Aalto University School of Business

Session 9:
 Facility location problems 35E00750 Logistics Systems and Analytics

Assistant Professor of Operations Management
University of Groningen
https://www.rug.nl/staff/tri.tran/

Discrete and continuous methods

- There are two types of facility location methods
- Methods for continuous facility location problems seek to find a location (or multiple locations) anywhere in a two-dimensional plane
- Methods for discrete facility location problems evaluate known (candidate) locations
- In this course, we consider the following methods
- Continuous: Center-of-gravity method
- Discrete: Factor rating method
- Discrete: Cost-volume analysis
- Discrete: Linear programing formulation of facility location problem

Aalto University
School of Business

Aalto University School of Business

Center-of-gravity method

Center-of-gravity method

- The center-of-gravity method is a mathematical technique for finding an optimal location for a single facility
- Ideal location minimizes weighted (with volume of goods) distance between, for example, warehouse and retailers
- Method is using
- Location of the network
- Volume of goods to be shipped to those locations
- (Transportation costs)
- Objective
- Minimize distance/costs (directly proportional to distance and volume)

Aalto University
School of Business

Center-of-gravity method

university of groningen
faculty of economics and business

- Determine an optimal location (x, y) for a warehouse location given the following demand volumes

City	Demand	Coordinates (x, y)
Amsterdam	2000	$(30,120)$
Berlin	1000	$(90,110)$
Osnabruck	1000	$(130,130)$
Brussels	2000	$(60,40)$

Aalto University
School of Business

Center-of-gravity method

$\longrightarrow C_{x}=\frac{\sum_{i} d_{i x} W_{i}}{\sum_{i} W_{i}} \longleftrightarrow$ X-coordinate
$C_{y}=$ Y-coordinate
facility location

Center-of-gravity method (example)

- Four cities with given coordinates and demand

City	Demand	Coordinates (x, y)
Amsterdam	2000	$(30,120)$
Berlin	1000	$(90,110)$
Osnabruck	1000	$(130,130)$
Brussels	2000	$(60,40)$

- Determine an optimal location (x, y) for a warehouse location

Center-of-gravity method (example)

- Determine an optimal location (x, y) for a warehouse location

City	Demand	Coordinates (x, y)
Amsterdam	2000	$(30,120)$
Berlin	1000	$(90,110)$
Osnabruck	1000	$(130,130)$
Brussels	2000	$(60,40)$

- Step 1: Total sum of demand $\left(\sum_{i} w_{i}\right)=6000$
- Step 2a: Total sum of demand moved to x-coordinate:
- $\quad \sum_{i} d_{i x} w_{i}=30 * 2000+90 * 1000+130 * 1000+60 * 2000=400,000$
- Step 2b: Total sum of demand moved to y-coordinate
- $\quad \sum_{i} d_{i y} w_{i}=120 * 2000+110 * 1000+130 * 1000+40 * 2000=560,000$

Center-of-gravity method (example)

- Determine an optimal location (\mathbf{x}, y) for a warehouse location
- Step 2 (summary): 400,000 of goods to x-coordinate; 560,000 to y-coordinate
- Step 3a: x-coordinate warehouse:

$$
\frac{\sum_{i} d_{i x} w_{i}}{\sum_{i} w_{i}}=\frac{400,000}{6,000}=66.7
$$

- Step 3b: y-coordinate warehouse:

$$
\frac{\sum_{i} d_{i y} w_{i}}{\sum_{i} w_{i}}=\frac{560,000}{6,000}=93.3
$$

City \quad Demand Coordinates (x, y)
Amsterdam $2000(30,120)$

Berlin	1000	$(90,110)$
Osnabruck	1000	$(130,130)$
Brussels	2000	$(60,40)$

Center-of-gravity method

- Optimal location is $(66.7,93.3)$

City	Demand	Coordinates (x, y)
Amsterdam	2000	$(30,120)$
Berlin	1000	$(90,110)$
Osnabruck	1000	$(130,130)$
Brussels	2000	$(60,40)$

Aalto University School of Business

Factor rating method

CAINIAO菜鸟网络

Factor rating method

- Deciding between a set of known candidate locations based on qualitative and quantitative factors
- List of relevant factors (qualitative)
- Assign importance weight to each factor (o-1)
- Develop a scale for each factor ($1-100$)
- Score each location using factor scale
- Multiply scores by weights for each factor and total
- Select location with maximum total score
- No exact results due to subjectivity of factors, weights, scales and scores

Factor rating method

- Example inspired from Alibaba warehouse location decision

Factor	Weight	Score Netherlands	Score Belgium	Weighted score Netherlands	Weighted score Belgium
Total	1.00			50	57

Aalto University
School of Business

Factor rating method

- Example inspired from Alibaba warehouse location decision

Factor	Weight	Score Netherlands	Score Belgium	Weighted score Netherlands	Weighted score Belgium
Geografical positioning	0.30	60	70	0.30*60=18	21
Possibilities offered by airport authorities	0.25	10	70	$0.25 * 10=2.5$	17.5
Tax environment	0.15	80	20	0.15*80=12	3
State of the infrastructure	0.10	85	25	$0.10 * 85=8.5$	2.5
Availability of labour	0.20	45	65	$0.20 * 45=9$	13
Total	1.00			50	57

Aalto University
School of Business

Aalto University School of Business

Cost-volume analysis

Cost-volume analysis

- Analysis to make an economic comparison of a set of known/candidate locations
- Determine fixed and variable costs for each known location
- Fixed costs (for example, costs of opening a warehouse, or costs of acquiring a truck)
- Variable costs (for example, cost per product, or cost per kilometer)

Cost-volume analysis (example)

- Three candidate locations for a warehouse
- Assen (fixed cost of $€ 30,000.00$ and variable cost of $€ 65.00$ per pallet)
- Heerenveen (fixed cost of $€ 55,000.00$ and variable cost of $€ 30.00$ per pallet)
- Groningen (fixed cost of $€ 110,000.00$ and variable cost of $€ 10.00$ per pallet)
- Which location would be best at which number of pallets?

Cost-volume analysis (example)

- Let x be the number of pallets
- Assen vs. Heerenveen

$$
\begin{aligned}
& 30000+65 x=55000+30 x \\
& \Leftrightarrow 35 x=25000 \\
& \Leftrightarrow x=714.29
\end{aligned}
$$

- Hence, from 715 pallets, Heerenveen becomes the preferred location
- Heerenveen vs. Groningen

$$
\begin{aligned}
& 55000+30 x=110000+10 x \\
& \Leftrightarrow 20 x=55000 \\
& \Leftrightarrow x=2750
\end{aligned}
$$

- Hence, from 2751 pallets, Groningen becomes the preferred location

Cost-volume analysis (example)

wer

Aalto University
School of Business

Linear Programming (LP) Formulation of the Facility Location Problem (FLP)

LP formulation of the FLP

- General FLP

- Set of spatially distributed customers
- Set of candidate facilities to serve customer demands
- Distances, time, and costs are measured by a given metric
- Main questions
- Number of facilities
- Location(s) of facilities
- Typical objective
- Minimize costs (facility costs, transportation costs, inventory costs)

Facility Location Problem

Minimize

- Sets:
- I: set of customers
- J: set of candidate locations

- Parameters:

- D_{i} : demand amount of customer i
- K_{j} : capacity of facility j
- F_{j} : fixed cost for opening facility j
- $c_{i j}$: cost of sending one unit of product from location j to customer i

- Variables:

- y_{j} : whether or not to open a facility at location j
- $x_{i j}$: amount of demand of customer i satisfied from location j

Facility Location Problem

 university of groningen
Minimize
 faculty of economics and business

- Sets:
- I: set of customers
- J: set of candidate locations
- Parameters:
- $\quad D_{i}$: demand amount of customer i
- K_{j} : capacity of facility j
- F_{j} : fixed cost for opening facility j
- $c_{i j}$: cost of sending one unit of product from location j to customer i
- Variables:
- y_{j} : whether or not to open a facility at location j
- $x_{i j}$: amount of demand of customer i satisfied from location j

Minimize the total fixed (facility opening) costs and transportation costs

Facility Location Problem

- Sets:
- I: set of customers
- J: set of candidate locations
- Parameters:
- D_{i} : demand amount of customer i
- K_{j} : capacity of facility j
- F_{j} : fixed cost for opening facility j
- $c_{i j}$: cost of sending one unit of product from location j to customer i
- Variables:
- y_{j} : whether or not to open a facility at location j
- $x_{i j}$: amount of demand of customer i satisfied from location j

Minimize

$$
\sum_{j \in J} F_{j} y_{j}+\sum_{i \in I} \sum_{j \in J} c_{i j} x_{i j}
$$

$$
\sum_{i \in I} x_{i j} \leq K_{j} y_{j} \quad \forall j \in J
$$

$$
\begin{array}{l|l}
x_{i j} \geq 0 & \forall i \in I, \forall j \in J
\end{array}
$$

$$
y_{j}=0 \text { or } 1 \quad \forall j \in J
$$

All demands of all customers must be met

Facility Location Problem

university of groningen
faculty of economics and business

- Sets:
- I: set of customers
- J: set of candidate locations
- Parameters:
- D_{i} : demand amount of customer i
- K_{j} : capacity of facility j
- F_{j} : fixed cost for opening facility j
- $c_{i j}$: cost of sending one unit of product from location j to customer i
- Variables:
- y_{j} : whether or not to open a facility at location j
- $x_{i j}$: amount of demand of customer i satisfied from location j

Minimize

Facility Location Problem

faculty of economics

- Sets:
- I: set of customers
- J: set of candidate locations
- Parameters:
- D_{i} : demand amount of customer i
- K_{j} : capacity of facility j
- F_{j} : fixed cost for opening facility j
- $c_{i j}$: cost of sending one unit of product from location j to customer i
- Variables:
- y_{j} : whether or not to open a facility at location j
- $x_{i j}$: amount of demand of customer i satisfied from location j
and business
Minimize

$$
\sum_{j \in J} F_{j} y_{j}+\sum_{i \in I} \sum_{j \in J} c_{i j} x_{i j}
$$

s.t.

If facility j is not opened, no demand can be served from there. (If $y_{i}=0$, then $\sum_{i \in I} x_{i j}=0$).
If facility j is opened, the maximum amount it can supply is bounded by its capacity. (if $y_{i}=1$, then $\sum_{i \in I} x_{i j} \leq K_{j}$)

Facility Location Problem

university of groningen
faculty of economics and business

- Sets:
- I: set of customers
- J: set of candidate locations
- Parameters:
- D_{i} : demand amount of customer i
- K_{j} : capacity of facility j
- F_{j} : fixed cost for opening facility j
- $c_{i j}$: cost of sending one unit of product from location j to customer i
- Variables:

Minimize

$$
\sum_{j \in J} F_{j} y_{j}+\sum_{i \in I} \sum_{j \in J} c_{i j} x_{i j}
$$

s.t.

$$
\begin{array}{ll}
\sum_{j \in J} x_{i j}=D_{i} & \forall i \in I \\
\sum_{i=1} x_{i j} \leq K_{j} y_{j} & \forall j \in J \\
x_{i j} \geq 0 & \forall i \in I, \forall j \in J \\
y_{j}=0 \text { or } 1 & \forall j \in J
\end{array}
$$

- y_{j} : whether or not to open a facility at location j
- $x_{i j}$: amount of demand of customer i satisfied from location j

Facility Location Problem (Uncapacitated)

- If facilities have infinite (or unrestrictively large) capacities, the constraint

$$
\sum_{i \in I} x_{i j} \leq K_{j} y_{j} \quad \forall j \in J
$$

needs to be adjusted.

- Note that completely removing this constraint is not correct!
- We still need to ensure that if facility j is not opened, no demand can be served from there (if $y_{j}=0$, then $\sum_{i \in I} x_{i j}=0$).
- The following constraint achieves this (with \mathbf{M} being a sufficiently large number):

$$
\sum_{i \in I} x_{i j} \leq M y_{j} \quad \forall j \in J
$$

- If $y_{j}=0$, then $\sum_{i \in I} x_{i j}=0$
- If $y_{j}=1$, then $\sum_{i \in I} x_{i j} \leq M$ (not restrictive, since M is a large number)

Aalto University School of Business

Network Design Problem

Different Network Designs

- 1 fresh food distribution center
- 1 non-perishable goods distribution center
- 4 regional distribution centers

Aalto University
School of Business

Different Network Designs

- 4 home shopping centers
- 4 national centers (non-perishable, frozen fresh, bake-off)
- 17 hubs

General Approach to Network Design

university of groningen
faculty of economics and business

- Given

- A set of facilities, and
- demand/supply quantities of these facilities

- Find

- The routes to be operated
- The features (frequency, number of intermediate stops, etc.) of the routes to be operated
- The traffic assignment along the routes
- The operating rules at each facility
- Possibly, the relocation of empty vehicles and containers

Network Design Problem

university of groningen
faculty of economics and business

- Consider two alternative service networks

Quicker shipments but higher operating cost

Freight consolidation: slower shipments but lower operating cost

Basic Network Design Problem

- Single commodity
- Known demand/supply quantities of each facility (node)
- Known costs for each link between facilities (arc)
- Fixed cost for opening an arc
- (Variable cost) transportation cost over an arc
- Find
- Whether or not to open each arc
- The volume of goods transported on each arc

Step 1: Definition of Parameters

- Sets
- D: Set of demand nodes
- S: Set of supply nodes
- N : Set of all nodes $(D \cup S)$
- Parameters
- $\quad D_{i}$: demand quantity of node i
- S_{i} : supply quantity of node i
- $u_{i j}$: capacity of $\operatorname{arc}(i, j)$
- $f_{i j}$: fixed cost of opening $\operatorname{arc}(i, j)$
- $c_{i j}$: cost of transporting one unit of product on arc (i, j)

Step 1: Definition of Variables

- Step 1a: What are the variables?
- $y_{i j}=\left\{\begin{array}{c}1, \text { if arc }(\mathrm{i}, \mathrm{j}) \text { is opened } \\ 0, \text { otherwise }\end{array}\right.$
- $x_{i j}$: quantity transported on $\operatorname{arc}(i, j)$
- Step 1b: Indicate the valid range of all variables
- $y_{i j} \in\{0,1\}, \forall i \in N, \forall j \in N$ (binary: $y_{i j}$ values are or 1 for all i and j)
- $x_{i j} \geq 0, \forall i \in N, \forall j \in N\left(x_{i j}\right.$ non-negative values for all i and $\left.j\right)$

Step 2: Define Objective

- Step 2a: What do you want to achieve?
- Minimize total cost, consisting of fixed cost (cost to open a link) and variable costs (per unit transportation costs)
- Step 2b: Express mathematically
- Fixed costs

$$
\sum_{i \in N} \sum_{j \in N} f_{i j} y_{i j}
$$

- Variable costs

$$
\sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j}
$$

- Objective function:

$$
\text { Minimize } \sum_{i \in N} \sum_{j \in N} f_{i j} y_{i j}+\sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j}
$$

Step 3: Formulating Constraints

- Balance constraints:
- Net flow out of a supply node is equal to the supply quantity
- Net flow into a demand node is equal to the demand quantity

$$
\begin{aligned}
& \begin{array}{l}
\text { Total volume of } \\
\text { products that go } \\
\text { out of node } i
\end{array} \\
& \qquad \sum_{j \in N} x_{i j}-\sum_{j \in N} x_{j i}=\left\{\begin{array}{ll}
S_{i} & \text { if } i \in S \\
-D_{i} & \text { if } i \in D
\end{array} \quad \forall i \in N \quad \begin{array}{l}
\text { Constraint defined for every } \\
\text { node } i \text { in the set of nodes } N
\end{array}\right. \\
& \begin{array}{c}
\text { Total volume of } \\
\text { products that } \\
\text { come into node } i
\end{array}
\end{aligned}
$$

Step 3: Formulating Constraints

- Constraints linking the two variables, $x_{i j}$ and $y_{i j}$
- If $y_{i j}=0, x_{i j}$ must be zero as well
- If $y_{i j}=1, x_{i j}$ can take any value between o and the arc capacity $\left(u_{i j}\right)$

$$
x_{i j} \leq u_{i j} y_{i j}, \quad \forall i \in N, \forall j \in N
$$

Complete Formulation

$$
\operatorname{minimize} \sum_{i \in N} \sum_{j \in N} f_{i j} y_{i j}+\sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j}
$$

s.t.

$$
\begin{aligned}
& \sum_{j \in N} x_{i j}-\sum_{j \in N} x_{j i}=\left\{\begin{array}{c}
S_{i} \text { if } \mathrm{i} \in \mathrm{~S} \\
-D_{i} \text { if } \mathrm{i} \in \mathrm{D}
\end{array} \forall i \in N\right. \\
& x_{i j} \leq u_{i j} y_{i j}, \quad \forall i \in N, \forall j \in N \\
& y_{i j} \in\{0,1\}, \quad \forall i \in N, \forall j \in N \\
& x_{i j} \geq 0, \quad \forall i \in N, \forall j \in N
\end{aligned}
$$

Basic Network Design Problem

 university of groningenfaculty of economics and business

- Example: 7-node network

- Supply nodes: demanding 4 unit loads each
- Supply nodes: supplying 3 unit loads each
- There are arcs from every node to every other node (not all of them are drawn on the figure)
- Which arcs to use? How many unit loads to send on each arc?

Basic Network Design Problem

- Some of the possible solutions
- Note that there are many, many more

Network Design Problem (Uncapacitated)

- What if some (or all) arcs were uncapacitated)
- "Uncapacitated" means infinite capacity
- Instead of $x_{i j} \leq u_{i j} y_{i j}$, we would get
- $x_{i j} \leq M y_{i j}$
(where M is a sufficiently large number)

Network Design Problem (Multi-commodity)

- Multi-commodity network design problem variant
- Given demand/supply quantities of each node for each commodity, and costs
- Fixed cost for opening an arc
- (Variable cost) Cost of transporting each commodity over an arc
- Find
- Whether or not to open an arc
- The volume of each commodity transported on each arc

Network Design Problem (Multi-commodity)

university of groningen
faculty of economics and business

- Decision variables
- $y=\left\{\begin{array}{c}1, \text { if } \operatorname{arc}(\mathrm{i}, \mathrm{j}) \text { is opened } \\ 0, \text { otherwise }\end{array}\right.$
- $\quad x_{i j}^{k}$: quantity of commodity k transported on $\operatorname{arc}(i, j)$
- Parameters
- K: Set of commodities
- $\quad D(k)$: Set of nodes that demand commodity k
- $S(k)$: Set of nodes that supply commodity k
- $\quad N$: Set of all nodes $\left(N=U_{k \in K}[S(k) \cup D(k)]\right)$
- D_{i}^{k} : Demand quantity of node i for commodity k
- S_{i}^{k} : Supply quantity of commodity k in node i
- $u_{i j}$: Capacity of arc (i, j)
- $f_{i j}$: Fixed cost of opening arc (i, j)
- $\quad c_{i j}^{k}$: Unit cost of transporting commodity k on arc (i, j)

Network Design Problem (Multi-commodity)

university of groningen
faculty of economics and business

- Complete formulation for multi-commodity capacitated

$$
\operatorname{minimize} \sum_{i \in N} \sum_{j \in N} f_{i j} y_{i j}+\sum_{i \in N} \sum_{j \in N} \sum_{k \in K} c_{i j}^{k} x_{i j}^{k}
$$

s.t.

$$
\begin{aligned}
& \sum_{j \in N} x_{i j}^{k}-\sum_{j \in J} x_{j i}^{k}=\left\{\begin{array}{c}
S_{i} \text { if } i \in S(k) \\
-D_{i} \text { if } i \in D(k)
\end{array}, \quad \forall i \in N, \forall k \in K\right. \\
& \begin{array}{ll}
\sum_{k \in K} x_{i j}^{k} \leq u_{i j} y_{i j}, & \forall i \in N, \forall j \in N \\
\sum_{k \in K} x_{i j}^{k} \leq u_{i j} y_{i j}, \quad \forall i \in N, \forall j \in N
\end{array} \\
& y_{i j} \in\{0,1\}, \quad \forall i \in N, \forall j \in N \\
& x_{i j}^{K} \geq 0, \quad \forall i \in N, \forall j \in N, \forall k \in K
\end{aligned}
$$

Aalto University groningen
faculty of economics

Thank you!

Questions?

Dr. Tri M. Tran
tri.tran@aalto.fi

