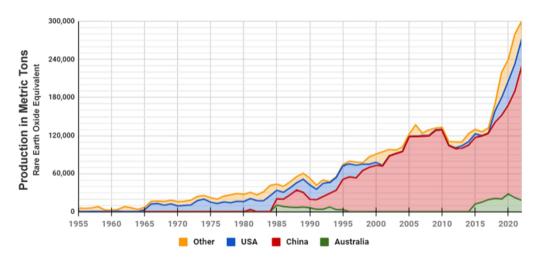
Neodymium

Chemistry of the Elements 04.10.2023

Tomoki Nakayama Patrick Wiesenfeldt

Aalto-yliopisto Aalto-universitetet Aalto University

https://www.luciteria.com/elements-for-sale/buy-neodymium-metal


Discovery

- Nd is a rare earth metal discovered in 1885 by Baron Carl Auer von Welsbach.
- He separated a mineral called didymium into two new distinct elemental salts, one of which contained neodymium.
- Greek words, neos "new," and didymos "twin."
- The principal ores : bastnasite and monazite.
- Pure neodymium metal was not isolated until 1925.

World Production

History of rare earth element production

- Historically, a mine in California produced most of the world's rare earth minerals
- Since early 90s, China has become the world's primary source
- Today China supplies
 70% of the world's REEs

Abundance

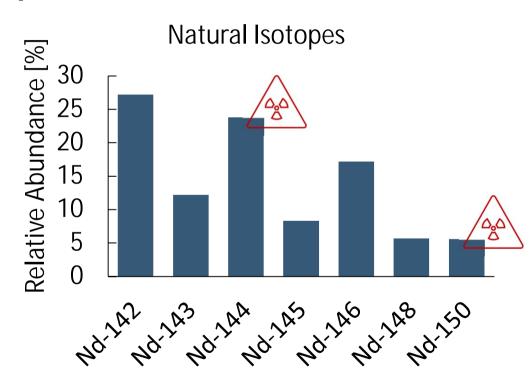
- 28th most abundant element in the earth crust.
- Very difficult to mine because it is unusual to find them in concentrations high enough for extraction.
- 2nd most abundant element in the REEs.
- In terms of reserves, China has the most, followed by Vietnam, Brazil, and Russia.

World Mine Production and Reserves (2022 Estimates)				
Country	Production (Metric Tons)	Reserves (Metric Tons)		
United States	43,000	2,300,000		
Australia	18,000	4,200,000		
Brazil	80	21,000,000		
Burma	12,000	not available		
Canada		830,000		
China	210,000	44,000,000		
Greenland		1,500,000		
India	2,900	6,900,000		
Madagascar	960	not available		
Russia	2,600	21,000,000		
South Africa		790,000		
Tanzania		890,000		
Thailand	7,100	not available		
Vietnam	4,300	22,000,000		
Other Countries	80	280,000		
World total (rounded)	300,000	130,000,000		

Element	Symbol	Atomic number	Crustal abundance				
Light REEs							
Lanthanum	La	57	39				
Cerium	Ce	58	66.5				
Praseodymium	Pr	59	9.2				
Neodymium	Nd	60	41.5				
Samarium	Sm	62	7.05				
Europium	Eu	63	2.0				
Gadolinium	Gd	64	6.2				
	Heavy	REEs					
Terbium	Tb	65	1.2				
Dysprosium	Dy	66	5.2				
Holmium	Но	67	1.3				
Erbium	Er	68	3.5				
Thulium	Tm	69	0.52				
Ytterbium	Yb	70	3.2				
Lutetium	Lu	71	0.8				
Yttrium	Y	39	33				

PERIODIC TABLE OF ELEMENTS

Chemical Group Block



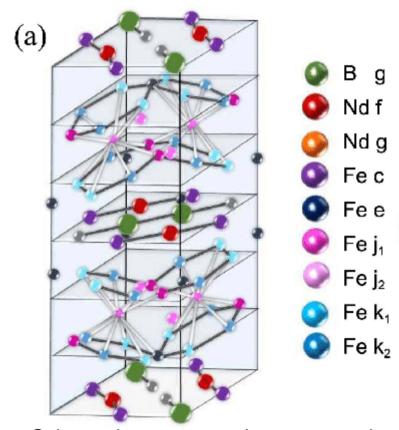
Physical Properties

Melting Point	1024 °C	
Boiling Point	3080 °C	
Density	7.01 g/cm ³	

Chemical Properties

- Oxidation states: +II, +III, +IV
- Readily reacts with oxygen
- Electronegativity (Pauling): 1,14

Nd₂Fe₁₄B


Powerful and widely used type of permanent magnet alloy

Property

- High Magnetic Strength
- Temperature Stability

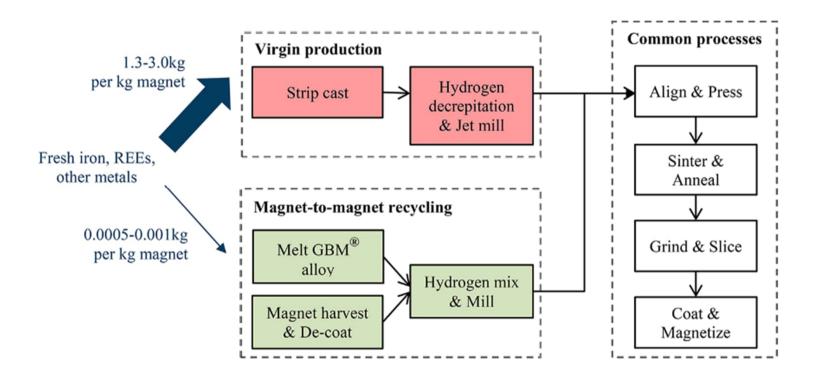
Applications

- Hard Disk Drives
- Electric Vehicle Motors
- Speakers and Headphones

Schematic representation tetragonal unit cell of Nd₂Fe₁₄B (P42/mnm space group)

Neodymium-Iron-Boron Magnet-to-Magnet Recycling

Rare earth elements (REEs), which are the key materials for creating NdFeB magnets, have been subject to significant supply uncertainty in the past decade.



Magnet-to-Magnet Recycling

Advantage

- 1)Minimize waste and resource exhaustion
- 2)The use of mechanical processes reduces the use of chemicals and harmful emissions

Process flows for NdFeB magnet virgin production and magnet-to-magnet recycling

Properties of Virgin and Recycled NdFeB Magnets

parameters (unit)	virgin magnet	recycled magnet
$B_r(T)$	1.2	1.3
BHc (kOe)	11.5	12.6
IHc (kOe)	19.0	>20.0
BH _{max} (MGOe)	34.0	40.7
operating temperature (°C)	180	180

Both are suitable for high temperature applications such as electric vehicles (EVs), offer similar performance, and thus can be used interchangeably.

Life Cycle Impacts of Producing 1 kg of NdFeB Magnet through Magnet-to-Magnet Recycling

impact category	unit	virgin, China	virgin, U.S.	recycled, China	recycled, U.S.
ozone depletion	mg CFC-11 eq	12-29	13-30	0.4-0.9	0.6-1.3
global warming	kg CO ₂ eq	94-222	88-207	25-56	18-41
smog	kg O ₃ eq	9-21	8-19	2-4	1-2
acidification	kg SO ₂ eq	0.8-1.7	0.8-1.6	0.4-0.6	0.3-0.5
eutrophication	kg N eq	1.0-2.4	1.0-2.4	0.1	0.1-0.2
carcinogenics	CTUh	$4.5 \times 10^{-06} - 1.0 \times 10^{-05}$	$4.8 \times 10^{-06} - 1.1 \times 10^{-05}$	$6.4 \times 10^{-07} - 1.3 \times 10^{-06}$	$9.7 \times 10^{-7} - 2.0 \times 10^{-6}$
non carcinogenics	CTUh	$2.6 \times 10^{-05} - 5.7 \times 10^{-05}$	$2.6 \times 10^{-05} - 5.8 \times 10^{-05}$	$6.7 \times 10^{-06} - 1.1 \times 10^{-05}$	$7.2 \times 10^{-6} - 1.2 \times 10^{-5}$
respiratory effects	kg PM _{2.5} eq	0.2-0.4	0.2-0.3	0.04-0.06	0.02-0.03
ecotoxicity	CTUe	646-1,430	643-1,422	188-327	184-320
fossil fuel depletion	MJ surplus	101-240	113-267	5-10	18-39

Magnet-to-magnet recycling significantly reduces the environmental footprint of NdFeB magnet production, because it minimizes the use of fresh rare earths.

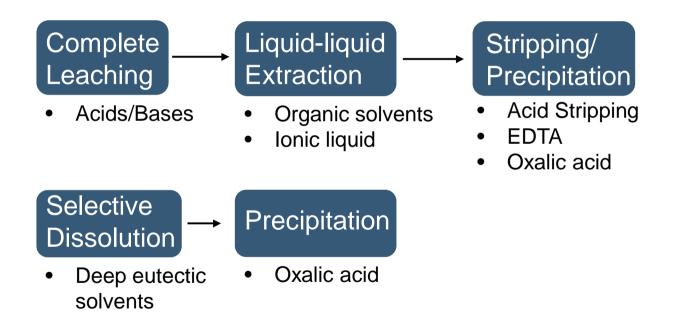
Recovery of Neodymium

Hydrometallurgy

Electrochemistry

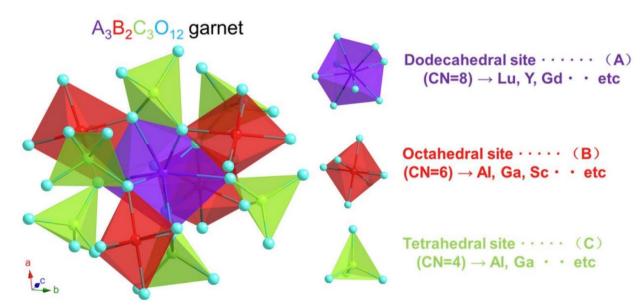
Gas-phase extraction

Membrane Separation


Biological Extraction

Pyrometallurgy

- High processing capacity
- Low cost
- Big environmental impact


Recovery of Neodymium

Nd:YAG Laser

Neodymium-doped yttrium aluminum garnet (Nd:Y₃Al₅O₁₂)

Nd:YAG Laser

- Cutting
- Drilling
- Many more

- Skin treatment
- Ophthalmology
- Surgery

Rangefinders

Thank you!

Any questions or comments?

