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Discrete and continuous methods

• There are two types of facility location methods
• Methods for continuous facility location problems seek to find a location (or multiple 

locations) anywhere in a two-dimensional plane
• Methods for discrete facility location problems evaluate known (candidate) locations

• In this course, we consider the following methods
• Continuous: Center-of-gravity method
• Discrete: Factor rating method
• Discrete: Cost-volume analysis
• Discrete: Linear programing formulation of facility location problem
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Center-of-gravity method



Center-of-gravity method

• The center-of-gravity method is a mathematical technique for finding an optimal 
location for a single facility

• Ideal location minimizes weighted (with volume of goods) distance between, for example, 
warehouse and retailers

• Method is using
• Location of the network
• Volume of goods to be shipped to those locations
• (Transportation costs)

• Objective
• Minimize distance/costs (directly proportional to distance and volume)

4



Center-of-gravity method

• Determine an optimal location (𝒙, 𝒚) for a warehouse location given the following 
demand volumes
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City Demand Coordinates (x,y)
Amsterdam 2000 (30,120)
Berlin 1000 (90,110)
Osnabruck 1000 (130,130)
Brussels 2000 (60,40)



Center-of-gravity method

6



Center-of-gravity method (example)

• Four cities with given coordinates and demand

• Determine an optimal location (x,y) for a warehouse location
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Center-of-gravity method (example)

• Determine an optimal location (x,y) for a warehouse location

• Step 1: Total sum of demand (∑!𝑤!)=6000
• Step 2a: Total sum of demand moved to x-coordinate:

• ∑! 𝑑!"𝑤! = 30 ∗ 2000 + 90 ∗ 1000 + 130 ∗ 1000 + 60 ∗ 2000 = 400,000

• Step 2b: Total sum of demand moved to y-coordinate
• ∑! 𝑑!#𝑤! = 120 ∗ 2000 + 110 ∗ 1000 + 130 ∗ 1000 + 40 ∗ 2000 = 560,000
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Center-of-gravity method (example)

• Determine an optimal location (x,y) for a warehouse location
• Step 2 (summary): 400,000 of goods to x-coordinate; 560,000 to y-coordinate
• Step 3a: x-coordinate warehouse:

∑! 𝑑!"𝑤!
∑!𝑤!

=
400,000
6,000

= 66.7

• Step 3b: y-coordinate warehouse:
∑! 𝑑!#𝑤!
∑!𝑤!

=
560,000
6,000

= 93.3
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Center-of-gravity method

• Optimal location is (66.7, 93.3)
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Factor rating method



Factor rating method
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Factor rating method

• Deciding between a set of known candidate locations based on qualitative and 
quantitative factors

• List of relevant factors (qualitative)
• Assign importance weight to each factor (0-1)
• Develop a scale for each factor (1—100)
• Score each location using factor scale
• Multiply scores by weights for each factor and total
• Select location with maximum total score

• No exact results due to subjectivity of factors, weights, scales and scores
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Factor rating method

• Example inspired from Alibaba warehouse location decision
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Factor rating method

• Example inspired from Alibaba warehouse location decision
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Cost-volume analysis



Cost-volume analysis

• Analysis to make an economic comparison of a set of known/candidate locations

• Determine fixed and variable costs for each known location
• Fixed costs (for example, costs of opening a warehouse, or costs of acquiring a truck)
• Variable costs (for example, cost per product, or cost per kilometer)
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Cost-volume analysis (example)

• Three candidate locations for a warehouse
• Assen (fixed cost of €30,000.00 and variable cost of €65.00 per pallet)
• Heerenveen (fixed cost of €55,000.00 and variable cost of €30.00 per pallet)
• Groningen (fixed cost of €110,000.00 and variable cost of €10.00 per pallet)

• Which location would be best at which number of pallets?
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Cost-volume analysis (example)

• Let 𝒙 be the number of pallets
• Assen vs. Heerenveen

30000 + 65𝑥 = 55000 + 30𝑥
⇔ 35𝑥 = 25000
⇔ 𝑥 = 714.29

• Hence, from 715 pallets, Heerenveen becomes the preferred location
• Heerenveen vs. Groningen

55000 + 30𝑥 = 110000 + 10𝑥
⇔ 20𝑥 = 55000
⇔ 𝑥 = 2750

• Hence, from 2751 pallets, Groningen becomes the preferred location
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Cost-volume analysis (example)
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Linear Programming (LP) 
Formulation of the 
Facility Location Problem 
(FLP)



LP formulation of the FLP

• General FLP
• Set of spatially distributed customers
• Set of candidate facilities to serve customer demands
• Distances, time, and costs are measured by a given metric

• Main questions
• Number of facilities
• Location(s) of facilities

• Typical objective
• Minimize costs (facility costs, transportation costs, inventory costs)
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Facility Location Problem

• Sets:
• 𝐼: set of customers
• 𝐽: set of candidate locations

• Parameters:
• 𝐷!: demand amount of customer 𝑖
• 𝐾": capacity of facility 𝑗
• 𝐹": fixed cost for opening facility 𝑗
• 𝑐!": cost of sending one unit of product from location 𝑗 to 

customer 𝑖
• Variables:

• 𝑦": whether or not to open a facility at location 𝑗
• 𝑥!": amount of demand of customer 𝑖 satisfied from location 𝑗
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Minimize

3
$∈&

𝐹$𝑦$ +3
!∈'

3
$∈&

𝑐!$𝑥!$

s.t.

3
$∈&

𝑥!$ = 𝐷! ∀𝑖 ∈ 𝐼

3
!∈'

𝑥!$ ≤ 𝐾$𝑦$ ∀𝑗 ∈ 𝐽

𝑥!$ ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽
𝑦$ = 0 𝑜𝑟 1 ∀ 𝑗 ∈ 𝐽



Facility Location Problem

• Sets:
• 𝐼: set of customers
• 𝐽: set of candidate locations

• Parameters:
• 𝐷!: demand amount of customer 𝑖
• 𝐾": capacity of facility 𝑗
• 𝐹": fixed cost for opening facility 𝑗
• 𝑐!": cost of sending one unit of product from location 𝑗 to 

customer 𝑖
• Variables:

• 𝑦": whether or not to open a facility at location 𝑗
• 𝑥!": amount of demand of customer 𝑖 satisfied from location 𝑗
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Minimize

3
𝒋∈𝑱

𝑭𝒋𝒚𝒋 +3
𝒊∈𝑰

3
𝒋∈𝑱

𝒄𝒊𝒋𝒙𝒊𝒋

s.t.

3
$∈&

𝑥!$ = 𝐷! ∀𝑖 ∈ 𝐼

3
!∈'

𝑥!$ ≤ 𝐾$𝑦$ ∀𝑗 ∈ 𝐽

𝑥!$ ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽
𝑦$ = 0 𝑜𝑟 1 ∀ 𝑗 ∈ 𝐽

Minimize the total fixed (facility 
opening) costs and 

transportation costs



Facility Location Problem

• Sets:
• 𝐼: set of customers
• 𝐽: set of candidate locations

• Parameters:
• 𝐷!: demand amount of customer 𝑖
• 𝐾": capacity of facility 𝑗
• 𝐹": fixed cost for opening facility 𝑗
• 𝑐!": cost of sending one unit of product from location 𝑗 to 

customer 𝑖
• Variables:

• 𝑦": whether or not to open a facility at location 𝑗
• 𝑥!": amount of demand of customer 𝑖 satisfied from location 𝑗
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3
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!∈'

3
$∈&
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3
𝒋∈𝑱

𝒙𝒊𝒋 = 𝑫𝒊 ∀𝒊 ∈ 𝑰

3
!∈'

𝑥!$ ≤ 𝐾$𝑦$ ∀𝑗 ∈ 𝐽
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𝑦$ = 0 𝑜𝑟 1 ∀ 𝑗 ∈ 𝐽

All demands of all customers 
must be met



Facility Location Problem

• Sets:
• 𝐼: set of customers
• 𝐽: set of candidate locations

• Parameters:
• 𝐷!: demand amount of customer 𝑖
• 𝐾": capacity of facility 𝑗
• 𝐹": fixed cost for opening facility 𝑗
• 𝑐!": cost of sending one unit of product from location 𝑗 to 

customer 𝑖
• Variables:

• 𝑦": whether or not to open a facility at location 𝑗
• 𝑥!": amount of demand of customer 𝑖 satisfied from location 𝑗
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Facility Location Problem

• Sets:
• 𝐼: set of customers
• 𝐽: set of candidate locations

• Parameters:
• 𝐷!: demand amount of customer 𝑖
• 𝐾": capacity of facility 𝑗
• 𝐹": fixed cost for opening facility 𝑗
• 𝑐!": cost of sending one unit of product from location 𝑗 to 

customer 𝑖
• Variables:

• 𝑦": whether or not to open a facility at location 𝑗
• 𝑥!": amount of demand of customer 𝑖 satisfied from location 𝑗
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Minimize

3
$∈&

𝐹$𝑦$ +3
!∈'

3
$∈&

𝑐!$𝑥!$

s.t.

3
$∈&

𝑥!$ = 𝐷! ∀𝑖 ∈ 𝐼

3
!∈'

𝑥!$ ≤ 𝐾$𝑦$ ∀𝑗 ∈ 𝐽

𝑥!$ ≥ 0 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽
𝑦$ = 0 𝑜𝑟 1 ∀ 𝑗 ∈ 𝐽

• If facility 𝑗 is not opened, no demand 
can be served from there. (If 𝑦! = 0, 
then ∑!∈% 𝑥!& = 0).

• If facility 𝑗 is opened, the maximum 
amount it can supply is bounded by its 
capacity. (if 𝑦! = 1, then ∑!∈% 𝑥!& ≤ 𝐾&)



Facility Location Problem

• Sets:
• 𝐼: set of customers
• 𝐽: set of candidate locations

• Parameters:
• 𝐷!: demand amount of customer 𝑖
• 𝐾": capacity of facility 𝑗
• 𝐹": fixed cost for opening facility 𝑗
• 𝑐!": cost of sending one unit of product from location 𝑗 to 

customer 𝑖
• Variables:

• 𝑦": whether or not to open a facility at location 𝑗
• 𝑥!": amount of demand of customer 𝑖 satisfied from location 𝑗
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Minimize

3
$∈&

𝐹$𝑦$ +3
!∈'

3
$∈&

𝑐!$𝑥!$

s.t.

3
$∈&

𝑥!$ = 𝐷! ∀𝑖 ∈ 𝐼

3
!∈'

𝑥!$ ≤ 𝐾$𝑦$ ∀𝑗 ∈ 𝐽
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Valid range constraints



Facility Location Problem (Uncapacitated)

• If facilities have infinite (or unrestrictively large) capacities, the constraint

+
𝒊∈𝑰

𝒙𝒊𝒋 ≤ 𝑲𝒋𝒚𝒋 ∀𝒋 ∈ 𝑱

 needs to be adjusted.
• Note that completely removing this constraint is not correct!

• We still need to ensure that if facility 𝑗 is not opened, no demand can be served from there (if 𝑦& = 0, then 
∑!∈% 𝑥!& = 0).

• The following constraint achieves this (with M being a sufficiently large number):

+
𝒊∈𝑰

𝒙𝒊𝒋 ≤ 𝑴𝒚𝒋 ∀𝒋 ∈ 𝑱

• If 𝑦& = 0, then ∑!∈% 𝑥!& = 0
• If 𝑦& = 1, then ∑!∈% 𝑥!& ≤ 𝑀 (not restrictive, since 𝑀 is a large number)
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Network Design Problem



Different Network Designs

• 1 fresh food distribution center
• 1 non-perishable goods distribution center
• 4 regional distribution centers
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Different Network Designs

• 4 home shopping centers
• 4 national centers (non-perishable, frozen fresh, bake-off)
• 17 hubs
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General Approach to Network Design

• Given
• A set of facilities, and
• demand/supply quantities of these facilities

• Find
• The routes to be operated
• The features (frequency, number of intermediate stops, etc.) of the routes to be operated
• The traffic assignment along the routes
• The operating rules at each facility
• Possibly, the relocation of empty vehicles and containers
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Network Design Problem

• Consider two alternative service networks
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Quicker shipments but higher operating cost Freight consolidation: slower shipments but 
lower operating cost



Basic Network Design Problem

• Single commodity
• Known demand/supply quantities of each facility (node)
• Known costs for each link between facilities (arc)

• Fixed cost for opening an arc
• (Variable cost) transportation cost over an arc

• Find
• Whether or not to open each arc
• The volume of goods transported on each arc

35



Step 1: Definition of Parameters

• Sets
• D: Set of demand nodes
• S: Set of supply nodes
• N: Set of all nodes (𝐷 ∪ 𝑆)

• Parameters
• 𝐷!: demand quantity of node 𝑖
• 𝑆!: supply quantity of node 𝑖
• 𝑢!$: capacity of arc (𝑖, 𝑗)
• 𝑓!$: fixed cost of opening arc 𝑖, 𝑗
• 𝑐!$: cost of transporting one unit of product on arc (𝑖, 𝑗)
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Step 1: Definition of Variables

• Step 1a: What are the variables?

• 𝑦!$ = P1, if arc i, j is opened
0, otherwise

• 𝑥!$: quantity transported on arc (𝑖, 𝑗)

• Step 1b: Indicate the valid range of all variables
• 𝑦!$ ∈ 0,1 , ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 (binary: 𝑦!$ values are 0 or 1 for all 𝑖 and 𝑗)
• 𝑥!$ ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁 (𝑥!$ non-negative values for all 𝑖 and 𝑗)
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Step 2: Define Objective

• Step 2a: What do you want to achieve?
• Minimize total cost, consisting of fixed cost (cost to open a link) and variable costs (per unit transportation costs)

• Step 2b: Express mathematically
• Fixed costs 

6
!∈'

6
&∈'

𝑓!&𝑦!&

• Variable costs

6
!∈'

6
&∈'

𝑐!&𝑥!&

• Objective function:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒6
!∈'

6
&∈'

𝑓!&𝑦!& +6
!∈'

6
&∈'

𝑐!&𝑥!&
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Step 3: Formulating Constraints

• Balance constraints:
• Net flow out of a supply node is equal to the supply quantity
• Net flow into a demand node is equal to the demand quantity
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Step 3: Formulating Constraints

• Constraints linking the two variables, 𝒙𝒊𝒋 and 𝒚𝒊𝒋
• If 𝑦!$ = 0, 𝑥!$ must be zero as well
• If 𝑦!$ = 1, 𝑥!$ can take any value between 0 and the arc capacity (𝑢!$)

𝑥!$ ≤ 𝑢!$𝑦!$, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁
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Complete Formulation

𝒎𝒊𝒏𝒊𝒎𝒊𝒛𝒆 5
𝒊∈𝑵

5
𝒋∈𝑵

𝒇𝒊𝒋𝒚𝒊𝒋 +5
𝒊∈𝑵

5
𝒋∈𝑵

𝒄𝒊𝒋𝒙𝒊𝒋

    s.t.

5
$∈-

𝑥!$ −5
$∈-

𝑥$! = 9 𝑆! if i ∈ S
−𝐷! if i ∈ D

∀𝑖 ∈ 𝑁

𝑥!$ ≤ 𝑢!$𝑦!$ , ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁
𝑦!$ ∈ 0,1 , ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁
𝑥!$ ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁
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Basic Network Design Problem

• Example: 7-node network
• Supply nodes: demanding 4 unit loads each
• Supply nodes: supplying 3 unit loads each
• There are arcs from every node to every other node (not all of them are drawn on the 

figure)
• Which arcs to use? How many unit loads to send on each arc?
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Basic Network Design Problem

• Some of the possible solutions
• Note that there are many, many more
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Network Design Problem (Uncapacitated)

• What if some (or all) arcs were uncapacitated)
• “Uncapacitated” means infinite capacity
• Instead of 𝑥!$ ≤ 𝑢!$𝑦!$, we would get
• 𝑥!$ ≤ 𝑀𝑦!$
  (where M is a sufficiently large number)
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Network Design Problem (Multi-commodity)

• Multi-commodity network design problem variant
• Given demand/supply quantities of each node for each commodity, and costs

• Fixed cost for opening an arc
• (Variable cost) Cost of transporting each commodity over an arc

• Find
• Whether or not to open an arc
• The volume of each commodity transported on each arc
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Network Design Problem (Multi-commodity)

• Decision variables

• 𝑦 = #1, if arc i, j is opened0, otherwise

• 𝑥!"# : quantity of commodity 𝑘 transported on arc (𝑖, 𝑗)

• Parameters
• 𝐾: Set of commodities
• 𝐷(𝑘): Set of nodes that demand commodity 𝑘
• 𝑆(𝑘): Set of nodes that supply commodity 𝑘
• 𝑁: Set of all nodes (𝑁 = 𝑈#∈% 𝑆 𝑘 ∪ 𝐷 𝑘 )
• 𝐷!#: Demand quantity of node 𝑖 for commodity 𝑘
• 𝑆!#: Supply quantity of commodity 𝑘 in node 𝑖
• 𝑢!": Capacity of arc (𝑖, 𝑗)
• 𝑓!": Fixed cost of opening arc (𝑖, 𝑗)
• 𝑐!"# : Unit cost of transporting commodity 𝑘 on arc (𝑖, 𝑗)
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Network Design Problem (Multi-commodity)

• Complete formulation for multi-commodity capacitated

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 +
!∈'

+
"∈'

𝑓!"𝑦!" ++
!∈'

+
"∈'

+
(∈)

𝑐!"(𝑥!"(

    s.t.

+
"∈'

𝑥!"( −+
"∈*

𝑥"!( = = 𝑆! if 𝑖 ∈ 𝑆 𝑘
−𝐷! if 𝑖 ∈ 𝐷 𝑘 , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝐾

+
(∈)

𝑥!"( ≤ 𝑢!"𝑦!" , ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁

+
(∈)

𝑥!"( ≤ 𝑢!"𝑦!" , ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁

𝑦!" ∈ 0,1 , ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁
𝑥!") ≥ 0, ∀𝑖 ∈ 𝑁, ∀𝑗 ∈ 𝑁, ∀𝑘 ∈ 𝐾
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Thank you!

Questions?
Dr. Tri M. Tran
tri.tran@aalto.fi 
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