

### In Preparation for Session 3: Mathematical modeling 35E00750 Logistics Systems and Analytics

**Dr. Tri M. Tran** Assistant Professor of Operations Management University of Groningen https://www.rug.nl/staff/tri.tran/



# Mathematical modeling

Slide courtesy of Dr. Ir. Paul Buijs, Assistant Professor, Department of Operations, Faculty of Economics and Business, University of Groningen

### **Mathematical modeling steps**







Terminologies

#### Decision variables

- Mathematical description of the set of decisions to be made
- Parameters
  - What input data are known and needed for making the decisions?
- Objectives
  - A measure to rank alternative solutions
  - What do you want to achieve? Express this mathematically by using your decision variables and parameters
- Constraints
  - Limitations on the values of the decision variables
  - Develop mathematical relationships to describe constraints





#### Aalto University School of Business

#### 5

### **Types of mathematical models**

#### Linear Programming

- Variables can take real numbers
- Integer Programming
  - Variables can only take integer values
- Binary Programming
  - Variables can only take the value of 0 or 1
- Mixed Integer programming
  - Some variables are constrained to be integer values



### Valid range of a variable







### Valid range of a variable



- Binary programing:  $x \in \{0, 1\}$
- Integer programming:  $x \in \mathbb{N}, \mathbb{Z}$ 
  - Either non-negative:  $\mathbb{N}$  is the set containing all non-negative integers: {0, 1, 2, 3,...}
  - Or all integer numbers: Z is the set containing zero, all positive integers, and all negative integers
- Linear programing:  $x \in \mathbb{R}$ 
  - $\mathbb{R}$  is the set containing all rational numbers and irrational numbers (such as  $\sqrt{2}$  and  $\pi$ )



### Feasible vs. infeasible solution



- A feasible solution satisfies all the constraints
  - That is, any point within the feasible region
  - Note that sometimes a feasible solution may <u>not</u> exist at all

- Feasible region is a convex area
  - All points on the constraint lines that form the boundary of the region are feasible solutions



## Finding optimal solution(s)



### Optimal versus non-optimal

- Exact algorithms give an optimal solution
- Heuristics are simple procedures guided by common sense that are meant to provide feasible but not necessarily optimal solutions to difficult problems
- An optimal solution can be found in a corner point, or on a constraint line between two corner points
- Any point in the interior of the feasible region cannot be an optimal solution



### **Set notations**



- $A = \{a, b, c\}$  for a set "A" contains the elements "a", "b", and "c"
  - $a \in A$ : denoting that a is an element of A
  - $A \ni a$ : denoting that *A* has *a* as an element
  - $4 \notin A$ : denoting that 4 is not an element of A
  - $\{a, b\} \subseteq A$ : denoting that the set  $\{a, b\}$  is a subset of A

### Using set builder notation

- $S = \{1, 2, 3, \dots, n\}$
- $S = \{x | 1 \le x \le n\}$
- Where the "|" means "such that," or s.t.



### **Summation**



$$1 + 2 + 3 + 4 + 5 = \sum_{\substack{i=1 \\ 10 \\ n=1}}^{5} i$$
$$3^{2} + 4^{2} + \dots + 10^{2} = \sum_{\substack{n=1 \\ n=1}}^{10} n^{2}$$
$$\sum_{j \in J} x_{ij} = 1 \quad \forall i \in I$$



### **Other useful notations**



#### Quantifiers

- ∀ (universal quantifier) means "for all"
- $\exists$  (existential quantifier) means "there exists"
- **Example:**  $\forall z \in \mathbb{Z} \exists z' \in \mathbb{Z} s. t. z' > z$ 
  - For every z that is an integer number, there exists another integer number z' that is larger than z.





## Linear programming Model formulation

### Steps to formulate a model



- Read the problem, then read it again!
- Step 1: Define decision variables
  - 1a. Decision needs to be made on?
    - Express this by using, for example,  $x_1, x_2$  (Clearly explaining each variable)
  - 1b. Indicate valid range of all variables
    - Binary, integer, real; (non-)negative?
- Step 2: Define objective function
  - 2a. What do you want to achieve? Choose between minimize and maximize
  - 2b. Express this mathematically using variables
- Step 3: Formulate all constraints
  - Develop mathematical relationships to describe contraints (using either <, >, =,  $\leq$ , or  $\geq$ )



### "Real-world" problem



- Suppose that a factory produces two types of products in a production week that contains 60 hours:
  - It can produce 1 box of product A in 6 hours
  - It can produce 1 box of product B in 5 hours
- A week's production is stored in a stockroom on-site, with an effective capacity of 150 m<sup>3</sup>
  - One box of product A takes up 10 m<sup>3</sup> of storage space; that of B takes up 20 m<sup>3</sup>
- The profit contribution of a box of product A is €500
  - The only customer of product A will accept no more than 8 boxes per week
- The profit contribution of a box of product B is €450
  - Has no limit on the amount that can be sold

How many boxes of each product type should be produced each week in order to maximize the total profit?



### **Step 1: Decision variables**

#### The "real-world" problem

- Suppose that a factory produces two types of products in a production week that contains 60 hours:
  - It can produce 1 box of product A in 6 hours
  - It can produce 1 box of product B in 5 hours
- A week's production is stored in a stockroom on-site, with an effective capacity of 150 m<sup>3</sup>
  - One box of product A takes up 10  $m^3$  of storage space; that of B takes up 20  $m^3$
- The profit contribution of a box of product A is €500
  - The only customer of product A will accept no more than 8 boxes per week
- The profit contribution of a box of product B is €450
  - Has no limit on the amount that can be sold

How many boxes of each product type should be produced each week in order to maximize the total profit?

#### The model



• Step 1a. What are the variables?

 $x_A$  = number of boxes of product A produced per week

 $x_B$  = number of boxes of product B produced per week

- Step 1b. Indicate the valid range of all variables
- $x_A$  and  $x_B$  are non-negative

### **Step 2: Objective function**

#### The "real-world" problem

- Suppose that a factory produces two types of products in a production week that contains 60 hours:
  - It can produce 1 box of product A in 6 hours
  - It can produce 1 box of product B in 5 hours
- A week's production is stored in a stockroom on-site, with an effective capacity of 150 m<sup>3</sup>
  - One box of product A takes up 10  $m^3$  of storage space; that of B takes up 20  $m^3$
- The profit contribution of a box of product A is €500
  - The only customer of product A will accept no more than 8 boxes per week
- The profit contribution of a box of product B is €450
  - Has no limit on the amount that can be sold

How many boxes of each product type should be produced each week in order to maximize the total profit?

#### The model



#### Step 2a. What do you want to achieve?

- Produce a number of boxes of products A and B such that total <u>profit</u> is <u>maximized</u>
- **Step 2b. Express mathematically**  $Maximize Z = 500x_A + 450x_B$

### **Step 3: Formulate constraints**

#### The "real-world" problem

- Suppose that a factory produces two types of products in a production week that contains 60 hours:
  - It can produce 1 box of product A in 6 hours
  - It can produce 1 box of product B in 5 hours
- A week's production is stored in a stockroom on-site, with an effective capacity of 150 m<sup>3</sup>
  - One box of product A takes up 10  $m^3$  of storage space; that of B takes up 20  $m^3$
- The profit contribution of a box of product A is €500
  - The only customer of product A will accept no more than 8 boxes per week
- The profit contribution of a box of product B is €450
  - Has no limit on the amount that can be sold

How many boxes of each product type should be produced each week in order to maximize the total profit?



#### The model

Production capacity constraint:

 $6x_A + 5x_B \leq 60$ 

- Storage capacity constraint:  $10x_A + 20x_B \le 150$
- Demand constraint:

 $x_A \leq 8$ 

• Non-negativity constraints:  $x_A \ge 0, x_B \ge 0$ 



## **Complete Linear Programing model**

#### The "real-world" problem

- Suppose that a factory produces two types of products in a production week that contains 60 hours:
  - It can produce 1 box of product A in 6 hours
  - It can produce 1 box of product B in 5 hours
- A week's production is stored in a stockroom on-site, with an effective capacity of 150 m<sup>3</sup>
  - One box of product A takes up 10  $m^3$  of storage space; that of B takes up 20  $m^3$
- The profit contribution of a box of product A is €500
  - The only customer of product A will accept no more than 8 boxes per week
- The profit contribution of a box of product B is €450
  - Has no limit on the amount that can be sold

How many boxes of each product type should be produced each week in order to maximize the total profit?  $Maximize \ Z = 500x_A + 450x_B$ 

The model

 $6x_A + 5x_B \le 60$   $10x_A + 20x_B \le 150$   $x_A \le 8$  $x_A \ge 0, x_B \ge 0$ 

s.t.



## Solving linear programming models graphically

### **Complete LP model**



 $Maximize Z = 500x_A + 450x_B$ 

s.t.

 $6x_A + 5x_B \le 60$ 

 $10x_A + 20x_B \le 150$  $x_A \le 8$ 

 $x_A \ge 0$ ,  $x_B \ge 0$ 



 $x_B$ 



Maximize Z=  $500x_A + 450x_B$ s.t.  $6x_A + 5x_B \le 60$  $10x_A + 20x_B \le 150$  $x_A \le 8$  $x_A \ge 0, x_B \ge 0$ 

 $x_A$ 





Maximize Z=  $500x_A + 450x_B$ s.t.  $6x_A + 5x_B \le 60$  $10x_A + 20x_B \le 150$  $x_A \le 8$  $x_A \ge 0, x_B \ge 0$ 

> Aalto University School of Business

 $x_B$  $x_A = 0$  $x_B = 0$ 

 $x_A$ 



Maximize Z  $= 500x_A + 450x_B$ s.t.  $6x_A + 5x_B \le 60$  $10x_A + 20x_B \le 150$  $x_A \leq 8$  $x_A \geq 0, x_B \geq 0$ 





university of groningen faculty of economics



university of



 $x_B$ Maximize Z 15  $6x_A + 5x_B = 60$  $x_A = 0$  $x_A = 8$  $= 500x_{A} + 450x_{B}$ XA  $\mathbf{X}_{\mathbf{B}}$ s.t. 12 0  $6x_A + 5x_B \leq 60$ 10 0 10  $10x_A + 20x_B \le 150$  $x_A \leq 8$  $x_A \geq 0, x_B \geq 0$ 5  $10x_A + 20x_B = 150$  $x_A$ 0  $x_B = 0$ 16 0 5 11 **Aalto University School of Business** 



Maximize Z=  $500x_A + 450x_B$ s.t.  $6x_A + 5x_B \le 60$  $10x_A + 20x_B \le 150$  $x_A \le 8$  $x_A \ge 0, x_B \ge 0$ 

> Aalto University School of Business















s.t.

 $x_A \leq 8$ 





32

### **Compute optimal solution**



The optimal solution lies in the intersection of

$$6x_A + 5x_B = 60$$
 and  $10x_A + 20x_B = 150$ 

$$6x_{A} + 5x_{B} = 60$$

$$24x_{A} + 20x_{B} = 240$$

$$10x_{A} + 20x_{B} = 150$$

$$14x_{A} = 90$$

$$x_{A} = \frac{90}{14} = 6.43$$



### **Compute optimal solution**



The optimal solution lies in the intersection of

 $6x_{A} + 5x_{B} = 60 \text{ and } 10x_{A} + 20x_{B} = 150$   $6x_{A} + 5x_{B} = 60$   $24x_{A} + 20x_{B} = 240$   $5x_{B} = 60 - 6x_{A}$   $10x_{A} + 20x_{B} = 150$   $14x_{A} = 90$   $x_{A} = \frac{90}{14} = 6.43$   $x_{B} = 12 - \left(\frac{6}{5}\right)6.43 = 4.29$ 











# Thank you!

## **Questions?**

Dr. Tri M. Tran tri.tran@aalto.fi