MS-E2122 - Nonlinear optimization Exercise sheet 4
Oliveira, Dias, Terho Thursday 28.09.2023

This week’s homework Homework 2 is due no later than Monday 16.10.2023 23:55.

Problem 4.1: Necessary Conditions for Least Squares

Consider the following unconstrained optimization problem P:
(P) : min. ||Az — b3 (1)

where A is a matrix in R™*™ and b is a vector in R™. This problem is typically called a
least-squares problem when using the Euclidean norm, and it has several applications in regression
analysis, optimal control, parameter estimation, data fitting, etc.

An extension of the problem P involves minimizing ||2||3 on top of the original objective. To solve
this problem, we can use regularization which is a common scalarization technique to find solutions
to bi-criterion problems. We will consider the following regularized least-squares problem

(RP) : min. |[|Az —b||3+6|=||3 (2)
where the penalty term 6 > 0 controls the trade-off between the two objectives.

(a) Give brief interpretations of the problems (1) and (2).

(b) Find solutions for the problems (1) and (2) by writing the first-order necessary optimality
conditions. Justify why these conditions are also sufficient.

Solution.

(a) In problem (1), we seek a vector y = Az in the subspace spanned by the column vectors
of A that is closest to the vector b. If b is in the column space of A, we need to solve the
system Ax = b. If b is not in the column space of A, we seek a solution to the system Az =y,
where y is the projection of b onto the subspace spanned by the column vectors Aq,..., A,
of A. We assume that b is not in the column space of A, since otherwise the problem reduces
to solving the system Az = b.

In problem (2), we seek a vector x that has a small squared norm ||z||3 and also makes the
squared residual norm ||Az — b||3 as small as possible. The penalty term § > 0 determines
how much importance we put on minimizing the value of ||z||2 vs. the value of ||Az — b||3.

(b) Let us denote the objective function in problem (2) as f(z):
f@) = ||Az —b]|3
= (Az —b) " (Az —b)
=(z"AT —b")(Az — D)
=2 ATAz —2"ATb—b" Az +0b'D
The first-order necessary optimality condition for problem (1) is V f(z) = 0. We get
Vi)=V(z"ATAz) + V(=2 "ATb) + V(=b" Az) + V(b'b)
=(ATA+ AT Az + (—ATb) + (-ATD).
=2ATAz —24Tb=0
from which we finally get the necessary optimality condition
ATAz=ATb (3)

The condition (3) is also sufficient, because f(z) = ||Az — b||3 is a convex function. We can
also verify this by looking at the Hessian

Vif(x)=24TA
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which is positive semidefinite for all x € R™ because
x' AT Az = (Az) " (Az) = ||Az|]3 >0

This is a necessary and sufficient condition for the convexity of f(x) (and also the second-
order necessary condition). Assuming that columns of A are linearly independent, the unique
optimal solution from (3) is

z=(ATA)TATD

Let us denote the objective function in problem (2) as g(x). We get

9(2) = 1Az — b3 + ]
= (Az —b)" (Az —b) + éz "z
=(@"AT —b")(Az —b)} + 02"z
=2 ATAz —2TATb—b Az + b+ 62
The first-order necessary optimality condition for problem (2) is Vg(z) = 0. We get

Vo(z) =V(z AT Az) + V(—2TATb) + V(=b"Az) + V(b"b) 4+ 6V (z " z)
=(ATA+ AT Az 4+ (“ATb) + (—ATH) +5(1 + Dz
=2AT Az —2A7b 4262 =0

from which we get the necessary optimality condition
(ATA+ 6Dz =ATb (4)

The condition (4) is also sufficient because g(z) = ||Az — b||2 + ||z||3 is a convex function.
We can also verify this by looking at the Hessian

Vig(z) = 24T A+ 261
which is positive definite for all x € R™ since § > 0 and
xT AT Az = (Az) T (Az) = ||Az||2 > 0.

V2g(z) > 0 for all x € R” is a necessary and sufficient condition for g(z) to be strictly
convex. Thus, the unique optimal solution from (4) is

x=(ATA+60)7TATH

Problem 4.2: Optimality of Points in a Convex Problem

Consider the following convex optimization problem P:

(P): min. (z; —3)* 4 (z3 — 2)? (5)
subject to: % + 23 <5 (6)
x1+ 22 <3 (7)
x1 >0 (8)
z9 20 (9)

Let S denote the feasible set defined by the constraints (6) — (9), and let f : R? — R with
f(z) = (z1 — 3)? + (w2 — 2)? denote the objective function (5). Notice that both S and f are
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convex. Recall the following optimality condition for convex optimization problems presented in
Lecture 4 (Corollary 4):

Let S C R™ be a convex set and f: S — R a differentiable convex function on S. ThenT € S is
optimal if and only if
V@) (x—7) >0, forallz € S (10)

Using the condition (10), examine graphically if the following points are optimal for problem P:
(a) 1 =(1,2)

(b) T2=(2,1)

Solution.

(a) The point Z; = (1,2) is not optimal because, for example,

V@) (T2 —T1) = (=4,0) - ((2,1) — (1,2)) " = (=4,0)- (1,-1)T = -4 <0

(b) The point To = (2, 1) is optimal as can be seen from Figure 1.

Figure 1: Description of problem P
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Problem 4.3: Optimal Point of a Nonsmooth Convex Problem

Consider the following nonsmooth optimization problem P:

—3z+6, f0<z<2
—%x—|—4, if2<z<4
jr+1  if4<z<8
r—5 ifx > 8

subject to: x € RT. (12)

(P): min. f(z) = (11)

Let S denote the feasible set defined by the constraint (12), and let f : RT™ — R with f(z) denote
the objective function (11). Notice that both S and f are convex.

Characterize the subdifferential sets of f at points T; = 2, To = 4, and T3 = 8. Use Corollary 3
from Lecture 4 to show that To = 4 is the unique optimal solution to the problem P. Corollary
3 states that a point T € S is an optimal solution to P if and only if 0 € 9f(T), that is, f has a
subgradient £ = 0 at T that belongs to the subdifferential set 0f(T).

Solution.

& € R™ is a subgradient of the convex function f(z) at a point T € S if

f@)> f@+¢ (@ —7). (13)

One may show that the subdifferential set at T for a convex function f(z) is a nonempty closed
interval [a, b], where a and b are one-sided limits

a= tm 1O ZID (14)
b= lim_ % (15)

We can characterize the subdifferential sets at each point Z1, Tz, and T3 using (14)—(15). Thus,
we get the following sets:

o) ={€eR: 3 <€< 1) (16)
OF(@) = {€€R: —3 <£< 7} (17)
af(fg):{geRzigfgl} (18)

Since 0 € 9f(T2), the point Ty = 4 must be the unique optimal solution.

The problem (11) — (12) is illustrated on Figure 2. Notice that the subgradients ¢ at the points
T, T2, and T3 are the scalars corresponding to the slopes of the tangent lines (the lines that are
perpendicular to the vectors (£,—1) to the graph of the function at that points. However, to be
able to represent the subgradients £ on the figure not as scalars but vectors we can use an auxiliary
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variable y and generate the equivalent reformulation of (11) — (12) as follows
(P): min. y
3
subject to: y > 57 + 6
> L +4
——z
V=73
> - +1
~x
V=1
y>x—395
r R

y=>0
yeR

. . . . _ _ . . T
By doing so, we represent one-dimensional points T1, To, and T3 as two-dimensional vectors [ ] =

Y1
2 T2 4 T3 8 . . .
2T = ,and |_7| = . And therefore, this allows to define the subdifferential sets at
3 Y2 2 Y3 3
each point Ty, T, and T3 using (14)—(15) as follows.
= r_37 1
T & R &
of(72) ={ecer: B <e< i (20)
Yo -1] = > = |1
or(B) = {eere. [1] <e< |1 (21)
Y3 |—1] =~ — |1

On the Figure 2 subdifferential sets 9f(Z) correspond to the ”cones” between the dashed lines at

each point [ }, [952} and [m3]
Y1 Yo Y3
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Figure 2: Description of problem P in 4.3



