
Closed-loop system
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Two-degrees-of-freedom (2 DOF) control structure
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Generally MIMO case

(2 DOF structure)
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Now consider the ”push-through”-rule, which is often
useful in matrix manipulations related to multivariable
systems.  In the transfer function matrix representations
that follow the push-through rule is often used.

Earlier the matrix inversion lemma was presented. 

Let A and B be such matrices that both AB and BA are
defined and square matrices.  Then it holds

AABIBAIA 11 )()(  

Note.  A and B need not be square matrices. The matrix
inverses above are assumed to exist. 
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The closed loop equations become
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Control error e = r - z

Use the following abbreviations
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where cG is the closed loop transfer function (matrix)

ryc GFGFIG 1)( 

S is the sensitivity function 1)(  yGFIS

T is the complementary sensitivity function

yy GFGFIT 1)( 
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uS is the input sensitivity function
1)(  GFIS yu

( ) ( )S j T j I  Generally:

Note that the transfer functions (and matrices)
are complex-valued. 

Often ry FF  in which case cGT 

(One-degree-of-freedom (1 DOF) control configuration)

Fundamental relationship
The most important formula
in control engineering!

(in all frequencies)



7

What about the control signal

uuwuruuuyuru

uyyyry

wSnwGrGwSnwFSrFS

wGFInwFGFIrFGFIu



 

)()(

)()()()( 111

where
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System with inputs nwwr u ,,,
and outputs ez,
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Note that the loop transfer function

is obtained, when the controller has been designed.  
That implies also

which charecterise the opetation of the loop.  The closed
loop transfer function includes also the pre-filter, which is 
outside the loop.  

( ) ( ) ( )yL j G j F j  
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(Classical Bode analysis from that)

ryc GFGFIG 1)( 
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Designing and for the servo problems also

such that L, S and T are as desired is called
loop shaping. 

Note that in classical control the design of compensators that
lead to desired gain and phase margins is loop shaping also.

Now we are broadening the view, which leads to new tools
for controller analysis and synthesis.  New players: S and T.

yF rF



Internal stability
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Zero-pole-cancellations are problematic
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But how about transfer function from reference to control?
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The controller is unstable, and therefore useless .

The unstable mode corresponding to  s – 1 was not
observable in the closed loop transfer function.



12

Ex.
1

1)(



s

sG process

1
1)()(





s
ssFsF ry controller

Closed loop from r (or w) to control u

2
1

1
1

1
11

1
1

1
1


















s
s
s

s

s
s

sGc closed loop

2
1

1
1

1
11

1
1


















s
s

s
s

s

s
s

Gru



13

Sensitivity function
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All stable; is there no s – 1 problem now?
Calculate the transfer function from wu to output.
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But do ”safe” cancellations exist?

Ex. 
1

1)(



s

sG 3 yr FF

2
3

1
31

1
3








s

s

sGc

2
)1(3

1
31

3









s
s

s

Gru 2
1

1
31

1









s
s

s

S

2
1

1
31

1
1








s

s

sG ywu

all is nice and beautiful; Feedback
can stabilize an unstable process.
Reason for a definition:

The process is unstable
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Internal stability of the closed-loop system

G

-Fy

Fr
r u

y

wu

z

w n

The system is internally stable, if (after all cancellations
in the calculation of the transfer functions have been 
made) the following transfer functions
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are stable and the pre-compensator Fr is also stable.

   1 1

( )u y y u y y y

y u y y y

u w F w Gu w F w F Gu

u I F G w I F G F w
 

     

        1 1

y y y uy I GF w I GF Gw
 

   

Similarly:
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Robustness

GIG G )(0 

nominal model G
true system G0

model error G

Is the closed loop stable in spite of model error?
(robust stability)

Does the system meet performance specifications in spite
of model error ?  ( robust performance)
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Assume that the disturbances are zero, but there is model
error in  G

rFGFGIz ry 0
1

00 )( 

rGFGFIz ry
1)( 

GIG G )(0 

G0

-Fy

Fr
r u

y

wu

z

w n

nominal model G

real output

output predicted by the
model
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The following results can be derived

It is seen that the sensitivity function S0 shows, how the 
model error maps into the output error.

For those frequencies where the sensitivity function is
”small”, the effect of the modeling error in output is
also small.
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But what about stability:

Consider the loop gain, set the reference to zero,  for
simplicity.

Idea:  study the transfer function from  x 
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The ”Small gain theorem” guarantees that the closed loop
is stable, if subsystems are stable and the gain of their 
product

yyG FGFIG 1)( 

is smaller than one.  (When applying the Small gain theorem,
note that the system is linear.)  

Use the ”push-through”-rule
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Because G and T are both stable transfer functions, the 
system is stable if  (sufficient condition)

1
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which in the SISO case implies
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Sufficient condition for robust stability



A graphical approach (SISO)
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The circle describes the uncertainty
at one frequency point.  The circles
(all frequencies) must not cross the
critical point (-1,0).
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Design specifications for the closed loop system

”Design the compensator such that the controlled variable
follows the reference as close as possible in spite of 
disturbances, measurement errors  and model uncertainties.
Use the control signal as little as possible.” 
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Let 0uw It then holds that
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Now it is easy to list demands for control:
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1.  cGI  ”small” , closed loop tf. close to I.
2. Sensitivity function S small, so that disturbances and

model errors would have a minor impact on the output. 

3. Complementary sensitivity function T should be
small, so that measurement disturbances would not 
affect much and the closed loop stability would not be
in danger.

4.  The tfs. ruG and wuG should not be large.

But: ITS  ruc GGG 

always hold,  there are inevitable conflicts (fundamental
limitations in control performance)



28

)0()0(G-Ie(t) lim c0 Se
t




Static error corresponding to step input

(if T = Gc)

1
00 )(  yFGIS

To minimize the static error the sensitivity must be small
at low frequencies.

That means that the compensator must have high gain
(e.g. integration) at low frequencies.

Other criteria: design the compensator such that
Gc and S are as desired; or their poles are at
desired locations.
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Specifications in time domain:

t

y
M

e0
1

1.1

0.9

Tr
Ts

M overshoot
e0 static error
Tr rise time
Ts settling time

However, target specifications are
difficult to reach by direct design methods. 
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Minimize

where

a natural way to formalize the goal as an optimal control
problem, in which the control law must be found such that
the given criterion is minimized.

But:  it is not straightforward to calculate a control law,
that directly fulfils some time domain criteria.

Specifications in frequency domain are easier to deal
with in some sense.

One solution: use optimal control techniques.  They can in 
many cases guarantee immediate stability.
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Frequency domain specifications:

Frequency (rad/sec)
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There are different definitions for bandwidth (meaning the
frequency range where system can follow the sinusoidal
input). 

C BTB

Gain crossover C
S -3 dB from
below

B

T -3 dB from
above

BT
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S log
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A typical S-curve

1( iS suppress the disturbances
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
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T small to compensate measurement disturbances, but
also to guarantee robust stability.


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TWT

When we want to limit the use of control signal, we
set

1
ruuGW
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Design specifications: Choose the weights

SW TW uW

and design the controller such that

1

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1
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ruuGW
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Unfortunately this is not always possible.

Instead: minimize 

  max ( ) 1;
S

T

u ru

W S
N N j N W T

W G

 


 
     
  

SISO: N is a vector; hence
2 2 2( ) S T ru ruN W S W T W G   

H∞ control problem: 
K

min ( )N K
 K is the compensator



In Matlab, the command mixsyn turns out to be helpful here.   

[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3)

mixsyn H-infinity mixed-sensitivity synthesis method for robust
control design. Controller K stabilizes plant G and minimizes
the H-infinity cost function

||   W1*S ||
|| W2*K*S ||
||   W3*T ||             

where
S := inv(I+G*K)         % sensitivity
T := I-S = G*K/(I+G*K)  % complementary sensitivity
W1, W2 and  W3 are stable LTI 'weights' 

Inputs:
G         LTI plant
W1,W2,W3  LTI weights (either SISO or compatibly dimensioned MIMO)

To omit weight, use empty matrix (e.g., W2=[] omits W2)



Outputs:
K         H-infinity Controller
CL        CL=[W1*S; W2*K*S; W3*T]; weighted closed-loop system
GAM       GAM=hinfnorm(CL), closed-loop H-infinity norm
INFO      Information STRUCT, see HINFSYN documentation for details



G=ss(-1,2,3,4);   % plant to be controlled
w0=10;     % desired closed-loop bandwidth
A=1/1000;  % desired disturbance attenuation inside bandwidth
M=2 ;      % desired bound on hinfnorm(S) & hinfnorm(T)
s=tf('s'); % Laplace transform variable 's'
W1=(s/M+w0)/(s+w0*A); % Sensitivity weight
W2=[];                % Empty control weight
W3=(s+w0/M)/(A*s+w0); % Complementary sensitivity weight
[K,CL,GAM,INFO]=mixsyn(G,W1,W2,W3);

Plot results of successful design:
L=G*K;  % loop transfer function
S=inv(1+L); % Sensitivity
T=1-S;      % complementary sensitivity

Example:



Mixsyn does the H infinity problem formulation automatically
and solves the problem.  If you use the command hinfsyn, 
you have to form the augmented plant yourself and pose the
problem accordingly.

This is Mixed Sensitivity Design, an advanced form of
Loop Shaping Control.



Example of control design

  2
200( )

10 1 0.05 1
G s

s s


 

100( )
10 1dG s

s




Command tracking + disturbance rejection problem
Both demands are difficult to meet simultaneously
(trade-off in control design)

Let us try loop shaping by H∞ control.



Example of control design...

% Mixed sensitivity design
%
% Uses the Robust Control Toolbox
%
s=tf('s');
G=200/(10*s+1)/(0.05*s+1)^2;
Gd=100/(10*s+1);
M=1.5; wb=10; A=1e-4;
Ws=tf([1/M wb], [1 wb*A]); Wu=1;
[Fy,CL,gopt]=mixsyn(G,Ws,Wu,[]);
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Because the load response is very
poor in design 1, higher gains for
the controller at low frequencies are
needed (integral action).   

To that end, use

2PW ,and the
result is clearly
better.



Robust performance (SISO)
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The circle centered at (-1,0)
represents constant values of

. The radius is S 1/ S

Criterion for nominal performance
is  1 1S SW S W L   



Criterion for robust performance: all possible points in L0

must stay outside the disk centered at (-1,0) and with the
radius WS .

 
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        
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Note:  Taking takes the condition for RP close to T GW  

2 2max  1S
S T

T

W S
W S W T

W T 


  

So mixed sensitivity design can be used to design 
controllers, which have (in practice) RP.



Main topics  
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Closed loop equations

Effect of model errors
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