

<u>Session 9:</u> Facility location problems 35E00750 Logistics Systems and Analytics

Dr. Tri M. Tran Assistant Professor of Operations Management University of Groningen https://www.rug.nl/staff/tri.tran/

Discrete and continuous methods

- There are two types of facility location methods
 - Methods for <u>continuous</u> facility location problems seek to find a location (or multiple locations) anywhere in a two-dimensional plane
 - Methods for <u>discrete</u> facility location problems evaluate known (candidate) locations
- In this course, we consider the following methods
 - Continuous: Center-of-gravity method
 - Discrete: Factor rating method
 - Discrete: Cost-volume analysis
 - Discrete: Linear programing formulation of facility location problem

- The center-of-gravity method is a mathematical technique for finding an optimal location for a single facility
 - Ideal location minimizes weighted (with volume of goods) distance between, for example, warehouse and retailers
- Method is using
 - Location of the network
 - Volume of goods to be shipped to those locations
 - (Transportation costs)
- Objective
 - Minimize distance/costs (directly proportional to distance and volume)

 Determine an optimal location (x, y) for a warehouse location given the following demand volumes

City	Demand	Coordinates (x,y)
Amsterdam	2000	(30,120)
Berlin	1000	(90,110)
Osnabruck	1000	(130,130)
Brussels	2000	(60,40)

Aalto University School of Business

Center-of-gravity method (example)

Four cities with given coordinates and demand

City	Demand	Coordinates (x,y)			
Amsterdam	2000	(30,120)			
Berlin	1000	(90,110)			
Osnabruck	1000	(130,130)			
Brussels	2000	(60,40)			

• Determine an optimal location (x,y) for a warehouse location

Center-of-gravity method (example)

• Determine an optimal location (x,y) for a warehouse location

City	Demand	Coordinates (x,y)		
Amsterdam	2000	(30,120)		
Berlin	1000	(90,110)		
Osnabruck	1000	(130,130)		
Brussels	2000	(60,40)		

- Step 1: Total sum of demand $(\sum_i w_i) = 6000$
- Step 2a: Total sum of demand moved to x-coordinate:
 - $\sum_{i} d_{ix} w_i = 30 * 2000 + 90 * 1000 + 130 * 1000 + 60 * 2000 = 400,000$
- Step 2b: Total sum of demand moved to y-coordinate
 - $\sum_i d_{iy} w_i = 120 * 2000 + 110 * 1000 + 130 * 1000 + 40 * 2000 = 560,000$

Center-of-gravity method (example)

- Determine an optimal location (x,y) for a warehouse location
 - Step 2 (summary): 400,000 of goods to x-coordinate; 560,000 to y-coordinate
 - Step 3a: x-coordinate warehouse:

$$\frac{\sum_{i} d_{ix} w_{i}}{\sum_{i} w_{i}} = \frac{400,000}{6,000} = 66.7$$

• Step 3b: y-coordinate warehouse:

$$\frac{\sum_{i} d_{iy} w_{i}}{\sum_{i} w_{i}} = \frac{560,000}{6,000} = 93.3$$

$$\frac{\text{City} \quad \text{Demand} \quad \text{Coordinates (x,y)}}{\text{Amsterdam} \quad 2000} \quad (30,120)$$

$$\text{Berlin} \quad 1000 \quad (90,110)$$

$$\text{Osnabruck} \quad 1000 \quad (130,130)$$

$$\text{Brussels} \quad 2000 \quad (60,40)$$

• Optimal location is (66.7, 93.3)

City	Demand	Coordinates (x,y)
Amsterdam	2000	(30,120)
Berlin	1000	(90,110)
Osnabruck	1000	(130,130)
Brussels	2000	(60,40)

- Deciding between a set of known candidate locations based on qualitative and quantitative factors
 - List of relevant factors (qualitative)
 - Assign importance weight to each factor (0-1)
 - Develop a scale for each factor (1–100)
 - Score each location using factor scale
 - Multiply scores by weights for each factor and total
 - Select location with maximum total score
- No exact results due to subjectivity of factors, weights, scales and scores

• Example inspired from Alibaba warehouse location decision

Factor	Weight	Score Netherlands	Score Belgium	Weighted score Netherlands	Weighted score Belgium
		-			
Total	1.00			50	57

• Example inspired from Alibaba warehouse location decision

Factor	Weight	Score Netherlands	Score Belgium	Weighted score Netherlands	Weighted score Belgium
Geografical positioning	0.30	60	70	0.30*60=18	21
Possibilities offered by airport authorities	0.25	10	70	0.25*10=2.5	17.5
Tax environment	0.15	80	20	0.15*80=12	3
State of the infrastructure	0.10	85	25	0.10*85=8.5	2.5
Availability of labour	0.20	45	65	0.20*45=9	13
Total	1.00			50	57

Cost-volume analysis

Cost-volume analysis

- Analysis to make an economic comparison of a set of known/candidate locations
- Determine fixed and variable costs for each known location
 - Fixed costs (for example, costs of opening a warehouse, or costs of acquiring a truck)
 - Variable costs (for example, cost per product, or cost per kilometer)

Cost-volume analysis (example)

- Three candidate locations for a warehouse
 - Assen (fixed cost of €30,000.00 and variable cost of €65.00 per pallet)
 - Heerenveen (fixed cost of €55,000.00 and variable cost of €30.00 per pallet)
 - Groningen (fixed cost of €110,000.00 and variable cost of €10.00 per pallet)
- Which location would be best at which number of pallets?

Cost-volume analysis (example)

- Let *x* be the number of pallets
- Assen vs. Heerenveen

30000 + 65x = 55000 + 30x $\Leftrightarrow 35x = 25000$ $\Leftrightarrow x = 714.29$

- Hence, from 715 pallets, Heerenveen becomes the preferred location
- Heerenveen vs. Groningen

55000 + 30x = 110000 + 10x $\Leftrightarrow 20x = 55000$ $\Leftrightarrow x = 2750$

• Hence, from 2751 pallets, Groningen becomes the preferred location

Cost-volume analysis (example)

university of groningen

faculty of economics and business

Aalto University School of Business

Linear Programming (LP) Formulation of the **Facility Location Problem** (FLP)

LP formulation of the FLP

General FLP

- Set of spatially distributed customers
- Set of candidate facilities to serve customer demands
- Distances, time, and costs are measured by a given metric
- Main questions
 - Number of facilities
 - Location(s) of facilities
- Typical objective
 - Minimize costs (facility costs, transportation costs, inventory costs)

• Sets:

- *I*: set of customers
- *J*: set of candidate locations

Parameters:

- D_i : demand amount of customer *i*
- K_j : capacity of facility j
- F_j : fixed cost for opening facility j
- *c_{ij}*: cost of sending *one unit of product* from location *j* to customer *i*
- Variables:
 - y_j : whether or not to open a facility at location j
 - *x*_{*ij*}: amount of demand of customer *i* satisfied from location *j*

• Sets:

- *I*: set of customers
- *J*: set of candidate locations
- Parameters:
 - D_i : demand amount of customer *i*
 - K_j : capacity of facility j
 - F_j : fixed cost for opening facility j
 - *c_{ij}*: cost of sending *one unit of product* from location *j* to customer *i*
- Variables:
 - y_j : whether or not to open a facility at location j
 - *x*_{*ij*}: amount of demand of customer *i* satisfied from location *j*

• Sets:

- *I*: set of customers
- *J*: set of candidate locations
- Parameters:
 - D_i : demand amount of customer *i*
 - K_j : capacity of facility j
 - F_j : fixed cost for opening facility *j*
 - *c_{ij}*: cost of sending *one unit of product* from location *j* to customer *i*
- Variables:
 - y_j : whether or not to open a facility at location j
 - *x*_{*ij*}: amount of demand of customer *i* satisfied from location *j*

$\sum_{i \in J} F_j y_j + \sum_{i \in I} \sum_{j \in J} C_{ij} x_{ij}$

$$\sum_{j \in J} x_{ij} = D_i \quad \forall i \in I$$

$$\sum_{i \in I} x_{ij} \le K_j y_j \quad \forall j \in J$$
$$x_{ij} \ge 0 \qquad \forall i \in I, \forall j \in J$$
$$y_j = 0 \text{ or } 1 \qquad \forall j \in J$$

All demands of all customers must be met

S.

• Sets:

- *I*: set of customers
- *J*: set of candidate locations
- Parameters:
 - D_i : demand amount of customer *i*
 - K_j : capacity of facility j

Aalto University School of Business

- F_j : fixed cost for opening facility *j*
- *c_{ij}*: cost of sending *one unit of product* from location *j* to customer *i*
- Variables:
 - y_j : whether or not to open a facility at location j
 - *x*_{*ij*}: amount of demand of customer *i* satisfied from location *j*

$\sum_{i \in I} F_j y_j + \sum_{i \in I} \sum_{i \in I} C_{ij} x_{ij}$

Minimize

S.t.

$$\sum_{j \in J} x_{ij} = D_i \quad \forall i \in I$$

$$\sum_{i \in I} x_{ij} \le K_j y_j \quad \forall j \in J$$

$$x_{ij} \ge 0 \quad \forall i \in I, \forall j \in J$$

$$y_j = 0 \text{ or } 1 \quad \forall j \in J$$

All demands of all customers must be met

• Sets:

- *I*: set of customers
- *J*: set of candidate locations
- Parameters:
 - D_i : demand amount of customer *i*
 - K_j : capacity of facility j
 - F_j : fixed cost for opening facility *j*
 - *c_{ij}*: cost of sending *one unit of product* from location *j* to customer *i*
- Variables:
 - y_j : whether or not to open a facility at location j
 - *x*_{*ij*}: amount of demand of customer *i* satisfied from location *j*

capacity. (if $y_i = 1$, then $\sum_{i \in I} x_{ij} \leq K_i$)

• Sets:

- *I*: set of customers
- *J*: set of candidate locations
- Parameters:
 - D_i : demand amount of customer *i*
 - K_j : capacity of facility j

Aalto University School of Business

- F_j : fixed cost for opening facility *j*
- *c_{ij}*: cost of sending *one unit of product* from location *j* to customer *i*
- Variables:
 - y_j : whether or not to open a facility at location j
 - *x*_{*ij*}: amount of demand of customer *i* satisfied from location *j*

Facility Location Problem (Uncapacitated)

• If facilities have infinite (or unrestrictively large) capacities, the constraint

$$\sum_{i\in I} x_{ij} \leq K_j y_j \quad \forall j \in J$$

needs to be adjusted.

- Note that completely removing this constraint is not correct!
 - We still need to ensure that if facility *j* is not opened, no demand can be served from there (if $y_j = 0$, then $\sum_{i \in I} x_{ij} = 0$).
- The following constraint achieves this (with M being a sufficiently large number):

$$\sum_{i\in I} x_{ij} \leq M y_j \quad \forall j \in J$$

- If $y_j = 0$, then $\sum_{i \in I} x_{ij} = 0$
- If $y_j = 1$, then $\sum_{i \in I} x_{ij} \le M$ (not restrictive, since *M* is a large number)

Network Design Problem

Different Network Designs

- 1 fresh food distribution center
- 1 non-perishable goods distribution center
- 4 regional distribution centers

Different Network Designs

- 4 home shopping centers
- 4 national centers (non-perishable, frozen fresh, bake-off)
- 17 hubs

General Approach to Network Design

Given

- A set of facilities, and
- demand/supply quantities of these facilities
- Find
 - The routes to be operated
 - The features (frequency, number of intermediate stops, etc.) of the routes to be operated
 - The traffic assignment along the routes
 - The operating rules at each facility
 - Possibly, the relocation of empty vehicles and containers

Network Design Problem

Consider two alternative service networks

Quicker shipments but higher operating cost

Aalto University School of Business Freight consolidation: slower shipments but lower operating cost

34

Basic Network Design Problem

- Single commodity
- Known demand/supply quantities of each facility (node)
- Known costs for each link between facilities (arc)
 - Fixed cost for opening an arc
 - (Variable cost) transportation cost over an arc
- Find
 - Whether or not to open each arc
 - The volume of goods transported on each arc

Step 1: Definition of Parameters

• Sets

- D: Set of demand nodes
- S: Set of supply nodes
- N: Set of all nodes $(D \cup S)$

Parameters

- D_i : demand quantity of node *i*
- S_i : supply quantity of node *i*
- u_{ij} : capacity of arc (i, j)
- f_{ij} : fixed cost of opening arc (i, j)
- c_{ij} : cost of transporting **one unit of product** on arc (i, j)

Step 1: Definition of Variables

- Step 1a: What are the variables?
 - $y_{ij} = \begin{cases} 1, \text{ if arc } (i, j) \text{ is opened} \\ 0, \text{ otherwise} \end{cases}$
 - x_{ij} : quantity transported on arc (i, j)
- Step 1b: Indicate the valid range of all variables
 - $y_{ij} \in \{0,1\}, \forall i \in N, \forall j \in N \text{ (binary: } y_{ij} \text{ values are 0 or 1 for all } i \text{ and } j \text{)}$
 - $x_{ij} \ge 0$, $\forall i \in N, \forall j \in N (x_{ij} \text{ non-negative values for all } i \text{ and } j)$

Step 2: Define Objective

• Step 2a: What do you want to achieve?

- Minimize total cost, consisting of fixed cost (cost to open a link) and variable costs (per unit transportation costs)
- Step 2b: Express mathematically
 - Fixed costs

Variable costs

• Objective function:

 $Minimize \sum_{i \in \mathbb{N}} \sum_{i \in \mathbb{N}} f_{ij} y_{ij} + \sum_{i \in \mathbb{N}} \sum_{i \in \mathbb{N}} c_{ij} x_{ij}$

 $\sum_{i\in N}\sum_{j\in N}c_{ij}x_{ij}$

 $\sum_{i\in N}\sum_{j\in N}f_{ij}y_{ij}$

Step 3: Formulating Constraints

Balance constraints:

- Net flow out of a supply node is equal to the supply quantity
- Net flow into a demand node is equal to the demand quantity

Total volume of
products that go
out of node
$$i$$

$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} = \begin{cases} S_i & \text{if } i \in S \\ -D_i & \text{if } i \in D \end{cases} \quad \forall i \in N \quad \begin{array}{c} \text{Constraint defined for every} \\ \text{node } i \text{ in the set of nodes } N \end{cases}$$

$$\forall i \in N \quad \begin{array}{c} \text{Constraint defined for every} \\ \text{node } i \text{ in the set of nodes } N \end{cases}$$

$$\text{Total volume of} \\ \text{products that} \\ \text{come into node } i \end{cases}$$

Step 3: Formulating Constraints

- Constraints linking the two variables, x_{ij} and y_{ij}
 - If $y_{ij} = 0$, x_{ij} must be zero as well
 - If $y_{ij} = 1$, x_{ij} can take any value between 0 and the arc capacity (u_{ij})

 $x_{ij} \le u_{ij} y_{ij}, \qquad \forall i \in N, \forall j \in N$

Complete Formulation

minimize
$$\sum_{i \in N} \sum_{j \in N} f_{ij} y_{ij} + \sum_{i \in N} \sum_{j \in N} c_{ij} x_{ij}$$

s.t.

$$\sum_{j \in N} x_{ij} - \sum_{j \in N} x_{ji} = \begin{cases} S_i \text{ if } i \in S \\ -D_i \text{ if } i \in D \end{cases} \forall i \in N \\ A_{ij} \leq u_{ij} y_{ij}, & \forall i \in N, \forall j \in N \\ Y_{ij} \in \{0,1\}, & \forall i \in N, \forall j \in N \\ X_{ij} \geq 0, & \forall i \in N, \forall j \in N \end{cases}$$

Basic Network Design Problem

• Example: 7-node network

- Supply nodes: demanding 4 unit loads each
- Supply nodes: supplying 3 unit loads each
- There are arcs from every node to every other node (not all of them are drawn on the figure)
- Which arcs to use? How many unit loads to send on each arc?

Basic Network Design Problem

- Some of the possible solutions
 - Note that there are many, many more

Network Design Problem (Uncapacitated)

- What if some (or all) arcs were uncapacitated)
 - "Uncapacitated" means infinite capacity
 - Instead of $x_{ij} \le u_{ij}y_{ij}$, we would get
 - $x_{ij} \le M y_{ij}$

(where M is a sufficiently large number)

Network Design Problem (Multi-commodity)

- Multi-commodity network design problem variant
- Given demand/supply quantities of each node for each commodity, and costs
 - Fixed cost for opening an arc
 - (Variable cost) Cost of transporting each commodity over an arc
- Find
 - Whether or not to open an arc
 - The volume of **each commodity** transported on each arc

Network Design Problem (Multi-commodity)

faculty of economics and business

• Decision variables

- $y = \begin{cases} 1, \text{ if } \operatorname{arc}(i, j) \text{ is opened} \\ 0, \text{ otherwise} \end{cases}$
- x_{ij}^{k} : quantity of commodity *k* transported on arc (*i*, *j*)

Parameters

- *K*: Set of commodities
- D(k): Set of nodes that demand commodity k
- S(k): Set of nodes that supply commodity k
- N: Set of all nodes $(N = U_{k \in K}[S(k) \cup D(k)])$
- D_i^k : Demand quantity of node *i* for commodity *k*
- S_i^k : Supply quantity of commodity k in node i
- u_{ij} : Capacity of arc (i, j)
- f_{ij} : Fixed cost of opening arc (i, j)
- c_{ij}^k : Unit cost of transporting commodity *k* on arc (*i*, *j*)

Network Design Problem (Multi-commodity)

Complete formulation for multi-commodity capacitated

 $minimize \sum_{i \in N} \sum_{i \in N} f_{ij} y_{ij} + \sum_{i \in N} \sum_{j \in N} \sum_{k \in K} c_{ij}^k x_{ij}^k$ $\sum_{j \in N} x_{ij}^k - \sum_{i \in I} x_{ji}^k = \begin{cases} S_i \text{ if } i \in S(k) \\ -D_i \text{ if } i \in D(k) \end{cases}, \quad \forall i \in N, \forall k \in K \end{cases}$ $\sum_{k \in K} x_{ij}^k \le u_{ij} y_{ij}, \qquad \forall i \in N, \forall j \in N$
$$\begin{split} &\sum_{k \in K} x_{ij}^k \leq u_{ij} y_{ij}, \qquad \forall i \in N, \forall j \in N \\ &y_{ij} \in \{0,1\}, \qquad \forall i \in N, \forall j \in N \end{split}$$
 $x_{ij}^{K} \ge 0, \qquad \forall i \in N, \forall j \in N, \forall k \in K$

s.t.

Thank you!

Questions?

Dr. Tri M. Tran tri.tran@aalto.fi