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Mathematical modeling



Mathematical modeling steps
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Terminologies

• Decision variables
• Mathematical description of the set of decisions to be made

• Parameters
• What input data are known and needed for making the decisions?

• Objectives
• A measure to rank alternative solutions
• What do you want to achieve? Express this mathematically by using your decision 

variables and parameters
• Constraints
• Limitations on the values of the decision variables
• Develop mathematical relationships to describe constraints
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Types of mathematical models

• Linear Programming
• Variables can take real numbers

• Integer Programming
• Variables can only take integer values

• Binary Programming
• Variables can only take the value of 0 or 1

• Mixed Integer programming
• Some variables are constrained to be integer values

5



Valid range of a variable
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Valid range of a variable

• Binary programing: 𝒙 ∈ {𝟎, 𝟏}

• Integer programming: 𝒙 ∈ ℕ, ℤ
• Either non-negative: ℕ is the set containing all non-negative integers: {0, 1, 2, 3,…}
• Or all integer numbers: ℤ is the set containing zero, all positive integers, and all negative 

integers

• Linear programing: 𝒙 ∈ ℝ
• ℝ is the set containing all rational numbers and irrational numbers (such as 2 and 𝜋)
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Feasible vs. infeasible solution

• A feasible solution satisfies all the constraints
• That is, any point within the feasible region
• Note that sometimes a feasible solution may not exist at all

• Feasible region is a convex area
• All points on the constraint lines that form the boundary of the region are feasible 

solutions
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Finding optimal solution(s)

• Optimal versus non-optimal
• Exact algorithms give an optimal solution
• Heuristics are simple procedures guided by common sense that are meant to provide 

feasible but not necessarily optimal solutions to difficult problems

• An optimal solution can be found in a corner point, or on a constraint line 
between two corner points

• Any point in the interior of the feasible region cannot be an optimal solution
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Set notations

• 𝑨 = {𝒂, 𝒃, 𝒄} for a set “A” contains the elements “a”, “b”, and “c”
• 𝑎 ∈ 𝐴: denoting that a is an element of A
• 𝐴 ∋ 𝑎: denoting that A has a as an element
• 4 ∉ 𝐴: denoting that 4 is not an element of A
• 𝑎, 𝑏 ⊆ 𝐴: denoting that the set {a, b} is a subset of A

• Using set builder notation
• 𝑆 = 1, 2, 3, … , 𝑛
• 𝑆 = 𝑥 1 ≤ 𝑥 ≤ 𝑛
• Where the “|” means “such that,” or s.t.
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Summation

𝟏 + 𝟐 + 𝟑 + 𝟒 + 𝟓 =5
𝒊"𝟏

𝟓

𝒊

𝟑𝟐 + 𝟒𝟐 +⋯+ 𝟏𝟎𝟐 = 5
𝒏"𝟏

𝟏𝟎

𝒏𝟐

5
𝒋∈𝑱

𝒙𝒊𝒋 = 𝟏 ∀𝒊 ∈ 𝑰
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Other useful notations

• Quantifiers
• ∀ (universal quantifier) means “for all”
• ∃ (existential quantifier) means “there exists”

• Example: ∀𝒛 ∈ ℤ ∃ 𝒛+ ∈ ℤ 𝒔. 𝒕. 𝒛+ > 𝒛
• For every z that is an integer number, there exists another integer number z’ that is larger 

than z.
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Linear programming
Model formulation



Steps to formulate a model

• Read the problem, then read it again!
• Step 1: Define decision variables
• 1a. Decision needs to be made on?
• Express this by using, for example, 𝑥!, 𝑥" (Clearly explaining each variable)

• 1b. Indicate valid range of all variables
• Binary, integer, real; (non-)negative?

• Step 2: Define objective function
• 2a. What do you want to achieve? Choose between minimize and maximize
• 2b. Express this mathematically using variables

• Step 3: Formulate all constraints
• Develop mathematical relationships to describe contraints (using either <, >, =, ≤, or ≥)
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“Real-world” problem

• Suppose that a factory produces two types of products in a production week that contains 60 
hours:
• It can produce 1 box of product A in 6 hours
• It can produce 1 box of product B in 5 hours

• A week’s production is stored in a stockroom on-site, with an effective capacity of 150 m3

•  One box of product A takes up 10 m3 of storage space; that of B takes up 20 m3

• The profit contribution of a box of product A is €500
• The only customer of product A will accept no more than 8 boxes per week

• The profit contribution of a box of product B is €450
• Has no limit on the amount that can be sold

How many boxes of each product type should be produced each week in order to maximize the 
total profit?
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Step 1: Decision variables

• Suppose that a factory produces two types of products in 
a production week that contains 60 hours:
• It can produce 1 box of product A in 6 hours
• It can produce 1 box of product B in 5 hours

• A week’s production is stored in a stockroom on-site, with 
an effective capacity of 150 m3

•  One box of product A takes up 10 m3 of storage space; that of B takes 
up 20 m3

• The profit contribution of a box of product A is €500
• The only customer of product A will accept no more than 8 boxes per 

week
• The profit contribution of a box of product B is €450

• Has no limit on the amount that can be sold

How many boxes of each product type should be produced 
each week in order to maximize the total profit?

• Step 1a. What are the variables?
𝑥,= number of boxes of product A produced 
per week
𝑥-= number of boxes of product B produced 
per week

• Step 1b. Indicate the valid range of all 
variables

𝑥, and 𝑥- are non-negative
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Step 2: Objective function

• Step 2a. What do you want to achieve?
• Produce a number of boxes of products A 

and B such that total profit is maximized

• Step 2b. Express mathematically
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = 500𝑥, + 450𝑥-
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Step 3: Formulate constraints

• Production capacity constraint:
𝟔𝒙𝑨 + 𝟓𝒙𝑩 ≤ 𝟔𝟎

• Storage capacity constraint:
𝟏𝟎𝒙𝑨 + 𝟐𝟎𝒙𝑩 ≤ 𝟏𝟓𝟎

• Demand constraint:
𝒙𝑨 ≤ 𝟖

• Non-negativity constraints:
𝒙𝑨 ≥ 𝟎, 𝒙𝑩 ≥ 𝟎
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Complete Linear Programing model

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = 500𝑥, + 450𝑥-
s.t.
6𝑥, + 5𝑥- ≤ 60 
10𝑥, + 20𝑥- ≤ 150 
𝑥, ≤ 8 
𝑥, ≥ 0, 𝑥- ≥ 0 
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Solving linear 
programming models 
graphically



Complete LP model

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍 = 500𝑥, + 450𝑥-
s.t.
6𝑥, + 5𝑥- ≤ 60 
10𝑥, + 20𝑥- ≤ 150 
𝑥, ≤ 8 
𝑥, ≥ 0, 𝑥- ≥ 0 
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Representing constraints graphically

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍
= 500𝑥, + 450𝑥-

s.t.
6𝑥, + 5𝑥- ≤ 60 
10𝑥, + 20𝑥- ≤ 150 
𝑥, ≤ 8 
𝑥, ≥ 0, 𝑥- ≥ 0 
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Representing constraints graphically
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍
= 500𝑥, + 450𝑥-
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6𝑥, + 5𝑥- ≤ 60 
10𝑥, + 20𝑥- ≤ 150 
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Representing constraints graphically
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Compute optimal solution

The optimal solution lies in the intersection of
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Representing constraints graphically
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Thank you!

Questions?
Dr. Tri M. Tran
tri.tran@aalto.fi 
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