Aalto University School of Business

Session 6 (cont.):
 Vehicle routing problems: heuristics $35 E 00750$ Logistics Systems and Analytics

Solving a TSP to optimality?

- An optimal algorithm would be:
- Try all combinations and select cheapest
- For TSP, assume n cities:
- Start in city 1
- Second city: $(n-1)$ options
- Third city: $(n-2)$ options
- ...

Hence, we have to consider $(n-1)(n-2) \ldots 1=(n-1)$!
 options to find an optimal route connecting all cities

TSP heuristics

- Constructive heuristics
- Starts with an empty solution and extends solution step by step until a complete solution is obtained
- Example within this course: nearest neighbor
- Improvement or exchange procedures
- Start with a (random) solution and repeatedly consider various changes
- Examples: Clarke \& Wright savings heuristic
- Examples: simulated annealing, genetic algorithms

Heuristics for the VRP

A VRP may consist of multiple routes. VRP heuristics are thus typically a stepwise process, such as:

- Cluster-first; route-second
- Step 1: Construct clusters of locations
- Step 2: Solve one TSP per cluster
- Route-first; cluster-second
- Step 1: Relax constraints on vehicle capacity to build one enormous TSP tour
- Step 2: Split the enormous tour into feasible routes

Aalto University School of Business

Nearest neighbor (insertion heuristic)

Nearest neighbor (insertion heuristic)

- Nearest neighbor (n cities):
- Starting location/city is known
- Select a city from those not visited yet with the min. distance from the last city in the tour
- Continue as long as cities remain unvisited
- You could consider some stopping criterion
- Total route length
- Maximum driving time
- Vehicle (weight/volume) capacity

Aalto University
School of Business

Nearest neighbor (example)

- The objective is to find the route visiting all customers exactly once in the shortest time
- The route starts and ends at the depot

	Depot	C1	C2	C3	C4	C5
Depot	-	35	43	23	33	19
C1	35	-	47	42	21	26
C2	43	47	-	36	31	30
C3	23	42	36	-	50	17
C4	33	21	31	50	-	45
C5	19	26	30	17	45	-

Aalto University
School of Business

Nearest neighbor (example)

To						
From	Depot	1	C2	3	C5	
1) Depot		35	43	23	33	19
C1		-	47	42	21	26
C2		47	-	36	31	30
C3		42	36	-	50	17
C4		21	31	50	-	45
C5		26	30	17	45	-

Nearest neighbor (example)

	$\begin{aligned} & \text { To } \\ & \mid \text { Depot } \end{aligned}$		C2	C3	C4	C5
From \qquad						
1) ${ }_{\text {C1 }}$		35	43 47	23 42	33 21	
C2		47	-	36	31	
C3		42	36	-	50	
C4		21	31	50	-	
12) C 5		26	30	17	45	

Nearest neighbor (example)

	To Depot	C1	C2	C3	C4	C5
1) Depot		35	43		33	
C1		-	47		21	
C2		47	-		31	
C3		42	36		50	
C4		21	31		-	
2) C 5		26	30		45	

Nearest neighbor (example)

	To Depot	C1	C2	C3	C4	C5
1) Depot		35			33	
C1		-			21	
$4{ }^{4} \mathrm{C} 2$		47			31	
3 C3		42			50	
C4		21			-	
2) C 5		26			45	

Nearest neighbor (example)

Nearest neighbor (example)

		To	Depot C1	C2	C3	C4
From	C5					
1)						
Depot	-					
C1	35					
C2						
C3						
C5						
C5						

Nearest neighbor (example)

	Depot C1		C2	C3	C4	C5
-1) Depot	-	35	43	23	33	19
-6) C 1	35	-	47	42	21	26
4) C 2	43	47	-	36	31	30
3) C 3	23	42	36	-	50	17
5) C 4	33	21	31	50	-	45
$\stackrel{\text { ¢ }}{ }$ C5	19	26	30	17	45	-

- Route: \{Depot, 5, 3, 2, 4, 1, Depot\}
- Total distance: $19+17+36+31+21+35=159$

Aalto University
School of Business

Thank you!

Questions?

Dr. Tri M. Tran
tri.tran@aalto.fi

