
BMUS - Ex. 4 - Solutions

NBE-E4310 D - Biomedical Ultrasonics 2023

This document contains the solutions for the Execise 4 of the BMUS course. The student solutions should
have been posted no later than 13:00 on December 11th.

Please, note that the code might be different than yours and might lead to slightly different solutions. A
differently solved problem can sometimes be correct. However, this example should serve as a reference
on how the exercise solutions should look like.

TASK 1 (17 points)

Consider a circular ultrasound transducer of radius a = 8 mm and operating frequency of
f0 = 1.5 MHz in water.

Figura 1: The geometry for the calculation of the pressure field p(r′, t) at an observer point O, due to a
plane circular piston source (Duck et al.)

a. What is the Rayleigh distance for this planar transducer (2p)

The Rayleigh distance is defined in the near field as:

ZR =
πa2

λ
(1)

where a is the radius of the transducer and λ is the wavelength of the transmitted wave. In this case,
the medium where the wave is propagating is water and the radiu of the transducer is 8 mm. Therefore,
having into account Equation 1, the Rayleigh distance is:

ZR = 0.2m

b. Calculate the pressure pz along the center axis Z from z = 0 to 1.5 × Rayleigh distance as
a complex presentation. Then plot the real part of the pressure. Use Equation 2 .Consider
that the pressure amplitude is p̂ = 3 kPa.(5p))

Following Equation 2, we can discretize the equation contributions into an area of a circle, leading to an
addition of contributions to the pressure along the center axis of such circle.

pZ(Z, r) = i
p̂k

2π

∫
S

e−ikr′

r′
dS (2)

In this case, the code will follow:

1 % Defining parameters

2 a = 0.008;
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3 f_0 = 1.5 e06;

4 v = 1500;

5

6 % Define xyz field , transducer

7 x = linspace(-a,a ,150);

8 y = linspace(-a,a ,150);

9 z = linspace (0 ,1.5*Z_R ,100);

10 [X,Y] = meshgrid(x,y);

11 scatter(X(:),Y(:), Marker =".")

12

13 N = 0;

14 x_t = [];

15 y_t = [];

16 for i = 1:150

17 for j = 1:150

18 dist = sqrt(x(i)^2 + y(j)^2);

19 if dist <= a

20 N = N + 1;

21 x_t = [x_t , i];

22 y_t = [y_t , j];

23 end

24 end

25 end

26 fprintf (" Number of points inside the circle: %d pcs.", N)

27

28 % Circle to point approximation

29 A= pi*a^2;

30 A_app = A / N;

31

32 % Pressure:

33 p_hat = 3000;

34 k = (2*pi*f_0)/v;

35 p_z = zeros (100 ,1);

36 for j = 1:100

37 p_z(j) = 1i*(p_hat*k)./(2*pi).*sum(exp(-1i.*k.*sqrt(x(x_t()).^2 + y(y_t).^2 + z(j)

.^2)) ./ sqrt(x(x_t()).^2 + y(y_t).^2 + z(j)^2)*A_app);

38 end

39 figure ()

40 plot(z, real(p_z))

41 xlabel ("Z (m)")

42 xlim ([0 0.3])

43 ylabel (" Pressure (Pa)")

Listing 1: Plotting the P vs Z.

And from the previous code, we get Figure 2 plot in blue.

Figura 2: Real part (blue), Envelope (red) and analytical expression (green) of the pressure over the
central axis.

c. Using Equation 2, calculate and plot the envelope of the pressure (hint: absolute of the
complex pressure). You can neglect attenuation. (5p)

In this case, we only add the absolute command when plotting the pressure. The result is shown as the

2



BMUS - Ex. 4 - Solutions

red line in Figure 2.

d. Plot the numerical expression from Task 1a and 1b and the pressure based on the
analytical expression at the center axis in the same graph. The analytical expression is
given in Equation 3. (5p)

Following Equation 3, we develop a code that introduces the equation in the same manner as before.

pz(z) = 2p̂

∣∣∣∣∣sin
{
kz

2

[√
1 +

(a
b

)2

− 1

]}∣∣∣∣∣ (3)

We add the following to the previous code:

1 % Analytical expression

2 p_anal = zeros (100 ,1);

3 for j = 1:100

4 p_anal(j) = 2.* p_hat .*abs(sin((k.*z(j)/2 .*( sqrt (1+(a/z(j))^2) -1))));

5 end

6 figure ()

7 plot(z,real(p_z), color=’blue’)

8 hold on

9 plot(z,abs(complex(p_z)), color=’red’)

10 plot(z,p_anal , color = ’green’)

11 legend(’Real’, ’Envelope ’, ’Analytical ’)

12 xlabel ("Z (m)");

13 xlim ([0 0.3])

14 ylabel (" Pressure (Pa)");

Listing 2: Plotting the analytical P vs Z.

And from the previous code, we get Figure 2 plot in green.
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TASK 2 (7 points)

A focused continuous wave is travelling along the z-axis. The file (ITA.txt) contains a z-slice
of intensity data in the x-y plane near the focus of the beam. Each element of the matrix
corresponds to the time-averaged intensity (in W/cm2) in a 140 µm by 140 µm area. Apply
the field to a perfect absorber. The entire power defined by ITA.txt is absorbed.

a. What is the radiation force exerted on the absorber? (3p)

In this exercise, the medium it is not specified. For that reason, we will select water as our medium, but
other mediums could have been picked.

Therefore, we can estimate the force exerted on the absorber as:

Frad =

∫
⟨ISPTA⟩

c0
dS (4)

where the ⟨ISPTA⟩ is the temporal averaged intensity given in the file of the exercise, c0 is the speed of
sound in water and dS is the differential of area that will turn into the area affected by the focused wave.
With that in mind, the generated code to solve the exercise follows:

1 % Parameters

2 I_ta = load("I_ta.txt");

3 A = length(I_ta (1,:)) * 140 * length(I_ta (1,:)) * 140;

4 A = A / 1e8;

5 c = 1484;

6

7 % Equation

8 I = sum(sum(I_ta));

9 F_rad = I*A / c; % N

10 disp(F_rad)

Listing 3: Calculation of ARF.

And from this code, we get that:

Frad = 2.52N

b. What is the maximum Langevin pressure applied to the interface, given that the interface
is at the focus of the beam (2p)

From the data of the file shared with the exercise, we can relate the intensity to the Langevin pressure
as:

PLan =
⟨ISPTA⟩

c0
(5)

Therefore, the previous code will follow as:

1 max_I = max(I_ta (:));

2 max_P_Lan = max_I ./ c;

3 disp(max_P_Lan)

Listing 4: Calculation of maximum Langevin pressure.

And from this code, we get that:

PLan = 0.0013J/m3

c. Consider that in the previous case you are applying pulses with a duty cycle of 70%.
What is the radiation force exerted on the absorber when the sound is on? (hint: think
about the spatial peak pulse average) (2 p)
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Now, we just need to have into account that:

ISPTA ≃ ISPPA ∗DC (6)

where ISPPA is now the new intensity we will use for the exercise. The code will follow:

1 F_rad_pa = F_rad *0.7;

2 disp(F_rad_pa)

Listing 5: Calculation of new ARF.

And from this code, we get that:

Frad = 1.76N
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TASK 3 (10 points)

Ultrasound can be used to heat the tissue to thermally damage it for therapeutic purposes,
e.g. thermal ablation of cancer tissue. Pathologically, you can consider 30 and 240 equi-
valent minutes to represent edema and thermal necrosis, respectively. Please, study the
review in the slides about the equations of the paper by Sapareto & Dewey and calculate
the time to reach thermal dose of 30 and 240 equivalent minutes at temperatures:

a. 45 oC, b. 56 oC, c. 80 oC (6p)

For this exercise, we just need to have into account the equation from the literature:

t =
TD

R43−T
(7)

Where TD is the thermal dose, R is a constant equal to 0.5 (as T > 45 oC) and T is the temperature.
Therefore, the code will follow:

1 % Parameters

2 TD1 = 30;

3 TD2 = 240;

4 T1 = 45;

5 T2 = 56;

6 T3 = 80;

7 R = 0.5;

8

9 % A) T = 45 degC

10 t45_30 = TD1 / R^(43-T1);

11 t45_240 = TD2 / R^(43-T1);

12

13 % B) T = 56 degC

14 t56_30 = TD1 / R^(43-T2);

15 t56_240 = TD2 / R^(43-T2);

16

17 % C) T = 80 degC

18 t80_30 = TD1 / R^(43-T2);

19 t80_240 = TD2 / R^(43-T2);

Listing 6: Calculation of times.

And the results of this code are:

t4030 = 7.5min ; t40240 = 60min

t5630 = 3.7e− 3 ; t56240 = 2.9e− 2

t8030 = 2.2e− 10 ; t80240 = 1.8e− 9
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