NO_2^- + H_2O + OH^-$$

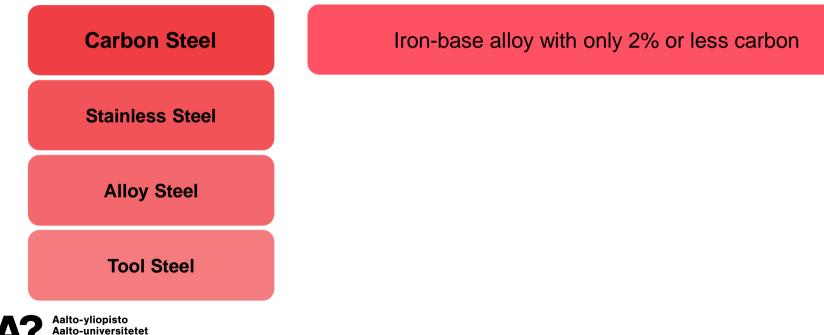


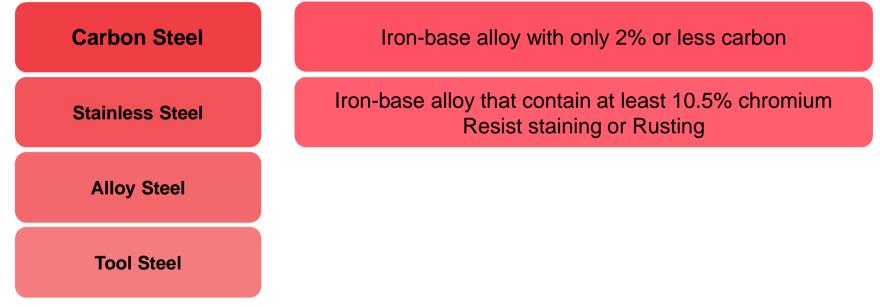
Reedijk, Jan, and Kenneth R. Poeppelmeier. "Comprehensive inorganic chemistry II: from elements to applications." (2013).

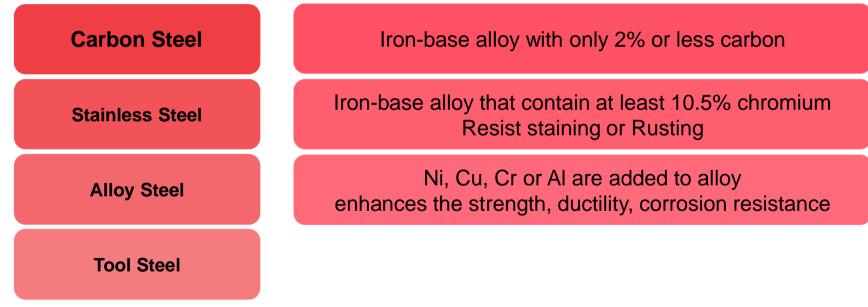
Molybdenum in Humans


- Molybdenum act as an electron carrier in enzymes
- Essential in human enzymes:
 - Needed for metabolism of sulfur amino acids
 - Sulfite Oxidase: Mo as co-factor, detoxification, catalyzes oxidation of sulfite (SO₃²⁻) to sulfate (SO₄²⁻)
 - Aldehyde oxidase: Mo as co-factor, catalyzes the hydroxylation of some heterocycles, drug metabolism
 - Xanthine oxidase: Mo as co-factor, generates reactive oxygen species, uric acid formation
- MoCo dependent on xanthine and aldehyde oxidase
- Deficiency causes neurological symptoms

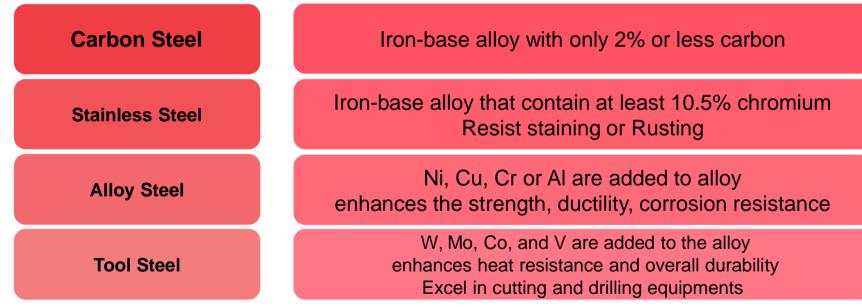
Aalto-yliopisto Aalto-universitetet Aalto University

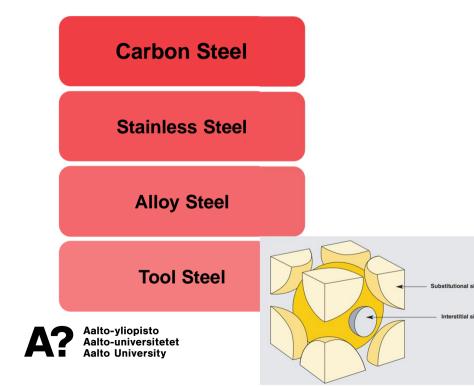



- SS0 https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/aldehyde-oxidase Siekkinen Saara; 2023-09-23T14:42:55.818
- SS1 https://www.youtube.com/watch?v=-7Hez86w7-I Siekkinen Saara; 2023-09-23T14:47:22.236



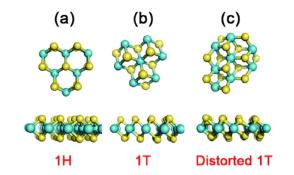
Aalto Universitv

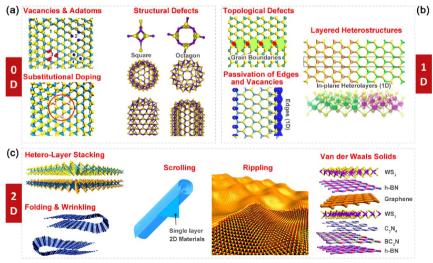




Mo in **Strigdstate**el

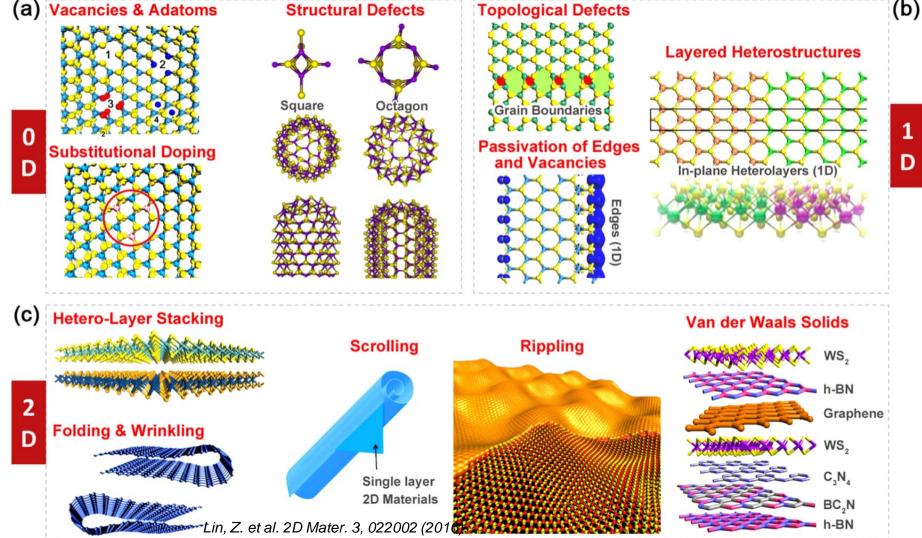
Carbon Steel	 Divided into 2 classes: corrosion-resistant alloys: resistance to nonoxidizing 	
Stainless Steel	 environments such as the halide acids and sulfuric acid high temperature alloy: impart resistance to damage caused by high temperature creep. Solid-solution strengthened: As molybdenum diffuses very slowly in nickel and high temperature creep is generally diffusion controlled, adding of molybdenum can reduce creep rates. Age-hardanable: This alloys utilize the precipitation of gamma-prime and molybdenum additions strengthen the matrix and reduce 	
Alloy Steel		
Tool Steel	the lattice mismatch between the matrix and the gamma-prime particles.	


Mo in Steel

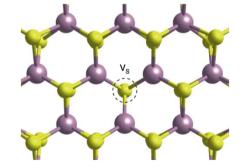

	Мо	Min. 99.95–99.97 Mo (depending on the producer)	Constitutes the majority of Mo metal products: furnace and glass melting components, power semiconductor heat sinks, sputtering targets used to manufacture thin films in flat-panel displays and thin-film solar cells, powders spray-dried with either organic binders for high-speed pressing, or ADM for thermal spray applications			
		Alloys				
	Substitutional alloys					
	Mo-W	10–50 W	Equipment for handling molten Zn, glass stirrers			
	Mo-Re	3 Re, 5 Re, 41-47.5 Re	Thermocouples (low Re) and applications requiring low-temperature ductility (high Re)			
	Мо-Та	10.7 Ta	Thin films in touch-screen displays			
	Mo-Nb	3.0-9.7 Nb	Thin films in touch-screen displays			
	Carbide-stabilized alloys					
	TZM	0.5 Ti-0.08 Zr-0.03 C	Isothermal forging dies, injection molding tooling, metalworking tools, X-ray targets			
	MHC	1.2 Hf-0.08 C	Extrusion dies, metalworking tools			
		Dispersion-strengthened alloys				
	Mo-La ₂ O ₃	0.43-1.20 La, 0.075-0.21 O	Furnace heating elements, sintering boats, lamp components			
	Mo-ZrO ₂	1.24 Zr, 0.43 0	Glass-melting furnace components			
	Mo-Y ₂ O ₃ -Ce ₂ O ₃	0.37-0.43 Y, 0-0.06 Ce, 0.11-0.12 0	Halogen lamp components, evaporation boats			
	K/Si doped	0.01–0.07 Si, 0.005–0.03 K, 0.01–0.07 O	Lamp components, heating elements			
	Composite materials					
	Laminates					
	Cu-Mo-Cu	Various Cu/Mo ratios possible; typically between 13% and 25% Cu thickness per side	Heat sinks for semiconductors and integrated circuits			
	Mo-Ni	Typically 5% Ni thickness bonded to one side	Power semiconductor heat sinks			
	Powder composites					
	MoCu	15 Cu, 30 Cu	Heat sinks for power integrated circuits: hybrid vehicles, mobile telephone cell transmitters			
site	Mo-Ti	50 atomic % Ti	Sputtering targets to manufacture thin films in flat-panel displays and thin-film photovoltaic devices			
site	Mo-Na	1–3 Na	Sputtering targets to manufacture electrodes in thin-film photovoltaic devices			
	Thermal spray powders					
	Pure Mo	99.0 Mo	Piston rings, synchro rings, continuous casting & ingot molds			
	Mo-C	Up to 6 C	Piston rings, synchro rings, pump impeller shafts			
	17.8Ni-4.3Cr-1.0Si-1.0Fe-0.8B	17.8 Ni-4.3 Cr-1.0 Si-1.0 Fe-0.8 B	Piston rings, synchro rings			

Defects in Transition Metal Dichalcogenide

- Two possible structures for monolayer of MX₂ (M= Mo, W, X=S,Se)
 - the semiconducting trigonal prismatic phase: 1H phase
 - the metallic octahedral prismatic phase: 1T phase
 - In some cases, the 1T phase is not thermodynamically stable, and the structure 1T' can be observed instead
- Defects in 2D crystals can be classified based on their dimensionality:
 - Zero-dimensional (point defects)
 - One-dimensional (grain boundaries)
 - Two-dimensional



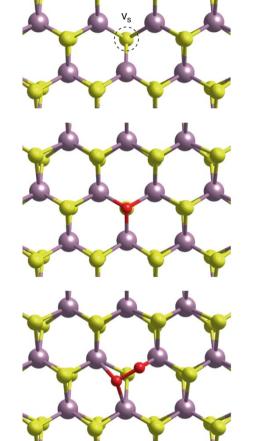
Chalcogen atoms are shown in yellow, and transition metal atoms are shown in blue $% \left({{\left[{{{\rm{s}}_{\rm{s}}} \right]}_{\rm{s}}} \right)$


Aalto-yliopisto Aalto-universitetet Aalto University

Lin, Z. et al. 2D Mater. 3, 022002 (2016).

MoS₂ **Defects**

- Chalcogen defect in metal dichalcogenide result in low performance in electronic devices
- Defects can affect the physical properties.
- Creating tailored applications by using defects
- Defect engineering via chemical doping:
 - After the growth of 2D material
 - During the growth of 2D material
 - Doping during the growth of the material result in dopant atom be covalently bonded to the crystalline lattice making it more resilient to harsher environments
 - Covalently bonded oxygen can be used to passivate native chalcogen monovacancies

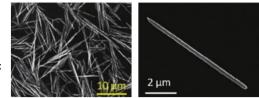


Das, S., Elías, A.L. Leaving defects out of 2D molybdenum disulfide. Nat Electron 5, 19–20 (2022).

Engineering MoS₂ Defects

- High density of chalcogen vacancies prevents the formation of ohmic contacts at the metal/semiconductor interfaces and lead to
 - High contact resistance
 - Scattering sources
 - Reduced carrier mobility
 - Unintentional doping
- An oxygen-incorporated chemical vapor deposition technique was used
 - passivates sulfur vacancies
 - Suppress the formation of donor states in MoS₂
- This was achieved due to the formation of Mo-O bonding at the vacancy sites.
- Contact Resistance was lowered to 1 kΩ µm.

Aalto-yliopisto Aalto-universitetet Aalto University


Das, S., Elías, A.L. Leaving defects out of 2D molybdenum disulfide. Nat Electron 5, 19–20 (2022).

Assembly and Fabrication of MoS₂ **Nanostructures** CVD and hydrothermal growth

- Superior electronic properties
- Highly promising material for (opto)electonics, catalysis, energy storage, water treatment and gas sensing or biochemical sensoring
- High research in transition metal dichalcogenides (TMD)
 - Single crystal MoS₂ nanoflakes possess edge sites and in plane sulfur vacancies outstanding catalytic activity
 - Semi-conductor \rightarrow electric conductivity can be tuned

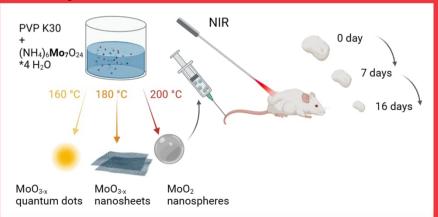
alto-vliopisto alto-universitetet

- Thin films have been synthesized via
- Tubular or core-shell nanotructures can be grown via catalyzed transport reaction
 - Demand of controlled fabrication of nanostructures
- Synthesized MoS₂ show high thermal stability and no morphological changes can be observed even after several high temperature treatments
- Nanoribbons can be fixed on the substrate upon UV light exposure
 - High accuracy in position and angle
 - Assembly of MoS₂ device
 - Can be used in new applications

Huang Yun "Scalable Fabrication of Molybdenum Disulfide Nanostructures and their assembly." (2020)

Mo Future Application • in Cancer Therapy

- Transition metal oxides: MoO₂ and MoO₃
 - Unique, localized surface plasmon resonance effects (SPR) → adducts for photothermal cancer therapy
 - Function via modulation/exchange of multiple intervalence charge-transfer via chemical alterations
 - Great absorption and photoconversion properties in NIR region → photothermal/photoablation therapy


Aalto-yliopisto therap Aalto-universitetet applic Aalto University future

Dhas Namdev "Molybdenum-based hetero-nanocomposites for cancer therapy, diagnosis and biosensing application: Current advancement and future breakthroughs." (2021).

Transition metal dichalcogenides: consist of MoS₂

- Can be characterized as 2-D or 3-D nanomaterial → medical application, imaging probes
- Excellent electrical properties, conductivity and biocompatibility, superior chargedensity-wave transition
- Inserting Mo sheets between sulfur sheets

 → nanotructures have ability to get in cells
 via endosomal uptake → drug delivery
 system

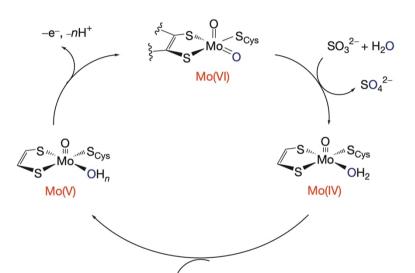
THANK YOU!fImage: Constraint of the second secon

aalto.fi

Mo in Carbon Steel

Carbon Steel	 Improve hardenability of carbon steels Mo₂C nano-sized particles contributes to secondary hardening The secondary hardening effect of molybdenum during tempering adds to the solute effect retaining part of the dislocation density. an important function of molybdenum in high-speed steels It also allows achieving the desired strength level at reduced carbon equivalent and improving weldability. Anti-embrittlement effects of Molybdenum: Temper embrittlement may occur when steels are slowly cooled after
Stainless Steel	
Alloy Steel	
Tool Steel	tempering through the temperature range between 450 and 550°C

Mo in Stainless Steel


Carbon Steel	
Stainless Steel	 Increases corrosion resistance Used in chemical processing plant or marine applications increases the elevated temperature strength of stainless steels through
Alloy Steel	 solid solution hardening Used in heat exchangers and other elevated temperature equipment such as in automotive exhaust systems
Tool Steel	
Acite uliquists	

Mo in Alloy Steel

Carbon Steel	 Divided into 2 classes: corrosion-resistant alloys: resistance to nonoxidizing environments such as the halide acids and sulfuric acid high temperature alloy: impart resistance to damage caused by high temperature creep. solid-solution strengthened: As molybdenum diffuses very slowly in 		
Stainless Steel			
Alloy Steel	 additions of molybdenum are quite effective in reducing creep rates. age-hardanable: This alloys utilize the precipitation of gamma-prime and molybdenum additions strengthen the matrix and reduce the 		
Tool Steel	lattice mismatch between the matrix and the gamma-prime particles.		

-e-

Aalto-yliopisto Aalto-universitetet Aalto University