
BMUS - Ex. 2 - Solutions

NBE-E4310 D - Biomedical Ultrasonics 2023

This document contains the solutions for the Execise 2 of the BMUS course. The student solutions should
have been posted no later than 13:00 on October 23rd.

Please, note that the code might be different than yours and might lead to slightly different solutions. A
differently solved problem can sometimes be correct. However, this example should serve as a reference
on how the exercise solutions should look like.

TASK 1 (12 points)

Observe a rectangular region on xy plane with coordinates of the corners (-10,0), (+10,0),
(-10,-10) and (+10,-10), the units being mm. Consider an array of 11 monopole sources os-
cillating radially, the sources positioned linearly at 0.5 mm spacing from (-2.5,0) to (+2.5,0).
Since in the exercise you are calculating is a 2D simplification, assume that any sources
are line sources unless else is assumed. Neglect any attenuation mechanisms, geometric or
dissipation. The speed of sound is that in soft tissue. Use complex pressure in your studies
leading to your solution. Assume continuous wave. Explain and justify in your own words
each step of your calculation.

a. What needs to be the frequency to have destructive interference of the wave along the
x axis? (2p)

In order to have destructive interference along the axis that contains the monopoles (x axis), we need
the monopoles to be spaced in a way that the superposition of their respective waves results into 0. This
happens when the monopoles are separated by λ/2. Considering that the spacing given in the exercise is
0.5 mm, we need to remember:

c = λf (1)

where c is the speed of sound in the medium of propoagation (ctissue = 1500m/s) and f is the frequency
that we are trying to find. Therefore, the frequency is 1.5 MHz.

b. For this frequency you calculated in a), present the momentary pressure generated by
the sound sources at t = 0 s. (4p)

Now, with the frequency found previously, we will generate the momentary pressure at t = 0 s, remem-
bering from the slides of the course that:

p(r) = p̂ei(wt−kr) (2)

where p̂ is the pressure amplitude, w is the angular frequency that depends on f and k is the wave number
that depends on the λ. From Equation 2 and considering the 11 monopoles necessary for this exercise,
we develop the following code:

1 % Parameters

2 c = 1500;

3 f = 1.5e6;

4 T = 1/f;

5 t = 0:T/100:T;

6 x = c*t;

7 t = 0;

8 %x = 0;

9 lambda = c/f;

10 k = 2*pi / lambda;

11 p_hat_r = 1e6;

12 omega = 2*pi*f;

13 phi = pi()/2;

14

15 % Coordinates Task 1

16 fromx = -10e-3;

17 tox = 10e-3;

18 fromy = -10e-3;

19 toy = 10e-3;
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20 [XX ,YY] = meshgrid ([fromx:lambda /8: tox]’,[fromy:lambda /8:toy]’);

21

22 %Pressure equation

23 P_right_tot = zeros(size(XX));

24

25 %Construct the wave (without attenuation):

26 figure (1)

27

28 for jj = -5:5

29 offset = lambda /2;

30 r = sqrt((XX+jj*offset).^2 + YY.^2);

31 P_right = p_hat_r * exp(j*( omega*t-k*r));

32 P_right_tot = P_right_tot + P_right;

33

34 imagesc(real(( P_right_tot)))

35 axis image

36 colorbar

37 a = colorbar;

38 a.Label.String = ’p(Pa)’;

39 end

40

41 drawnow

Listing 1: Plotting the momentary pressure at t

The result of the code is shown in Figure 1.

Figura 1: Momentary pressure at t=0 without attenuation.

c. For the field of task b), present the pressure field, i.e. the envelope. (2 p)

Now, we just need to plot the absolute pressure from the previous code. Following from the previous
code shown, we add:

1 figure (2)

2

3 for jj = -5:5

4 offset = lambda /2;

5 r = sqrt((XX+jj*offset).^2 + YY.^2);

6 P_right = p_hat_r * exp(j*( omega*t-k*r));

7 P_right_tot = P_right_tot + P_right;

8

9 imagesc(abs(( P_right_tot)))

10 axis image

11 colorbar

12 a = colorbar;

13 a.Label.String = ’p(Pa)’;

14 end

15

16 drawnow

Listing 2: Plotting the absolute pressure at t
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And the result of the code is shown in Figure 2.

Figura 2: Pressure field, i.e. envelope, at t=0 without attenuation.

d. Recalculate the maps of b) and c) by considering geometric attenuation for your source
(2 p)

In this exercise, we just need to add the attenuation factor in the expression of the momentary pressure.
In this case, as it is not specified, we will go for the example of the planar pressure, that it is defined as:

p(r) = p̂ei(wt−kr)e−(α∗r) (3)

where in this case α was the attenuation coefficient. For this particular case, we have taken the attenuation
coefficient of the kidney (α1.5MHz

kidney = 150dB/m). This value has been found following:

α = af b (4)

where a and b are the coefficients found in Slide 33 of the Lecture Slides 01,02.. In the case of the kidney,
both coefficients are simply 1.

From the Equation 3, we add to the code the following lines:

1 %Re -calculate the momentary pressure with the planar attenuation:

2 figure (3)

3

4 for jj = -5:5

5 offset = lambda /2;

6 r = sqrt((XX+jj*offset).^2 + YY.^2);

7 alpha = 150; %kidney attenuation coefficient

8 P_right = p_hat_r * exp(j*(-k*r)).*exp(-alpha .*r);

9 P_right_tot = P_right_tot + P_right;

10

11 imagesc(real(( P_right_tot)))

12 axis image

13 colorbar

14 a = colorbar;

15 a.Label.String = ’p(Pa)’;

16 end

17

18 % And exactly the same for the envelope

19 figure (4)

20

21 for jj = -5:5

22 offset = lambda /2;

23 r = sqrt((XX+jj*offset).^2 + YY.^2);

24 alpha = 150; %kidney attenuation coefficient

25 P_right = p_hat_r * exp(j*(-k*r)).*exp(-alpha .*r);

26 P_right_tot = P_right_tot + P_right;
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27

28 imagesc(abs(( P_right_tot)))

29 axis image

30 colorbar

31 a = colorbar;

32 a.Label.String = ’p(Pa)’;

33 end

34

35 drawnow

Listing 3: Plotting the momentary and absolute pressure at t

And the result of the code is shown in Figure 3 and 4.

Figura 3: Momentary pressure at t=0 with planar attenuation.

Figura 4: Pressure field, i.e. envelope, at t=0 with planar attenuation.

e. Recalculate the maps of d) by now considering the sources being point sources. (2p)

In this exercise, we just need to add the point source attenuation in the expression of the momentary pres-
sure. The point source attenuation was a result from the previous exercise and the resulting momentary
pressure follows:

p(r) =
1√
r
p̂ei(wt−kr)e−(α∗r) (5)

where in this case the factor
1√
r

was added to show the energy loss due to the 3D expansion of the

4



BMUS - Ex. 2 - Solutions

pressure fronts.

From the Equation 5, we add to the code, adjusting the r vector in order to divide by it, in the following
lines:

1 %Re -calculate the momentary pressure with the planar attenuation:

2 figure (5)

3

4 for jj = -5:5

5 xuse = (XX-sources(j,1)).^2;

6 yuse = (YY-sources(j,2)).^2;

7 r = sqrt((xuse).^2 + (yuse).^2);

8

9 P_right = p_hat_r .*exp(-alpha*r).*exp(j*(-k*r))/sqrt(r);

10 P_right_tot = P_right_tot + P_right;

11

12 imagesc(real(( P_right_tot)))

13 axis image

14 colorbar

15 a = colorbar;

16 a.Label.String = ’p(Pa)’;

17 end

18

19 % And exactly the same for the envelope

20

21 figure (6)

22 for jj = -5:5

23 xuse = (XX-sources(j,1)).^2;

24 yuse = (YY-sources(j,2)).^2;

25 r = sqrt((xuse).^2 + (yuse).^2);

26

27 P_right = p_hat_r .*exp(-alpha*r).*exp(j*(-k*r))/sqrt(r);

28 P_right_tot = P_right_tot + P_right;

29

30 imagesc(abs(( P_right_tot)))

31 axis image

32 colorbar

33 a = colorbar;

34 a.Label.String = ’p(Pa)’;

35 end

36

37 drawnow

Listing 4: Plotting the momentary and absolute pressure at t

And the result of the code is shown in Figure 5 and 6.

Figura 5: Momentary pressure at t=0 with point source attenuation.
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Figura 6: Pressure field, i.e. envelope, at t=0 with point source attenuation.

TASK 2 (10 points)

Generate a ’dense’ array of monopole sources, where the source spacing must be of, at
least, < λ/8. The sources are placed at a distance 20 mm from origin of your xy-coordinates,
positioned symmetrically to x = 0, where y > 0, forming a circularly symmetric transducer
with a 90 degrees opening angle. Consider a 2D simplification and a rectangular region
on the xy plane with coordinates of the corners (-25,25), (25,25), (-25,-10) and (+25,-10).
The frequency is 1 MHz and the medium is water. Neglect any attenuation mechanisms,
geometric or dissipation. Assume continuous wave. Explain and justify in your own words
each step of your calucaltion.

a. For the frequency given, present the momentary real pressure generated by the sound
sources at t = 0 s. (4p)

Now, this task is very similar to Task 1. The only difference is that the point sources need to be arranged
in a semi-circular array. In this case, the ’dense’ point sources array will generate a field that is similar
to the one produced by a high-intensity focused ultrasound (HIFU). Therefore, we just need to tweak the
original code in a way that allows us to plot the points in a curved line with a certain aperture. To do
that, we generate the following code:

1 f = 1e06;

2 c = 1540;

3 lambda = c/f;

4 p_hat_r = 1;

5 k = 2*pi/lambda;

6 t = 0;

7

8 %% Task 2a

9 % Parameters for the space and sources distribution

10 x = linspace (-25e-03, 25e-03, 1000);

11 y = linspace (-25e-03, 10e-03, 750);

12 r = 20e-03;

13 aperture = linspace (5*pi/4, 7*pi/4, 20);

14

15 % Space generation

16 [XX ,YY] = meshgrid(x,y);

17

18 % Point sources generation

19 x_cartesian = r * cos(aperture);

20 y_cartesian = r * sin(aperture);

21 sources = [x_cartesian; y_cartesian ];

22

23 % Making those point sources to generate the field

24 mom_p = zeros ([ length(y) length(x)]);

25 for j = 1: length(sources)

26 xuse = (XX-sources(1,j)).^2;

27 yuse = (YY-sources(2,j)).^2;

28 d = sqrt(xuse + yuse);
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29 add_p = p_hat_r*exp(1j*(-k*d));

30 mom_p = mom_p + add_p;

31 end

32

33 figure

34 imagesc(x,y,real(mom_p));

35 % set(gca , ’CLim ’, [0 10]);

36 colorbar

37 title(" Momentary Pressure (Pa)")

38

39 drawnow

Listing 5: Plotting the momentary pressure at t

And from this code, we get the left image from Figure 7.

Figura 7: (Left)Momentary pressure and (Right) pressure field, i.e. envelope, at t=0 with a circular
point source array.

b. For the field of task a), present the pressure field, i.e. the envelope. (2 p)

Now, we just need to plot the absolute value of the pressure from the previous code instead of the real
value. Therefore, we can add to the code the following:

1 figure

2 imagesc(x,y,abs(mom_p));

3 % set(gca , ’CLim ’, [0 10]);

4 colorbar

5 title(" Momentary Pressure (Pa)")

6

7 drawnow

Listing 6: Plotting the momentary pressure at t

And from this code, we get the right image from Figure 7.

c. Recalculate the maps of a) and b) by considering geometric attenuation for your source,
i.e. now your sound source being a line source (2 p)

In this section, we are asked about the linear attenuation. In the previous exercise, we found that the
linear attenuation for the pressure is expressed as:

p(r) =
1

r
p̂ei(wt−kr)e−(α∗r) (6)

This is expressed in the code as:

1 f = 1e06;

2 c = 1540;

3 lambda = c/f;

4 p_hat_r = 1;

5 k = 2*pi/lambda;
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6 t = 0;

7

8 %% Task 2a

9 % Parameters for the space and sources distribution

10 x = linspace (-25e-03, 25e-03, 1000);

11 y = linspace (-25e-03, 10e-03, 750);

12 r = 20e-03;

13 aperture = linspace (5*pi/4, 7*pi/4, 20);

14

15 % Space generation

16 [XX ,YY] = meshgrid(x,y);

17

18 % Point sources generation

19 x_cartesian = r * cos(aperture);

20 y_cartesian = r * sin(aperture);

21 sources = [x_cartesian; y_cartesian ];

22

23 % Making those point sources to generate the field

24 alpha = 150;

25 mom_p = zeros ([ length(y) length(x)]);

26 for j = 1: length(sources)

27 xuse = (XX-sources(1,j)).^2;

28 yuse = (YY-sources(2,j)).^2;

29 d = sqrt(xuse + yuse);

30 att = p_hat_r .*exp(-alpha*d);

31 att = att ./ d;

32 add_p = att.*exp(1j*(-k*d)); % complex pressure (t=0)

33 mom_p = mom_p + add_p;

34 end

35

36 % figure

37 % imagesc(x,y,real(mom_p));

38 % set(gca , ’CLim ’, [0 100]);

39 % colorbar

40 % title(" Momentary Pressure (Pa)")

41

42 figure

43 imagesc(x,y,abs(mom_p));

44 set(gca , ’CLim’, [0 1000]);

45 colorbar

46 title(" Momentary Pressure (Pa)")

47

48 drawnow

Listing 7: Plotting the momentary pressure at t

And from this code, we get Figure 8.

Figura 8: (Left)Momentary pressure and (Right) pressure field, i.e. envelope, at t=0 with a circular
array considering linear source attenuation.

d. Recalculate the maps of c) by now considering the sources being point sources. (2p)

In this section, we are asked about the point source attenuation, given by Equation 5. This is expressed
in the code as:
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1 f = 1e06;

2 c = 1540;

3 lambda = c/f;

4 p_hat_r = 1;

5 k = 2*pi/lambda;

6 t = 0;

7

8 %% Task 2a

9 % Parameters for the space and sources distribution

10 x = linspace (-25e-03, 25e-03, 1000);

11 y = linspace (-25e-03, 10e-03, 750);

12 r = 20e-03;

13 aperture = linspace (5*pi/4, 7*pi/4, 20);

14

15 % Space generation

16 [XX ,YY] = meshgrid(x,y);

17

18 % Point sources generation

19 x_cartesian = r * cos(aperture);

20 y_cartesian = r * sin(aperture);

21 sources = [x_cartesian; y_cartesian ];

22

23 % Making those point sources to generate the field

24 alpha = 150;

25 mom_p = zeros ([ length(y) length(x)]);

26 for j = 1: length(sources)

27 xuse = (XX-sources(1,j)).^2;

28 yuse = (YY-sources(2,j)).^2;

29 d = sqrt(xuse + yuse);

30 att = p_hat_r .*exp(-alpha*d);

31 att = att ./ sqrt(d);

32 add_p = att.*exp(1j*(-k*d)); % complex pressure (t=0)

33 mom_p = mom_p + add_p;

34 end

35

36 % figure

37 % imagesc(x,y,real(mom_p));

38 % set(gca , ’CLim ’, [0 100]);

39 % colorbar

40 % title(" Momentary Pressure (Pa)")

41

42 figure

43 imagesc(x,y,abs(mom_p));

44 set(gca , ’CLim’, [0 100]);

45 colorbar

46 title(" Momentary Pressure (Pa)")

47

48 drawnow

Listing 8: Plotting the momentary pressure at t

And from this code, we get the Figure 9.

Figura 9: (Left)Momentary pressure and (Right) pressure field, i.e. envelope, at t=0 with a circular
array considering point source attenuation.
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TASK 3 (10 points)

On the lecture slides you were presented an animation (please, see the .gif file attached)
of particles being within a space and oscillating back-and-forth parallel to the direction of
the sound propagation in a linear harmonic fashion, forming a planar longitudinal wave
traveling from left to right along the x-axis. Give the molecules within that space random
rest positions, the space in the 2D simplification being an area rather than a volume. The
corners of the space on the xy-plane are at coordinates (-10,5), (10,5), (-10,-5) and (10,-5).
Assume the wavelength to be 2 mm and the medium to be water.

Recreate the animation of the black spots according to the instructions above. Your ani-
mation does not need to be exactly the same as the animation above (text, arrows or red
objects are not expected), but still it needs to be physically correct. You may want to tune
the amplitude and molecule density to see a visible compression and rarefaction and clear
wave propagation of a continuous wave (10p)

First, we need to create the parameters for the wave and the space where the particles will be distributed.
To do so, we use the following code:

1 % Parameters for the space and sources distribution

2 lambda = 2e-03;

3 c = 1500;

4 fig = c / lambda;

5 k = 2*pi/lambda;

6 x = linspace (-10e-03, 10e-03, 1000);

7 y = linspace(-5e-03, 5e-03, 500);

8 x_disp = max(x) - min(x);

9 y_disp = max(y) - min(y);

10 rng (646294);

11

12 % Space generation

13 [XX ,YY] = meshgrid(x,y);

14

15 % Generate the displaced points

16 points = zeros ([2 1000]);

17 for i = 1: length(points (1,:))

18 points(1,i) = rand (1) * x_disp - (x_disp /2);

19 points(2,i) = rand (1) * y_disp - (y_disp /2);

20 end

21

22 pointsstart = points;

23 fig = figure(’Position ’ ,[100 100 500 200]);

24 set(fig , ’Visible ’, ’on’);

25 hold on

26 for i = 1: length(points (1,:))

27 plot(points(1,i), points(2,i), ’.’, color=’black’)

28 end

29 axis([min(x) max(x) min(y) max(y)]);

30

31 drawnow

Listing 9: Plotting the particle distribution that will have a perturbation.

And from this code, we get the Figure 10.

Then, we need to give the wave front parameters and add the displacement equation to give the motion
to each dispersed particle, which follows:

ξ = ξ̂ei(wt−kr) (7)

where ξ is the particle displacement. Therefore, now we just need to add a temporal vector values to
get the animation running. To do so, we use the following code (although many variations from it would
work anyway):

1 % Wave front parameters

2 T = 1/f;

3 cycles = 5;

4 tot = T*cycles;

5 distr = 20* cycles;
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Figura 10: Particle field, with the wavefronts moving from left to right.

6 t = linspace(0, tot , distr);

7 disp_hat = 0.5e-03;

8

9 % Time display

10 for j = 1: length(t)

11 for i = 1: length(points (1,:))

12 points(1,i) = pointsstart (1,i) + disp_hat*cos(w*t(j)-k*pointsstart (1,i));

13 end

14 clf(fig); % clear the figure

15 hold on

16 % draw new positions

17 for i = 1: length(points (1,:))

18 % if (i == 15)

19 % plot(points(1,i), points(2,i), ’.’, color=’red ’)

20 % else

21 plot(points(1,i), points(2,i), ’.’, color=’black’)

22 % end

23 end

24 axis([min(x) max(x) min(y) max(y)]);

25

26 drawnow % update fig

27

28 % And now we make the gif (there are a thousand different ways of doing this part):

29 frame = getframe ();

30 im = frame2im(frame);

31 [imind ,cm] = rgb2ind(im ,256);

32 outfile = ’wavefronts.gif’;

33 if j==1

34 imwrite(imind ,cm ,outfile ,’gif’,’DelayTime ’ ,0.1,’loopcount ’,inf);

35 else

36 imwrite(imind ,cm ,outfile ,’gif’,’DelayTime ’ ,0.1,’writemode ’,’append ’);

37 end

38 end

Listing 10: Plotting the momentary pressure at t

From the previous code, the gif presented in the file wavefronts.gif (attached to the solution .zip folder)
is obtained.
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