

A Presentation on Uranium(U)

By: Ashish Singh & Miikka Viirto 4th October 2023

Slide 1

History and Discovery

9

0

Physicochemical properties

Production

Application

Storage and Handling

History of Uranium :

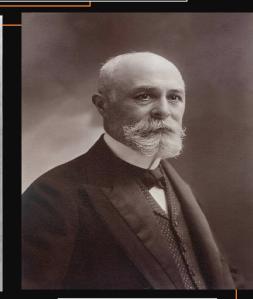
- Natural uranium oxide can be traced back to the Roman Empire; it was used to add yellow color to ceramic (AD 79)
- Also used as a coloring agent in the glass industry in the Middle Ages
- In the early 19th century, the known old source was the Habsburg silver mines (Czech Republic)
- One of the largest producers of Uranium was Germany (SDAG), which was shut down by the end of the Cold War

Discovery

This element was discovered by Prof. Martin Heinrich Klaporth (German) as an oxide of Uranium (1789)

He named the newly discovered metal after the planet Uranus(the Greek God of the sky)

The first sample of Uranium metal was isolated by Prof. Eugene-Melchior Peligot (French) from its oxide (1841)


Radioactivity of Uranium was discovered by Henri Becquerel (1896)

Martin Heinrich Klaproth

Eugène-Melchior Péligot

10 - 1 - 10. . Dalfah Vark Burruy & d. D. Polarismus Popier hoir. Curry D. Chim Inine -Experis an Ald C. 27. at and Come Lefton C. 16 -Nirelyfus C. To more.

Photographic plate

Henri Becquerel

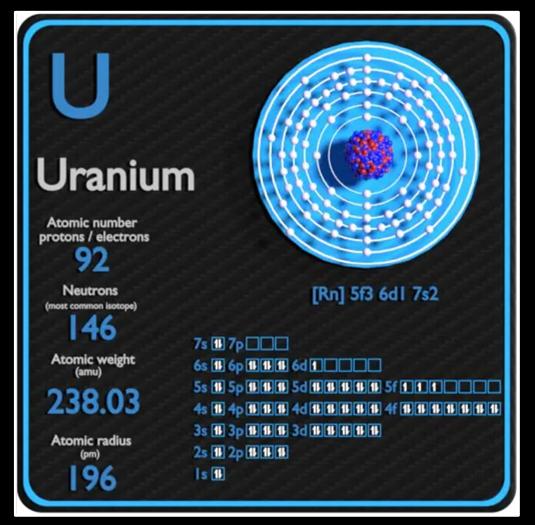
Natural abundance and occurrence

□ Uranium is a naturally occurring radioactive element with no stable isotopes.

□ There are 22 known isotopes of Uranium

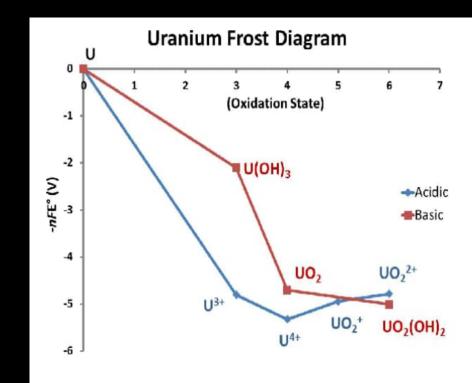
It has two highly occurring isotopes: ²³⁸U(99.3%) and ²³⁵U(0.720%) with half-life of 4.468×10⁹ and 7.04×10⁸ year

Naturally occurring Uranium is found in three isotopes: ²³⁸U,²³⁵U and ²³⁴U


Table 1. ²³⁸ U, ²³⁴ U and U-nat concentrations in water samples.								
Isotope and sample code	Sample activity	Sample salinity	Sample structure	Chemical recovery (%)	Activity (Bq.kg ⁻¹) (AQCS)	Activity (Bq.kg ⁻¹) (Obtained)	Uncertainty (Bq.kg ⁻¹) (AQCS)	Uncertainty (Bq.kg ⁻¹) (Obtained)
U-238(423)	High activity	Low salinity	Synthetic	67	0.238	0.1898	0.0012	0.0134
U-238(426)	Low activity	High salinity	Natural	22	0.026	0.02935	0.0072	0.004788
U-238(430)	Medium activity	High salinity	Synthetic	34	0.077	0.08296	0.0012	0.006541
U-238(098)	High activity	Low salinity	Synthetic	79	486	596.767	1.5	39.876
U-234(423)	High activity	Low salinity	Synthetic	67	0.239	0.1853	0.0017	0.0131
U-234(426)	Low activity	High salinity	Natural	22	0.09	0.1096	0.019	0.0125
U-234(430)	Medium activity	High salinity	Synthetic	34	0.088	0.09854	0.0017	0.007563
U-234(098) (Standard)	High activity	Low salinity	Synthetic	79	468	572.395	2.3	38.356
U-nat(423)	High activity	Low salinity	Synthetic	67	19.17*	15.26*	0.096*	1.523*
U-nat(426)	Low activity	High salinity	Natural	22	2*	2.363*	0.56*	0.4762*
U-nat(430)	Medium activity	High salinity	Synthetic	34	6.21*	6.667*	0.098*	0.733*
U-nat(098)	High activity	Low salinity	Synthetic	79	39200*	47960*	120*	4539 [*]

The natural uranium unit (U-nat) is in µg/kg.

List of Isotopes of Uranium


Elemental properties of Uranium

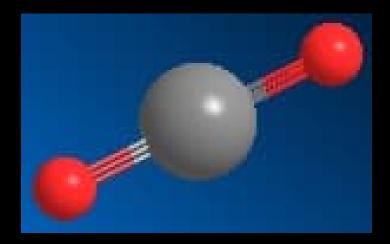
- It makes 2-4 ppm of earth's crust (naturally occurring)
- Uranium belongs to actinide elements
- It can be found in different minerals, such as carnotite, uraninite, and pitchblende (not in metallic form)
- Uranium metal can exist in three different allotropic forms: Rhombic, Tetragonal, and Bodycentered cubic

Elemental properties of Uranium

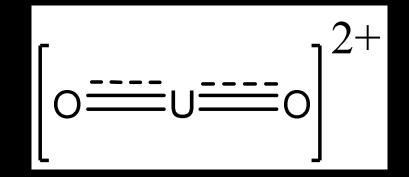
- Uranium can form solids solutions and intermetallic compounds with many of the metals
- It is auto-pyrophoric in nature so that it can burn (air, water, and oxygen)
- Uranium can exist in five oxidation states: +2, +3, +4, +5, and +6
- □It is radioactive in nature.

[Rn] 7s² 5f³ 6d¹ Uranium +IV most common

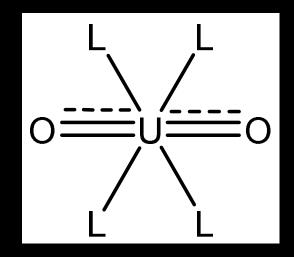
 U_2S_3, US_2

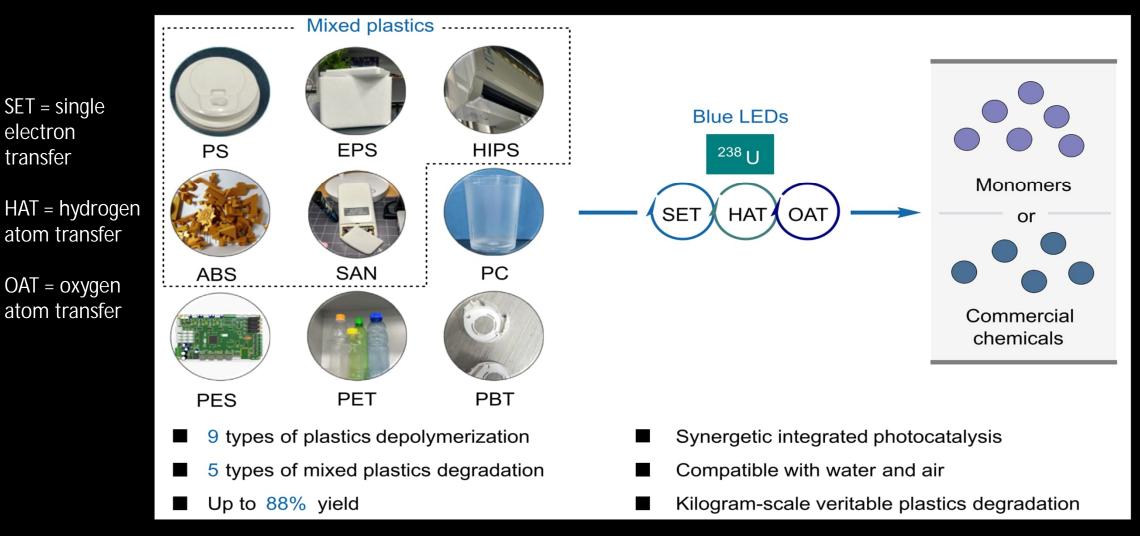

 U_3P_4

 UC,UC_2

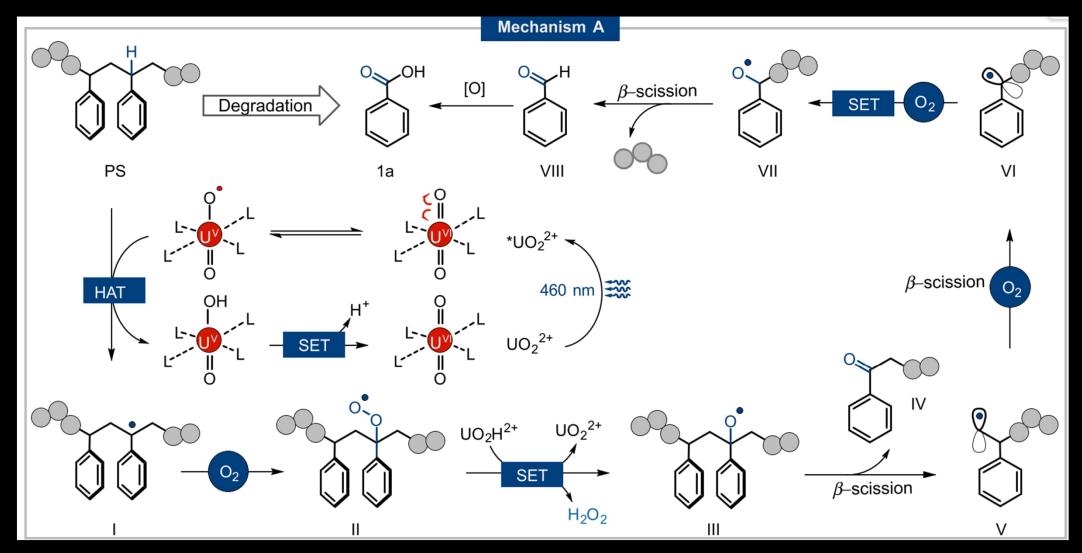

Uranium compounds

- Oxides: UO_2 , UO_3 . Nuclear fuel production, redoxing agent
- Uranates, compounds with alkali or alkaline earth metals: Li_4UO_5 . Nuclear fuel (int.)
- Uranium halides (F, CI, Br, I): UCl₃. Metallic uranium production.
 Oxidation state +3 to +6
- Uranium hydrides: UH_3 . Redoxing agent, hydrogen/deuterium/tritium separation
- Borohydrides, $U(BH_4)_4$. Studies on reactivity and surface hydrides [2]
- Nitrogen and phosphorus compounds


Advanced Inorganic Chemistry. F. Albert Cotton et.al. 6th edn. John Wiley & Sons, Chichester, 1999, [2] https://inis.iaea.org/collection/NCLCollectionStore/_Public/40/086/40086470.pdf


Uranyl UO_2^{2+}

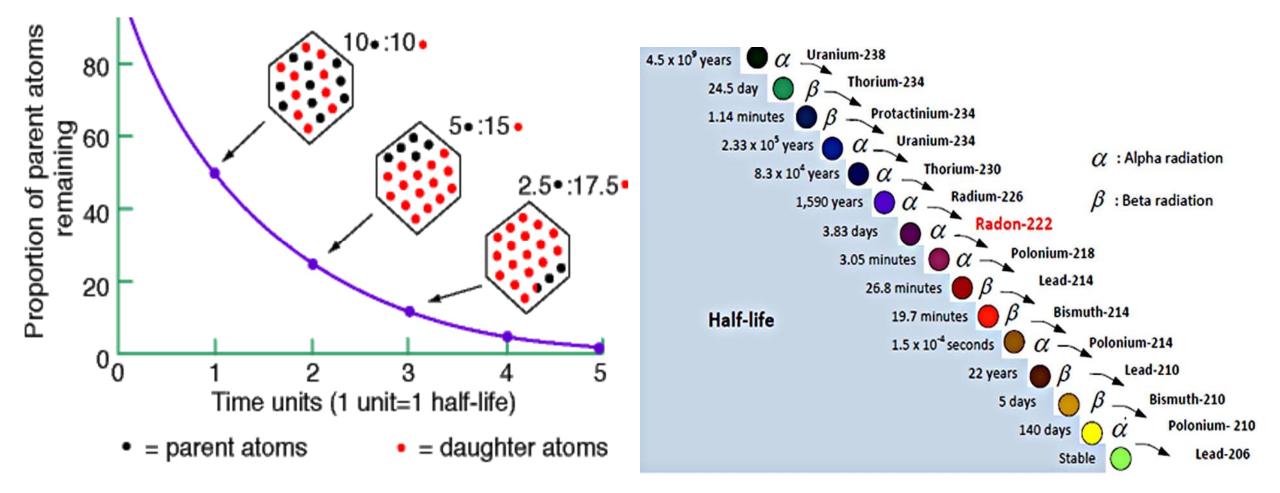
- High oxidation state: U at +6
- potential for photoredox transformations
- Broad absorption range: The absorption primarily within the blue-light region (400–480 nm)
- Uranyl complexes hold promise as candidates for photoredox catalysis in organic transformations.



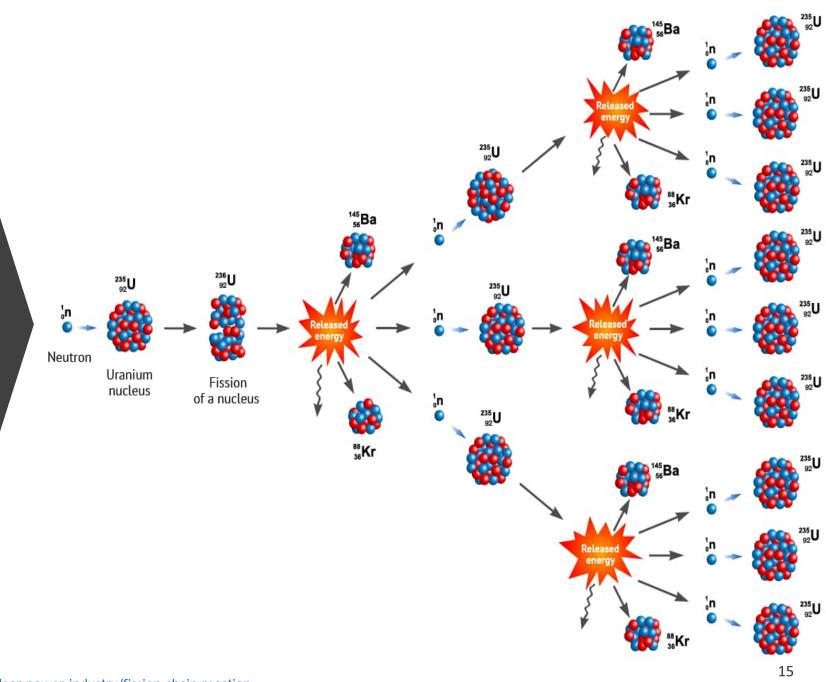
Degeneration of plastics using uranyl

transfer

Catalytic reaction of uranyl


Meng, J., Zhou, Y., Li, D., & Jiang, X. (2023). Degradation of plastic wastes to commercial chemicals and monomers under visible light. *Science Bulletin*, *68*(14), 1522–1530. https://doi.org/10.1016/j.scib.2023.06.024

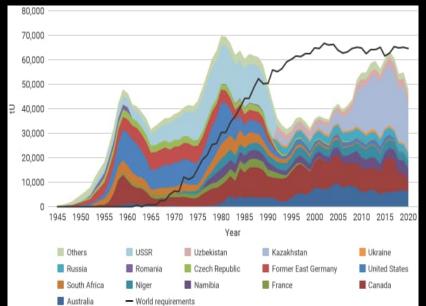
Model **Decay Type Generic Equation Radiation Emitted** $\frac{4}{2}\alpha$ $A_{Z} X \longrightarrow A - 4_{Z-2} X' + 4_{Z} \alpha$ Alpha decay Radioactive Parent Daughter Alpha Particle Decay $^{0}_{-1}\beta$ $A_{Z} X \longrightarrow A_{Z+1} X' + O_{-1} \beta$ Beta decay Parent Daughter Beta Particle 0 +1β $A_{Z} X \longrightarrow A_{Z-1} X' + {}^{0}_{+1} \beta$ Positron emission Parent Daughter Positron $A_{Z}X + O_{-1}e \longrightarrow A_{Z-1}X' + X$ ray m X rays Electron capture Parent Electron Daughter X ray $A_{Z} X^{*} \xrightarrow{\text{Relaxation}} A_{Z} X' + {}_{0}^{0} \gamma$ ôγ Gamma emission Parent Daughter Gamma ray (excited nuclear state) Spontaneous $A \stackrel{+B+C}{\to} X \longrightarrow A_Z X' + B_Y X' + C_0^{1} n$ Neutrons fission ENERGY Parent Neutrons (unstable)


https://www.nuclear-power.com/radioactive-decay/

Daughters 13

Radioactivity and half-life

Uranium Nuclear Fission chain reaction


Uranium Production

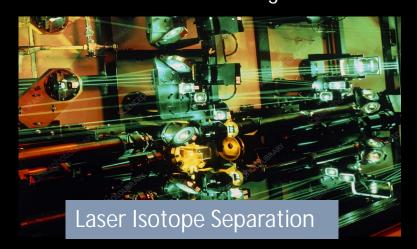
- Two-thirds of the world's production of uranium from mines is from Kazakhstan, Canada and Australia
- In 2022, Kazakhstan produced the largest share of uranium from mines (43% of the world supply)

World uranium production and reactor requirements

https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/miningof-uranium/world-uranium-mining-production.aspx

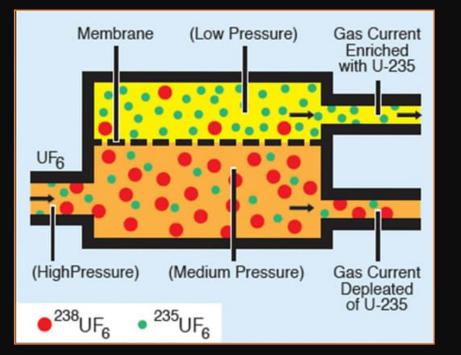
Country	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Kazakhstan	22,451	23,127	23,607	24,689	23,321	21,705	22,808	19,477	21,819	21,227
Canada	9331	9124	13,325	14,039	13,116	7001	6938	3885	4693	7351
Namibia	4323	3255	2993	3654	4224	5525	5476	5413	5753	5613
Australia	6350	5001	5654	6315	5882	6517	6613	6203	4192	4553
Uzbekistan (est.)	2400	2400	2385	3325	3400	3450	3500	3500	3520	3300
Russia	3135	2990	3055	3004	2917	2904	2911	2846	2635	2508
Niger	4518	4057	4116	3479	3449	2911	2983	2991	2248	2020
China (est.)	1500	1500	1616	1616	1692	1885	1885	1885	1600	1700
India (est.)	385	285	385	385	421	423	308	400	600	600
South Africa (est.)	531	573	393	490	308	346	346	250	192	200
Ukraine	922	926	1200	808	707	790	800	744	455	100
USA	1792	1919	1256	1125	940	582	58	6	8	75
Pakistan (est.)	45	45	45	45	45	45	45	45	45	45
Brazil	192	55	40	44	0	0	0	15	29	43
Iran (est.)	0	0	38	0	40	71	71	71	21	20
Czech Republic	215	193	155	138	0	0	0	0	0	0
Romania	77	77	77	50	0	0	0	0	0	0
France	5	3	2	0	0	0	0	0	0	0
Germany	27	33	0	0	0	0	0	0	0	0
Malawi	1132	369	0	0	0	0	0	0	0	0
Total world	59,331	56,041	60,304	63,207	60,514	54,154	54,742	47,731	47,808	49,355
tonnes U ₃ O ₈	69,966	66,087	71,113	74,357	71,361	63,861	64,554	56,287	56,377	58,201
% of world demand	91%	85%	98%	96%	93%	80%	81%	74%	76%	74%

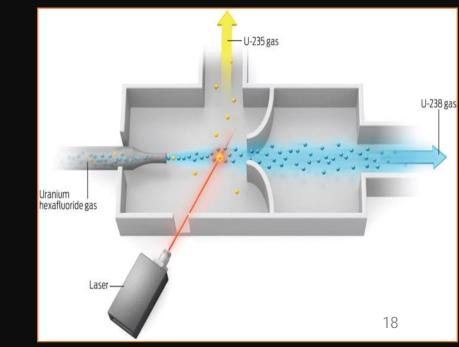
Uranium resources by country in 2021


	tonnes U	percentage of world
Australia	1,684,100	28%
Kazakhstan	815,200	13%
Canada	588,500	10%
Russia	480,900	8%
Namibia	470,100	8%
South Africa	320,900	5%
Niger	311,100	5%
Brazil	276,800	5%
China	223,900	4%
Mongolia	144,600	2%
Uzbekistan	131,300	2%
Ukraine	107,200	2%
Botswana	87,200	1%
USA	59,400	1%
Tanzania	58,200	1%
Jordan	52,500	1%
Other	266,600	5%
World total	6,078,500	

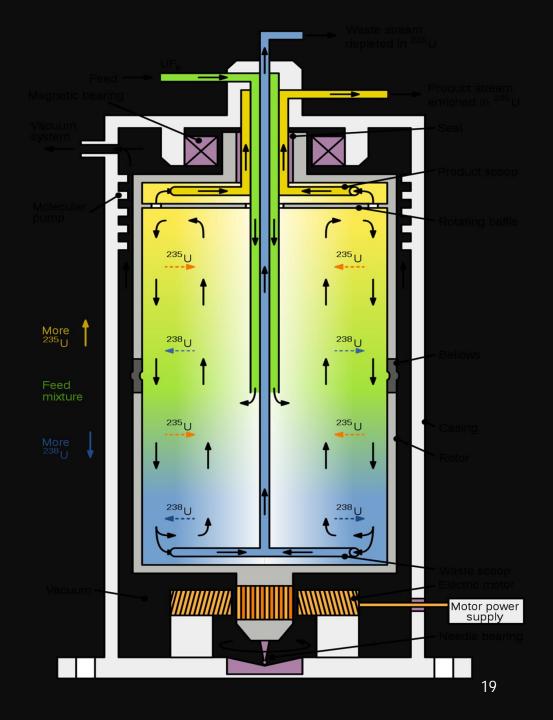
Uranium Enrichment

- □ It is an important step for converting mined uranium into nuclear fuel
- Uranium (Yellow cake; U₃O₈) is mined from uranium ore by chemical reactions and separation process
- During enrichment, the concentration of ²³⁵U is increased for nuclear fuel
- Enrichment methods are Gaseous diffusion, Gas centrifuges, and Laser Isotope Separation




Gas Diffusion

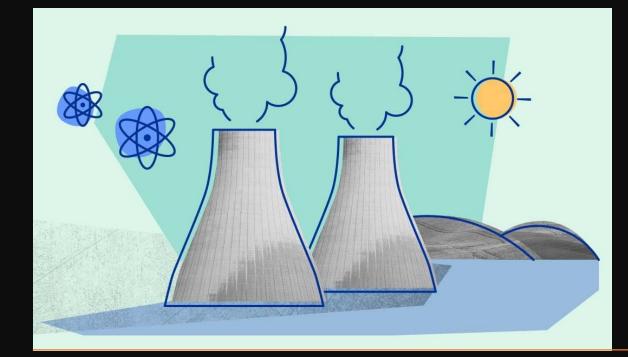
Gas Diffusion and Laser Isotope Separation

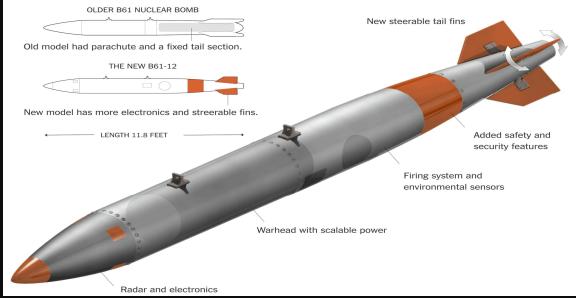

- □ UF₆ (Uranium Hexafluoride) is produced chemically and changed into a gas by applying higher temperature and decreasing the pressure
- □ Since ${}^{235}\text{UF}_6$ is lighter than other nuclei, it moves faster through pipe (not used anymore)
- Laser separation requires less energy because it uses the light of specific energy to evaporate ²³⁵U nuclei only
- □ But it is still in the developing stage

Gas Centrifuge Enrichment of Uranium

- Depends on the mass differences of the molecule
- On putting the gas into the cylinder with the rotor to separate different nuclei
- It requires only 3% of energy, which is required in gas diffusion
- It holds less uranium than the gas diffusion technique

Application of Uranium

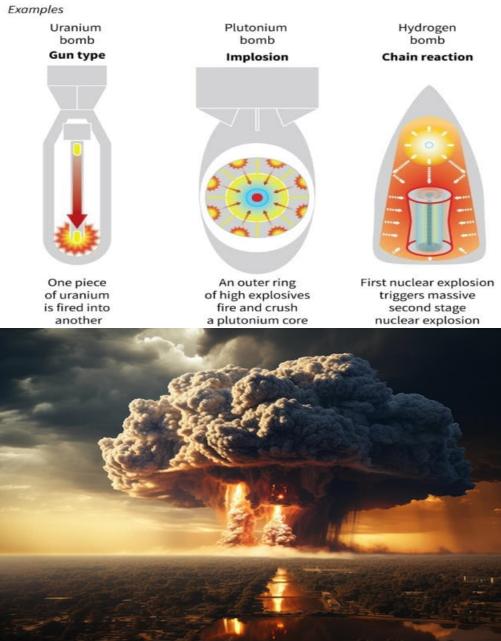

Energy Generation

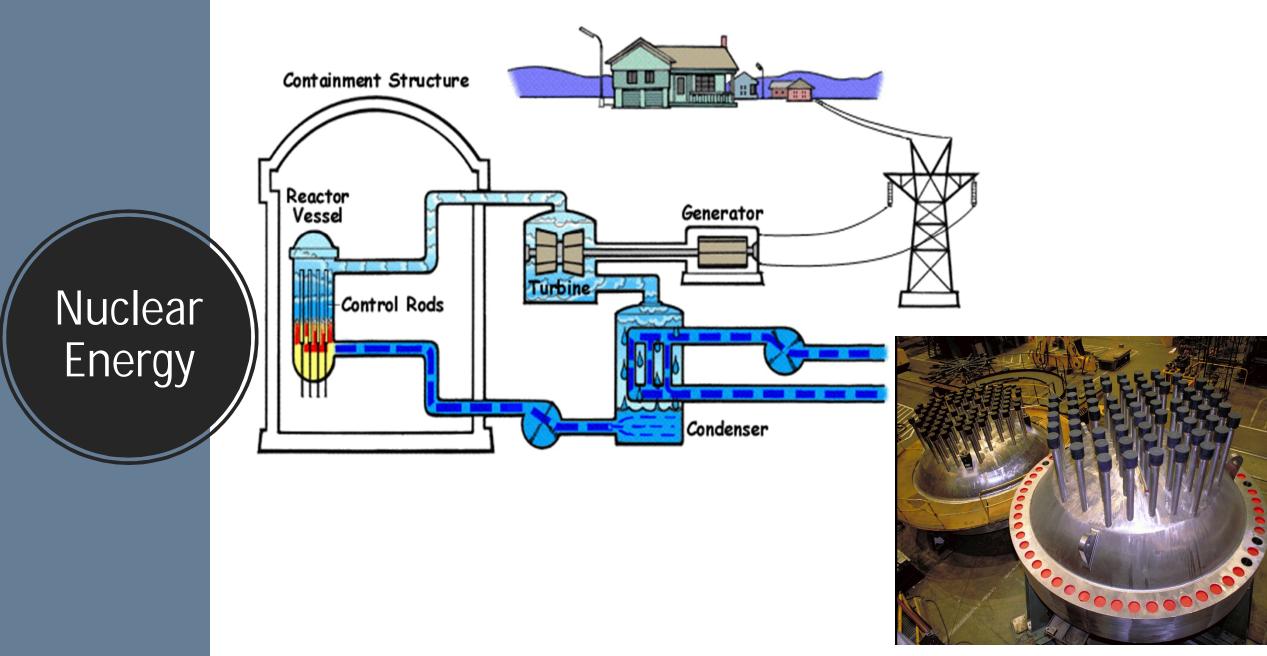

□ Medicine

□ In Agriculture

□ In Building Material

□ In Nuclear Weapons





Weapon of Mass Destruction

- □ It uses uncontrolled nuclear chain reaction
- □It is the combination of Chemical explosives, nuclear fission, and nuclear fusion
- □ First chemical explosive put around subcritical uranium sphere
- □ This puts the other sphere's atoms closer together. Once it is dense, it creates neutrons, which leads to the nuclear chain reaction.
- Then BOOOOM

Nuclear warheads

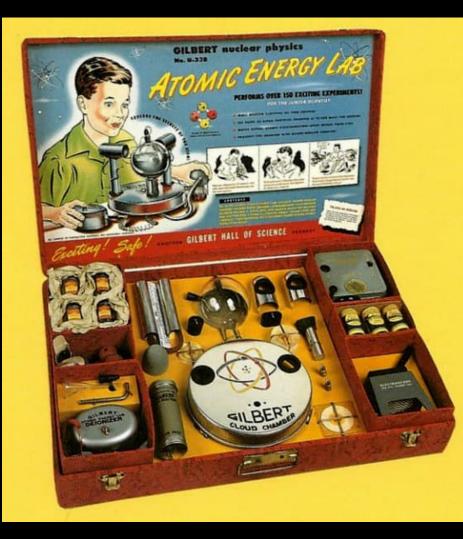
Civilian use of Uranium

Depleted uranium

- Isotope composition: U-238 99.75 %, U-235 0.25 %
- High density 19.1 g/cm³ (Pb density 11.34 g/ cm³)

Can be used as:

- Aircraft counterweights
- Radiation shields
- Ballast (sailboats)
- Industrial X-ray

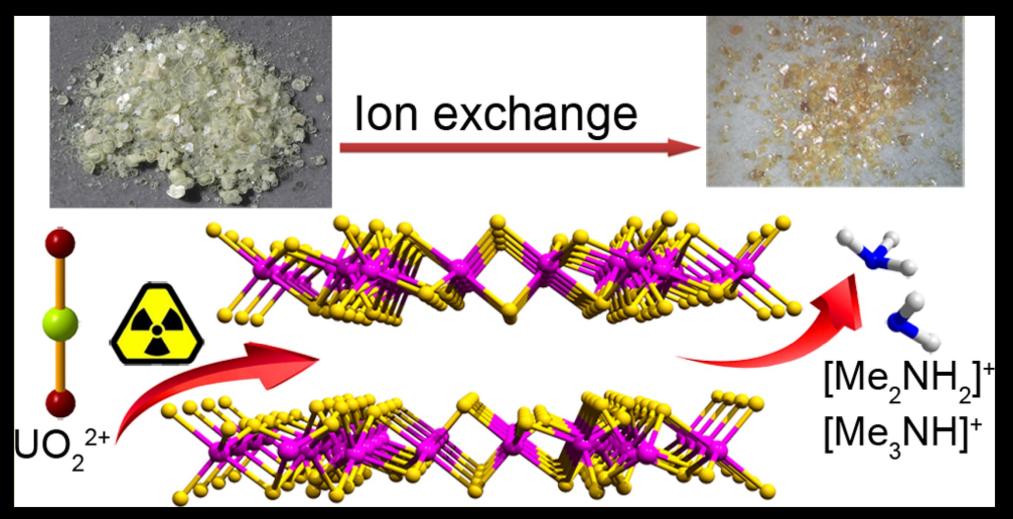

Can also be used in military applications for example penetrating ammunition and armors

https://en.wikipedia.org/wiki/Depleted_uranium https://www.nuclead.com/radiationshielding/

Material	Halving thickness (cm)	Halving thickness (g/cm ³)
Lead	1	12
Concrete	6.1	20
steel	2.5	20
Depleted uranium	0.2	3.9

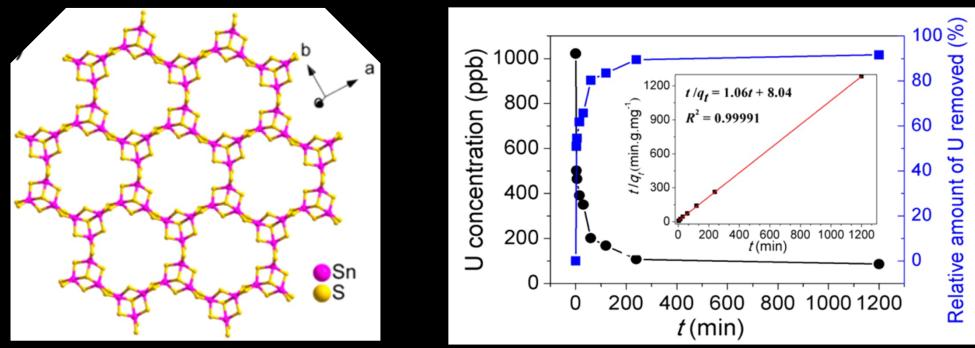
Other usage of Uranium

1950's


1940-1990

Currens studies

Removal and recovery of uranium



(Me₂NH₂)1.33(Me₃NH)0.67Sn₃S₇·1.25H₂O (FJSM-SnS)

Feng, M., Sarma, D., Qi, X. H., Du, K., Huang, X., & Kanatzidis, M. G. (2016). Efficient removal and recovery of uranium by a layered Organic–Inorganic hybrid thiostannate. *Journal of the American Chemical Society*, *138*(38), 12578–12585. https://doi.org/10.1021/jacs.6b07351

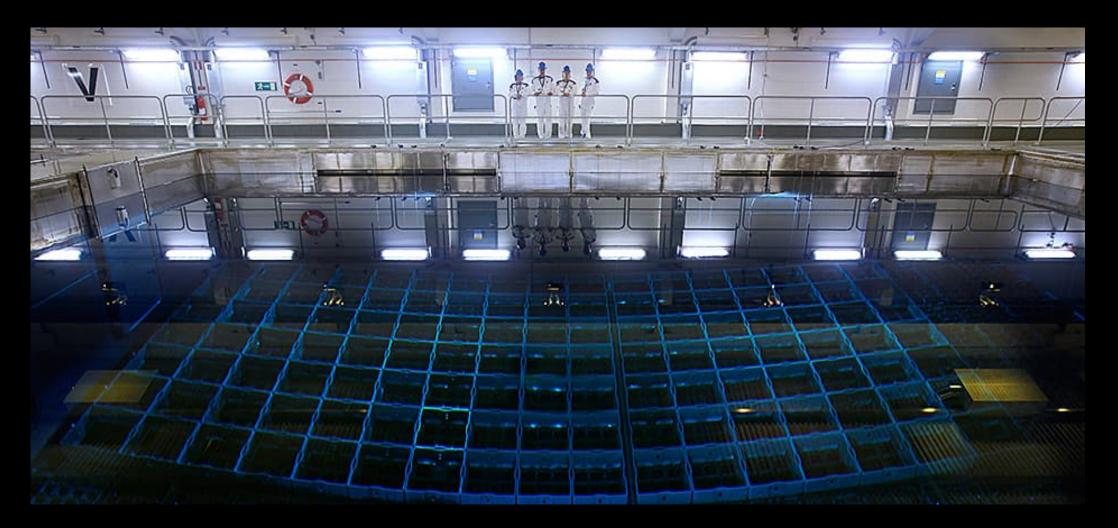
Ion exchange

- Can be used to clean nuclear waste solutions in the future?
- Promising results: uranium-exchange capacity of 338.43 mg/g

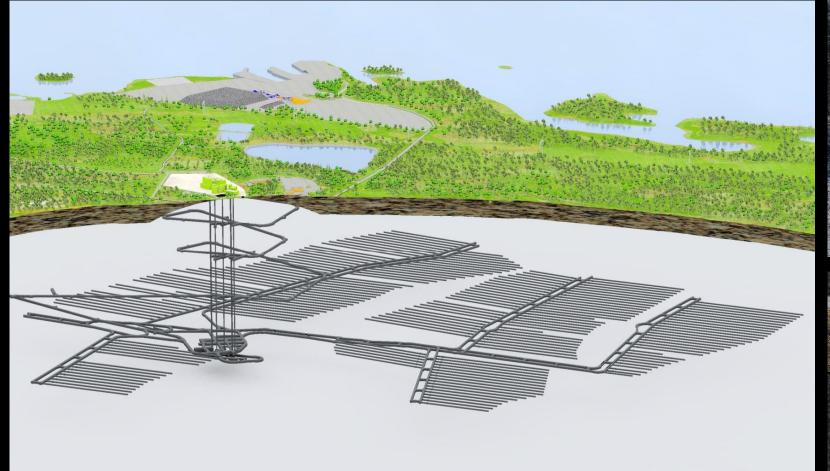
Feng, M., Sarma, D., Qi, X. H., Du, K., Huang, X., & Kanatzidis, M. G. (2016). Efficient removal and recovery of uranium by a layered Organic–Inorganic hybrid thiostannate. *Journal of the American Chemical Society*, *138*(38), 12578–12585. https://doi.org/10.1021/jacs.6b07351

Nuclear waste handling

- Low-level waste (VLLW and LLW)
 - 90 % of waste: clothing, tools, equipment
- Intermediate-level waste (ILW)
 - Reactor components, filters, etc.
- High-level waste (HLW)
 - Nuclear waste, for example, spent fuel

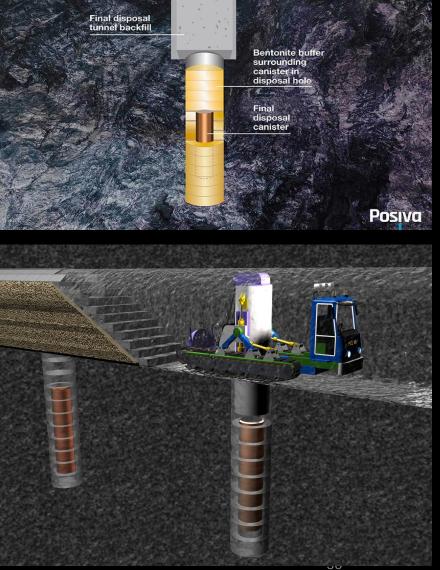


IAEA estimation 2022	Solid waste in storage (m ³)	Solid waste in diposal (m ³)
VLLW	2,918,000	11,842,000
LLW	1,471,000	18,499,00
ILW	2,740,000	133,000
HLW	29,000	0


- Pre-treatment
 - Sorting and segmenting → contaminated and non-contaminated
- Treatment and conditioning
 - Concentrating, solidifying, encapsulating
- Disposal
 - Interim or final disposal

Interim storage ponds for used fuel SKB – CLAB (Sweden)

Capasity: 8000 tkg



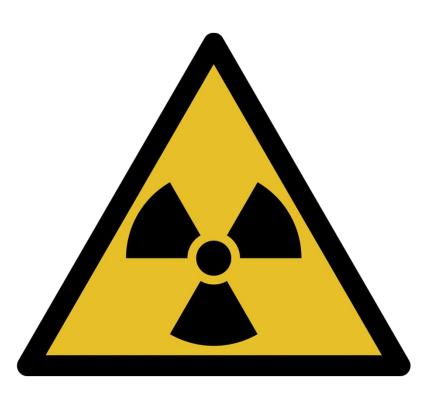
Final disposal Posiva – Onkalo (Finland)

10 km of tunnels, operation time 100 years Capacity: 6500 tkg + additional plans to expand

https://www.posiva.fi/en/index/media/material.html

Bedrock

Chernobyl, USSR 1986



Nuclear disasters

Fukushima, Japan 2011

The End

