
MS-E2122 - Nonlinear optimization
Oliveira, Dias, Terho

Exercise sheet 4
Thursday 28.09.2023

This week’s homework Homework 2 is due no later than Monday 16.10.2023 23:55.

Problem 4.1: Necessary Conditions for Least Squares

Consider the following unconstrained optimization problem P :

(P ) : min. ||Ax− b||22 (1)

where A is a matrix in Rm×n and b is a vector in Rm. This problem is typically called a
least-squares problem when using the Euclidean norm, and it has several applications in regression
analysis, optimal control, parameter estimation, data fitting, etc.

An extension of the problem P involves minimizing ||x||22 on top of the original objective. To solve
this problem, we can use regularization which is a common scalarization technique to find solutions
to bi-criterion problems. We will consider the following regularized least-squares problem

(RP ) : min. ||Ax− b||22 + δ||x||22 (2)

where the penalty term δ > 0 controls the trade-off between the two objectives.

(a) Give brief interpretations of the problems (1) and (2).

(b) Find solutions for the problems (1) and (2) by writing the first-order necessary optimality
conditions. Justify why these conditions are also sufficient.

Solution.

(a) In problem (1), we seek a vector y = Ax in the subspace spanned by the column vectors
of A that is closest to the vector b. If b is in the column space of A, we need to solve the
system Ax = b. If b is not in the column space of A, we seek a solution to the system Ax = y,
where y is the projection of b onto the subspace spanned by the column vectors A1, . . . , An

of A. We assume that b is not in the column space of A, since otherwise the problem reduces
to solving the system Ax = b.

In problem (2), we seek a vector x that has a small squared norm ||x||22 and also makes the
squared residual norm ||Ax − b||22 as small as possible. The penalty term δ > 0 determines
how much importance we put on minimizing the value of ||x||22 vs. the value of ||Ax− b||22.

(b) Let us denote the objective function in problem (2) as f(x):

f(x) = ||Ax− b||22
= (Ax− b)⊤(Ax− b)

= (x⊤A⊤ − b⊤)(Ax− b)

= x⊤A⊤Ax− x⊤A⊤b− b⊤Ax+ b⊤b

The first-order necessary optimality condition for problem (1) is ∇f(x) = 0. We get

∇f(x) = ∇(x⊤A⊤Ax) +∇(−x⊤A⊤b) +∇(−b⊤Ax) +∇(b⊤b)

= (A⊤A+A⊤A)x+ (−A⊤b) + (−A⊤b).

= 2A⊤Ax− 2A⊤b = 0

from which we finally get the necessary optimality condition

A⊤Ax = A⊤b (3)

The condition (3) is also sufficient, because f(x) = ||Ax− b||22 is a convex function. We can
also verify this by looking at the Hessian

∇2f(x) = 2A⊤A
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which is positive semidefinite for all x ∈ Rn because

x⊤A⊤Ax = (Ax)⊤(Ax) = ||Ax||22 ≥ 0

This is a necessary and sufficient condition for the convexity of f(x) (and also the second-
order necessary condition). Assuming that columns of A are linearly independent, the unique
optimal solution from (3) is

x = (A⊤A)−1A⊤b

Let us denote the objective function in problem (2) as g(x). We get

g(x) = ||Ax− b||22 + δ||x||22
= (Ax− b)⊤(Ax− b) + δx⊤x

= (x⊤A⊤ − b⊤)(Ax− b)}+ δx⊤x

= x⊤A⊤Ax− x⊤A⊤b− b⊤Ax+ b⊤b+ δx⊤x

The first-order necessary optimality condition for problem (2) is ∇g(x) = 0. We get

∇g(x) = ∇(x⊤A⊤Ax) +∇(−x⊤A⊤b) +∇(−b⊤Ax) +∇(b⊤b) + δ∇(x⊤x)

= (A⊤A+A⊤A)x+ (−A⊤b) + (−A⊤b) + δ(1 + 1)x

= 2A⊤Ax− 2A⊤b+ 2δx = 0

from which we get the necessary optimality condition

(A⊤A+ δI)x = A⊤b (4)

The condition (4) is also sufficient because g(x) = ||Ax − b||22 + ||x||22 is a convex function.
We can also verify this by looking at the Hessian

∇2g(x) = 2A⊤A+ 2δI

which is positive definite for all x ∈ Rn since δ > 0 and

x⊤A⊤Ax = (Ax)⊤(Ax) = ||Ax||22 ≥ 0.

∇2g(x) > 0 for all x ∈ Rn is a necessary and sufficient condition for g(x) to be strictly
convex. Thus, the unique optimal solution from (4) is

x = (A⊤A+ δI)−1A⊤b

Problem 4.2: Optimality of Points in a Convex Problem

Consider the following convex optimization problem P :

(P ) : min. (x1 − 3)2 + (x2 − 2)2 (5)

subject to: x2
1 + x2

2 ≤ 5 (6)

x1 + x2 ≤ 3 (7)

x1 ≥ 0 (8)

x2 ≥ 0 (9)

Let S denote the feasible set defined by the constraints (6) – (9), and let f : R2 → R with
f(x) = (x1 − 3)2 + (x2 − 2)2 denote the objective function (5). Notice that both S and f are
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convex. Recall the following optimality condition for convex optimization problems presented in
Lecture 4 (Corollary 4):

Let S ⊆ Rn be a convex set and f : S → R a differentiable convex function on S. Then x ∈ S is
optimal if and only if

∇f(x)⊤(x− x) ≥ 0, for all x ∈ S (10)

Using the condition (10), examine graphically if the following points are optimal for problem P :

(a) x1 = (1, 2)

(b) x2 = (2, 1)

Solution.

(a) The point x1 = (1, 2) is not optimal because, for example,

∇f(x1)
⊤(x2 − x1) = (−4, 0) · ((2, 1)− (1, 2))⊤ = (−4, 0) · (1,−1)⊤ = −4 < 0

(b) The point x2 = (2, 1) is optimal as can be seen from Figure 1.

     

  

 

 

 

 

 

∇𝑓(𝑥2) 

𝑥1 = (1,2) 

𝑥2 = (2,1) 

∇𝑓(𝑥1) 

𝑆 

Figure 1: Description of problem P
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Problem 4.3: Optimal Point of a Nonsmooth Convex Problem

Consider the following nonsmooth optimization problem P :

(P ) : min. f(x) =


− 3

2x+ 6, if 0 < x ≤ 2

− 1
2x+ 4, if 2 ≤ x ≤ 4

1
4x+ 1 if 4 ≤ x ≤ 8

x− 5 if x ≥ 8

(11)

subject to: x ∈ R+. (12)

Let S denote the feasible set defined by the constraint (12), and let f : R+ → R with f(x) denote
the objective function (11). Notice that both S and f are convex.

Characterize the subdifferential sets of f at points x1 = 2, x2 = 4, and x3 = 8. Use Corollary 3
from Lecture 4 to show that x2 = 4 is the unique optimal solution to the problem P . Corollary
3 states that a point x ∈ S is an optimal solution to P if and only if 0 ∈ ∂f(x), that is, f has a
subgradient ξ = 0 at x that belongs to the subdifferential set ∂f(x).

Solution.

ξ ∈ Rn is a subgradient of the convex function f(x) at a point x ∈ S if

f(x) ≥ f(x) + ξ⊤(x− x). (13)

One may show that the subdifferential set at x for a convex function f(x) is a nonempty closed
interval [a, b], where a and b are one-sided limits

a = lim
x→x−

0

f(x)− f(x)

x− x
(14)

b = lim
x→x+

0

f(x)− f(x)

x− x
. (15)

We can characterize the subdifferential sets at each point x1, x2, and x3 using (14)–(15). Thus,
we get the following sets:

∂f(x1) = {ξ ∈ R : −3

2
≤ ξ ≤ −1

2
} (16)

∂f(x2) = {ξ ∈ R : −1

2
≤ ξ ≤ 1

4
} (17)

∂f(x3) = {ξ ∈ R :
1

4
≤ ξ ≤ 1}. (18)

Since 0 ∈ ∂f(x2), the point x2 = 4 must be the unique optimal solution.

The problem (11) – (12) is illustrated on Figure 2. Notice that the subgradients ξ at the points
x1, x2, and x3 are the scalars corresponding to the slopes of the tangent lines (the lines that are
perpendicular to the vectors (ξ,−1) to the graph of the function at that points. However, to be
able to represent the subgradients ξ on the figure not as scalars but vectors we can use an auxiliary
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variable y and generate the equivalent reformulation of (11) – (12) as follows

(P ′) : min. y

subject to: y ≥ −3

2
x+ 6

y ≥ −1

2
x+ 4

y ≥ 1

4
x+ 1

y ≥ x− 5

x ∈ R+

y ≥ 0

y ∈ R

By doing so, we represent one-dimensional points x1, x2, and x3 as two-dimensional vectors

[
x1

y1

]
=[

2
3

]
,

[
x2

y2

]
=

[
4
2

]
, and

[
x3

y3

]
=

[
8
3

]
. And therefore, this allows to define the subdifferential sets at

each point x1, x2, and x3 using (14)–(15) as follows.

∂f

(
x1

y1

)
=

{
ξ ∈ R2 :

[
− 3

2
−1

]
≤ ξ ≤

[
− 1

2
−1

]}
(19)

∂f

(
x2

y2

)
=

{
ξ ∈ R2 :

[
− 1

2
−1

]
≤ ξ ≤

[
1
4
−1

]}
(20)

∂f

(
x3

y3

)
=

{
ξ ∈ R2 :

[
− 1

4
−1

]
≤ ξ ≤

[
1
−1

]}
(21)

On the Figure 2 subdifferential sets ∂f(x) correspond to the ”cones” between the dashed lines at

each point

[
x1

y1

]
,

[
x2

y2

]
, and

[
x3

y3

]
.
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(𝝃 < 𝟎,−𝟏)

𝜕𝑓(𝑥!)

(𝝃 > 𝟎,−𝟏)

𝜕𝑓(𝑥")

(𝝃 = 𝟎,−𝟏)
𝜕𝑓(𝑥#)

𝑥& 𝑥' 𝑥(

Figure 2: Description of problem P in 4.3

6


