Tutorial 2:

Facility Location and Network Design

Supply Chain Network Design

Dr. Ilke Bakir
Dr. ir. Paul Buijs
Dr. Jose Lopez

Contents of Tutorial 2

university of groningen

- Feedback on Tutorial 2 Exercises
\diamond Facility location
\diamond Network design
- A test your skills exercise

Exercise 1

Information on Exercise 1

Location Factor	Weight $\left(w_{\mathrm{i}}\right)$	Scores Amsterdam	Scores The Hague	Scores Utrecht	Scores Rotterdam
1. Warehouse utilization	20	8	6	4	7
2. Average time per trip from	15	7	5	7	5
warehouse to retailers					
3. Employee preferences	15	1	7	8	3
4. Accessibility to major highways	10	7	4	9	5
5. Land costs	10	2	3	1	4
6. Quality of life	15	5	6	9	5
7. Taxes	15	3	5	5	4

a) Which is the best site?
\diamond Assume that a higher score is more desirable than a lower one
\diamond Support your answer with calculations

Answer to Exercise 1a

Location Factor	Weight $\left(w_{i}\right)$	Scores Amsterdam	Scores The Hague	Scores Utrecht	Scores Rotterdam
1. Warehouse utilization	20	8	6	4	7
2. Average time per trip from	15	7	5	7	5
warehouse to retailers					
3. Employee preferences	15	1	7	8	3
4. Accessibility to major highways	10	7	4	9	5
5. Land costs	10	2	3	1	4
6. Quality of life	15	5	6	9	5
7. Taxes	15	3	5	5	4
		490	535	615	485

Answer to Exercise 1a

Location Factor	Weight $\left(w_{j}\right)$	Scores Amsterdam	Scores The Hague	Scores Utrecht	Scores Rotterdam
1. Warehouse utilization	20	8	6	4	7
2. Average time per trip from	15	7	5	7	5
warehouse to retailers					
3. Employee preferences	15	1	7	8	3
4. Accessibility to major highways	10	7	4	9	5
5. Land costs	10	2	3	1	4
6. Quality of life	15	5	6	9	5
7. Taxes	15	3	5	5	4
		490	535	615	485

Information on Exercise 1b

Location Factor	Weight $\left(w_{i}\right)$	Scores Amsterdam	Scores The Hague	Scores Utrecht	Scores Rotterdam
1. Warehouse utilization	20	8	6	4	7
2. Average time per trip from	15	7	5	7	5
warehouse to retailers					
3. Employee preferences	15	1	7	8	3
4. Accessibility to major highways	10	7	4	9	5
5. Land costs	10	2	3	1	4
6. Quality of life	15	5	6	9	5
7. Taxes	15	3	5	5	4

b) Range of values for w_{1} such that the site from Exercise 1a remains the best
\diamond Assume that all other weights and all scores keep their current values
\diamond Support your answer with calculations

Answer to Exercise 1b

- Weight of warehouse utilization $=w_{1}$
\diamond Amsterdam: $w_{1} \times 8+15 \times 7+15 \times 1+10 \times 7+10 \times 2+15 \times 5+15 \times 3$ $=330+8 w_{1}$
\diamond The Hague: $6 w_{1}+415$
\diamond Rotterdam: $7 w_{1}+345$
\diamond Utrecht: $4 w_{1}+535$ (best site in Exercise 1a)
- $4 w_{1}+535$ needs to be larger than all values for other cities, so:
$\diamond 4 w_{1}+535>330+8 w_{1} ; w_{1}<51.25$
$\diamond 4 w_{1}+535>6 w_{1}+415 ; w_{1}<60$
$\diamond 4 w_{1}+535>7 w_{1}+345 ; w_{1}<63.3$
- If range of values for this weight: $0 \leq w_{1}<51.25$ then Utrecht remains the best site

Answer to Exercise 1b

- If $0 \leq w_{1}<51.25$ then Utrecht remains the best site.
\diamond Note that even if the weight w_{1} changes, the other weights do not. So it may happen that the sum of all weights may not be 100 anymore.
\diamond But this is not an issue. As long as all options are considered with the same weight composition, the comparison of total scores is fair.

Exercise 2

Information on Exercise 2

- Matrix Manufacturing Inc. services four stores located in four Ohio cities

Store Location	Coordinates (\mathbf{x}, \mathbf{y})	Load volumes
Cleveland	$(11,22)$	15
Columbus	$(10,7)$	10
Cincinnati	$(4,1)$	12
Dayton	$(3,6)$	4
Total		41

- It considers two warehouse locations:
\diamond Mansfield, Ohio (coordinates: $x=11, y=14$)
\diamond Springfield, Ohio (coordinates: $x=6, y=6.5$)
- Which of the two locations is the most suitable location?

Answer to Exercise 2

 groningen

Answer to Exercise 2

- Use center-of-gravity method

Store Location	Coordinates (\mathbf{x}, \mathbf{y})	Load volumes	$\boldsymbol{d}_{\boldsymbol{i} \boldsymbol{x}} \boldsymbol{W}_{\boldsymbol{i}}$	$\boldsymbol{d}_{\boldsymbol{i} \boldsymbol{y}} \boldsymbol{W}_{\boldsymbol{i}}$
Cleveland	$(11,22)$	15	165	330
Columbus	$(10,7)$	10	100	70
Cincinnati	$(4,1)$	12	48	12
Dayton	$(3,6)$	4	12	24
Total		41	325	436

- $C_{x}=\frac{\sum_{i} d_{i x} W_{i}}{\sum_{i} W_{i}}=\frac{325}{41}=7.9$
- $C_{y}=\frac{\sum_{i} d_{i y} W_{i}}{\sum_{i} W_{i}}=\frac{436}{41}=10.6$

Answer Exercise 2

university of groningen

Further information on Exercise 2

Answer to Exercise 2

- Optimal location seems to be in the middle of Mansfield and Springfield (candidate locations). How to continue?
- For example, compute the (Euclidean) distances between optimal location and candidate locations
$\diamond \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
\diamond Distance between optimal $(7.9,10.6)$ and Springfield $(6,6.5)=4.52$
\diamond Distance between optimal $(7.9,10.6)$ and Mansfield $(11,14)=4.60$
- So, Springfield is the most suitable option
\diamond With very close margin. If any other aspects play a role, those should probably be more decisive.

Exercise 3

Information from Exercise 3a

- 4 potential locations for a warehouse to serve demand in 5 cities
\diamond Fixed costs for opening a new distribution centre at each of the candidate locations known
\diamond Variable distribution costs associated with supplying one unit of demand of a city from that location is known

Potential warehouse location	Fixed cost	City 1	City 2	City 3	City 4	City 5
1	175	5	4.5	8	2.5	5
2	410	3	4	6	6	7
3	200	5.5	9	3	5	4
4	160	2	10	5	7	6
Demand		15	22	11	25	22

- Formulate this as an uncapacitated facility location problem

Steps to formulate an LP model

- Read the problem; then read it again!
- Step 1: Definition of decision variables
$\diamond 1$: Decision needs to be made on?
- Express this by using, for example, x_{1}, x_{2} (clearly explaining each variable)
$\diamond 1 \mathrm{~b}$: Indicate valid range of all variables
- Binary, integer, real; positive, (non-)negative
- Step 2: Define objective function
$\diamond 2$ a: What do you want to achieve? Choose between minimize and maximize
$\diamond 2$ b: Express this mathematically using variables and parameters
- Step 3: Formulate all constraints
\diamond Develop mathematical relationships to describe constraints (using either $<,>,=, \leq$ or \geq)

Step 1: Definition of variables

Sets:
I
J
set of 5 cities (customers) set of 4 potential locations

$$
J=\{1,2,3,4\}
$$

Parameters:
$F_{j} \quad$ Fixed costs for opening facility at location j
$c_{i j} \quad$ The (variable) distribution cost for supplying 1 unit of customer i 's demand from the facility at j
$D_{i} \quad$ Demand of customer i

Step 1: Definition of variables

- Step 1a: What are the variables?
$\diamond y_{j} \quad:$ Whether or not to open a warehouse at location j
$\diamond x_{i j} \quad$: Volume of demand of customer i served from location j
- Step 1b: Indicate the valid range of all variables
$\diamond y_{j} \in\{0,1\} \forall j \quad$ (binary: y_{j} values are 0 or 1 for all j)
$\diamond x_{i j} \geq 0, \forall i, j \quad\left(x_{i j}\right.$ non-negative for all i and $\left.j\right)$

Step 2: Define objective

> Step 2a: What do you want to achieve?

\diamond Minimize the total distribution costs of this network

- Step 2b: Express mathematically
\diamond The total costs include a fixed cost and the variable distribution costs associated with a certain location
- Fixed costs: $175 y_{1}+410 y_{2}+200 y_{3}+160 y_{4}$
- Variable distribution costs: $5 x_{11}+3 x_{12}+5.5 x_{13}+2 x_{14}+4.5 x_{21}+4 x_{22}+9 x_{23}+10 x_{24}+8 x_{31}+6 x_{32}+$ $3 x_{33}+5 x_{34}+2.5 x_{41}+6 x_{42}+5 x_{43}+7 x_{44}+5 x_{51}+7 x_{52}+4 x_{53}+6 x_{54}$
$\diamond \operatorname{Min} 175 y_{1}+410 y_{2}+200 y_{3}+160 y_{4}+5 x_{11}+3 x_{12}+5.5 x_{13}+2 x_{14}+4.5 x_{21}+4 x_{22}+9 x_{23}+$ $10 x_{24}+8 x_{31}+6 x_{32}+3 x_{33}+5 x_{34}+2.5 x_{41}+6 x_{42}+5 x_{43}+7 x_{44}+5 x_{51}+7 x_{52}+4 x_{53}+6 x_{54}$

Step 2: Define objective

> Step 2a: What do you want to achieve?
\diamond Minimize the total distribution costs of this network

- Step 2b: Express mathematically
\diamond The total costs include a fixed cost and the variable distribution costs associated with a certain location
- Fixed costs: $\sum_{j \in J} F_{j} y_{j}$
- Variable distribution costs: $\sum_{i \in I} \sum_{j \in J} c_{i j} x_{i j}$
\diamond Overall: $\sum_{i \in I} \sum_{j \in J} c_{i j} x_{i j}+\sum_{j \in J} F_{j} y_{j}$

Step 3: Formulate all constraints

- Satisfy all demand from all customers
\diamond (For customer 1, $i=1$)
\diamond (For customer 2, $i=2$)
$\diamond($ For customer 3, $i=3$)
\diamond (For customer 4, $i=4$)
\diamond (For customer 5, $i=5$)
$x_{11}+x_{12}+x_{13}+x_{14}=15$
$x_{21}+x_{22}+x_{23}+x_{24}=22$
$x_{31}+x_{32}+x_{33}+x_{34}=11$
$x_{41}+x_{42}+x_{43}+x_{44}=25$
$x_{51}+x_{52}+x_{53}+x_{54}=22$

$$
\sum_{j \in J} x_{i j}=D_{i} \quad \forall i \in I
$$

- Customer can only be served from facility that is opened ($M=\sum_{i \in I} D_{i}=95$)
\diamond (For facility $1, j=1$)

$$
x_{11}+x_{21}+x_{31}+x_{41}+x_{51} \leq 95 y_{1}
$$

\diamond (For facility $2, j=2)$
$\diamond($ For facility $3, j=3)$
$x_{12}+x_{22}+x_{32}+x_{42}+x_{52} \leq 95 y_{2}$
$\diamond($ For facility $4, j=4)$
$x_{13}+x_{23}+x_{33}+x_{43}+x_{53} \leq 95 y_{3}$

$$
\sum_{i \in I} x_{i j} \leq M y_{j} \quad \forall j \in J
$$

$$
x_{14}+x_{24}+x_{34}+x_{44}+x_{54} \leq 95 y_{4}
$$

Complete Model
 (Answer to Exercise 3a)

$$
\begin{aligned}
& \text { Min } 175 y_{1}+410 y_{2}+200 y_{3}+160 y_{4}+5 x_{11}+3 x_{12}+5.5 x_{13}+2 x_{14}+4.5 x_{21} \\
& +4 x_{22}+9 x_{23}+10 x_{24}+8 x_{31}+6 x_{32}+3 x_{33}+5 x_{34}+2.5 x_{41}+6 x_{42}+5 x_{43} \\
& +7 x_{44}+5 x_{51}+7 x_{52}+4 x_{53}+6 x_{54}
\end{aligned}
$$

$$
\sum_{i \in I} \sum_{j \in J} c_{i j} x_{i j}+\sum_{j \in J} F_{j} y_{j}
$$

s.t.
$x_{11}+x_{12}+x_{13}+x_{14}=15$
$x_{21}+x_{22}+x_{23}+x_{24}=22$
$x_{31}+x_{32}+x_{33}+x_{34}=11$
$x_{41}+x_{42}+x_{43}+x_{44}=25$
$x_{51}+x_{52}+x_{53}+x_{54}=22$

$$
\sum_{j \in J} x_{i j}=D_{i} \quad \forall i \in I
$$

$x_{11}+x_{21}+x_{31}+x_{41}+x_{51} \leq 95 y_{1}$
$x_{12}+x_{22}+x_{32}+x_{42}+x_{52} \leq 95 y_{2}$
$x_{13}+x_{23}+x_{33}+x_{43}+x_{53} \leq 95 y_{3}$
$x_{14}+x_{24}+x_{34}+x_{44}+x_{54} \leq 95 y_{4}$
$y_{j}=0$ or $1 \forall j \in J$ and $x_{i j} \geq 0, \forall i \in I, \forall j \in J$

$$
\begin{aligned}
& y_{j}=0 \text { or } 1 \quad \forall j \in J \\
& x_{i j} \geq 0 \quad \forall i \in I, \forall j \in J
\end{aligned}
$$

Information on Exercises 3b \& 3c

- Required data for capacitated versus uncapacitated?

Location	Fixed cost	Capacity	City 1	City 2	City 3	City 4	City 5
1	175	30	5	4.5	8	2.5	5
2	410	50	3	4	6	6	7
3	200	40	5.5	9	3	5	4
4	160	30	2	10	5	7	6
Demand							

- The table now shows:
$\diamond \underline{K}_{j}$: Capacity of facility at location j
$\diamond F_{j}$: Fixed costs for opening facility at location j
$\diamond c_{i j}$: The distribution cost per unit demand for supplying customer i from the facility at j
$\diamond D_{i}$: Demand of customer i

Step 1: Definition of variables

- Step 1a: What are the variables?
$\diamond y_{j} \quad:$ Whether or not to open a warehouse at location j
$\diamond x_{i j} \quad$: Volume of demand of customer i served from location j
- Step 1b: Indicate the valid range of all variables
$\diamond y_{j} \in\{0,1\} \forall j \quad$ (binary: y_{j} values are 0 or 1 for all j)
$\diamond x_{i j} \geq 0, \forall i, j \quad\left(x_{i j}\right.$ non-negative for all i and $\left.j\right)$

Answer Exercise 3c

- Satisfy all demand from all customers

$\diamond($ For customer $1, i=1)$

$$
x_{11}+x_{12}+x_{13}+x_{14}=15
$$

$\diamond($ For customer 2, $i=2)$
$x_{21}+x_{22}+x_{23}+x_{24}=22$
$\diamond($ For customer 3, $i=3)$
$x_{31}+x_{32}+x_{33}+x_{34}=11$
$\diamond($ For customer 4, $i=4)$
$x_{41}+x_{42}+x_{43}+x_{44}=25$
$\sum_{j \in J} x_{i j}=D_{i} \quad \forall i \in I$
$\diamond($ For customer 5, $i=5)$
$x_{51}+x_{52}+x_{53}+x_{54}=22$

- Two-purpose constraints:
- The quantity of demand of customers served from location j must meet capacity limits
- If a facility is not opened, it cannot serve any customers.
\diamond (For facility $1, j=1$)
$x_{11}+x_{21}+x_{31}+x_{41}+x_{51} \leq 30 y_{1}$
\diamond (For facility $2, j=2$)
\diamond (For facility $3, j=3$)
$x_{12}+x_{22}+x_{32}+x_{42}+x_{52} \leq 50 y_{2}$
$\diamond($ For facility $4, j=4)$
$x_{13}+x_{23}+x_{33}+x_{43}+x_{53} \leq 40 y_{3}$

$$
\sum_{i \in I} x_{i j} \leq K_{j} y_{j} \quad \forall j \in J
$$

Test Your Skills

Information

- ErikNok seeks a good location for its distribution center:
\diamond Supply mobile phones once a week to stores in Amsterdam, Utrecht, Maastricht and Assen
\diamond Expected return flow from a recycling station in Apeldoorn.

City	Number of trucks	X-coordinate	Y-coordinate
Amsterdam	10	-10	10
Utrecht	7	0	0
Maastricht	2	15	-75
Assen	2	30	20
Apeldoorn	$\boldsymbol{?}$	10	10

- Determine the number of trucks with recycled phones that are to be returned from Apeldoorn to make Amersfoort the best distribution center location?
\diamond Assume the x - and y-coordinates of Amersfoort are $(5,5)$.

Answer

- Consider the coordinates of Amersfoort ($C_{x}=5, C_{y}=5$)
- No. of trucks to the cities is fixed, except the number of trucks from Apeldoorn
$\diamond z=$ the number of trucks from Apeldoorn

City	Number of trucks	X-coordinate	Y-coordinate
Amsterdam	10	-10	10
Utrecht	7	0	0
Maastricht	2	15	-75
Assen	2	30	20
Apeldoorn	z	10	10

- x-coordinate

$$
\diamond C_{x}=\frac{\sum_{i} d_{i x} W_{i}}{\sum_{i} W_{i}}=5=\frac{(10 *(-10))+(7 * 0)+(2 * 15)+(2 * 30)+(z * 10)}{21+z}
$$

Answer

- x-coordinate
$\diamond 5=\frac{(10 \times(-10))+(7 \times 0)+(2 \times 15)+(2 \times 30)+(z \times 10)}{21+z}$
$\diamond-100+30+60+10 z=105+5 z$
$\diamond-10+10 z=105+5 z$
$\diamond 5 z=115$
$\diamond z=23$
- 23 trucks from Apeldoorn would render Amersfoort $(5,5)$ the best location.
- Would work with the y-coordinate as well:
$\diamond 5=\frac{(10 \times 10)+(7 \times 0)+(2 \times(-75))+(2 \times 20)+(z \times 10)}{21+z}$
$\diamond 100-150+40+10 z=105+5 z$
$\diamond 5 z=115$
$\diamond z=23$

Exercise 4

Information on Exercise 4

university of groningen

- Consider the following network:
\diamond Single commodity, uncapacitated arcs
\diamond Nodes 1, 2, 3, 4, 5
- Demand nodes: 4 and 5
- Supply nodes: 1,2 , and 3
\diamond Fixed cost of opening an arc $=20$

Travel Cost	1	2	3	4	5
1	0	3	11	5	8
2	3	0	8	3	6
3	11	8	0	6	6
4	5	3	6	0	7
5	8	6	6	7	0
Node (i)	Demand Quantity (D_{i})		Supply Quantity $\left(S_{i}\right)$		
1			2		
2		-	5		
3		-	3		
4		4	-		
5		6	-		

Answer to Exercise 4a: Variables and Parameters

- Decision Variables
$\diamond y_{i j}=\left\{\begin{array}{l}1, \text { if } \operatorname{arc}(i, j) \text { is opened } \\ 0, \text { otherwise }\end{array}\right.$
$\diamond x_{i j}$: Quantity transported on arc (i, j)
- No commodity index k, since there is only one commodity
- Parameters
$\diamond D=\{4,5\}$
$\diamond S=\{1,2,3\}$
$\diamond N=\{1,2,3,4,5\}$
(Set of demand nodes)
(Set of supply nodes)
(Set of all nodes)

Uncapacitated Network Design Problem

$$
\begin{array}{ll}
\min \sum_{i \in N} \sum_{j \in N} f_{i j} y_{i j}+\sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j} & \\
\text { s.t. } \\
\sum_{j \in N} x_{i j}-\sum_{j \in N} x_{j i}= \begin{cases}S_{i} & \text { if } i \in S \\
-D_{i} & \text { if } i \in D\end{cases} & \forall i \in N \\
x_{i j} \leq M y_{i j}, & \forall i \in N, \forall j \in N \\
y_{i j} \in\{0,1\}, & \forall i \in N, \forall j \in N \\
x_{i j} \geq 0, & \forall i \in N, \forall j \in N
\end{array}
$$

Answer to Exercise 4a: Objective

- Objective

$$
\min \sum_{i \in N} \sum_{j \in N} f_{i j} y_{i j}+\sum_{i \in N} \sum_{j \in N} c_{i j} x_{i j}
$$

- Write term-by-term:

$$
\begin{aligned}
\min \quad & 20 y_{12}+20 y_{13}+20 y_{14}+20 y_{15}+20 y_{21}+20 y_{23}+20 y_{24}+20 y_{25}+20 y_{31}+20 y_{32} \\
& +20 y_{34}+20 y_{35}+20 y_{41}+20 y_{42}+20 y_{43}+20 y_{45}+20 y_{51}+20 y_{52}+20 y_{53}+20 y_{54} \\
& +3 x_{12}+11 x_{13}+5 x_{14}+8 x_{15}+3 x_{21}+8 x_{23}+3 x_{24}+6 x_{25}+11 x_{31}+8 x_{32}+6 x_{34}+6 x_{35} \\
& +5 x_{41}+3 x_{42}+6 x_{43}+7 x_{45}+8 x_{51}+6 x_{52}+6 x_{53}+7 x_{54}
\end{aligned}
$$

Answer to Exercise 4a: Constraints

- Balance Constraints

$$
\sum_{j \in N} x_{i j}-\sum_{j \in N} x_{j i}= \begin{cases}S_{i} & \text { if } i \in S \\ -D_{i} & \text { if } i \in D\end{cases}
$$

$\forall i \in N$

\diamond Write for all $i \in N$ (where $D=\{4,5\}$ and $S=\{1,2,3\})$:

- (For node 1, $i=1$) $\quad x_{12}+x_{13}+x_{14}+x_{15}-\left(x_{21}+x_{31}+x_{41}+x_{51}\right)=2$
- (For node 2, $i=2$) $\quad x_{21}+x_{23}+x_{24}+x_{25}-\left(x_{12}+x_{32}+x_{42}+x_{52}\right)=5$
- (For node 3, $i=3$) $\quad x_{31}+x_{32}+x_{34}+x_{35}-\left(x_{13}+x_{23}+x_{43}+x_{53}\right)=3$
- (For node 4, $i=4) \quad x_{41}+x_{42}+x_{43}+x_{45}-\left(x_{14}+x_{24}+x_{34}+x_{54}\right)=-4$
- (For node $5, i=5) \quad x_{51}+x_{52}+x_{53}+x_{54}-\left(x_{15}+x_{25}+x_{35}+x_{45}\right)=-6$

Answer to Exercise 4a: Constraints

- What should the big-M value be for the arc capacity constraints?
(The arcs are uncapacitated in this problem!)
$\diamond x_{i j} \leq M y_{i j} \quad \forall(i, j) \in A$

Node (i)	Demand Quantity $\left(D_{i}\right)$	Supply Quantity $\left(S_{i}\right)$
$\mathbf{1}$	-	2
$\mathbf{2}$	-	5
$\mathbf{3}$	-	3
$\mathbf{4}$	4	-
$\mathbf{5}$	6	-

$\diamond M$ must be at least 10, since the total demand quantity (and the total supply quantity) is 10 .

Answer to Exercise 4a: Constraints

- If an arc is not opened, it cannot transport anything.

$$
x_{i j} \leq M y_{i j}
$$

\diamond Write for all arcs (i, j)

- $\operatorname{Arc}(1,2),(i, j)=(1,2):$

$$
-\operatorname{Arc}(2,1),(i, j)=(2,1): \quad x_{21} \leq 10 y_{21}
$$

$$
\text { - } \operatorname{Arc}(3,1),(i, j)=(3,1): \quad x_{31} \leq 10 y_{31}
$$

$$
\begin{array}{lll}
x_{12} \leq 10 y_{12} & \text { - } \operatorname{Arc}(3,4),(i, j)=(3,4): & x_{34} \leq 10 y_{34} \\
x_{13} \leq 10 y_{13} & \text { - } \operatorname{Arc}(3,5),(i, j)=(3,5): & x_{35} \leq 10 y_{35} \\
x_{14} \leq 10 y_{14} & \text { - } \operatorname{Arc}(4,1),(i, j)=(4,1): & x_{41} \leq 10 y_{41} \\
x_{15} \leq 10 y_{15} & \text { - } \operatorname{Arc}(4,2),(i, j)=(4,2): & x_{42} \leq 10 y_{42} \\
x_{21} \leq 10 y_{21} & \text { - } \operatorname{Arc}(4,3),(i, j)=(4,3): & x_{43} \leq 10 y_{43} \\
x_{23} \leq 10 y_{23} & \text { - } \operatorname{Arc}(4,5),(i, j)=(4,5): & x_{45} \leq 10 y_{45} \\
x_{24} \leq 10 y_{24} & \text { - } \operatorname{Arc}(5,1),(i, j)=(5,1): & x_{51} \leq 10 y_{51} \\
x_{25} \leq 10 y_{25} & \text { - } \operatorname{Arc}(5,2),(i, j)=(5,2): & x_{52} \leq 10 y_{52} \\
x_{31} \leq 10 y_{31} & \text { - } \operatorname{Arc}(5,3),(i, j)=(5,3): & x_{53} \leq 10 y_{53} \\
x_{32} \leq 10 y_{32} & \text { n } \operatorname{Arc}(5,4),(i, j)=(5,4): & x_{54} \leq 10 y_{54}
\end{array}
$$

- $\operatorname{Arc}(1,3),(i, j)=(1,3)$:
- $\operatorname{Arc}(1,4),(i, j)=(1,4)$:

$$
-\operatorname{Arc}(1,5),(i, j)=(1,5): \quad x_{15} \leq 10 y_{15}
$$

$$
-\operatorname{Arc}(2,3),(i, j)=(2,3): \quad x_{23} \leq 10 y_{23}
$$

- $\operatorname{Arc}(2,5),(i, j)=(2,5)$:

$$
\cdot \operatorname{Arc}(3,2),(i, j)=(3,2): \quad x_{32} \leq 10 y_{32}
$$

- Formulation

$$
\begin{array}{ll}
\text { min } \quad & 20 y_{12}+20 y_{13}+20 y_{14}+20 y_{15}+20 y_{21}+20 y_{23}+20 y_{24}+20 y_{25}+20 y_{31}+20 y_{32} \\
& +20 y_{34}+20 y_{35}+20 y_{41}+20 y_{42}+20 y_{43}+20 y_{45}+20 y_{51}+20 y_{52}+20 y_{53}+20 y_{54} \\
& +3 x_{12}+11 x_{13}+5 x_{14}+8 x_{15}+3 x_{21}+8 x_{23}+3 x_{24}+6 x_{25}+11 x_{31}+8 x_{32}+6 x_{34}+6 x_{35} \\
& +5 x_{41}+3 x_{42}+6 x_{43}+7 x_{45}+8 x_{51}+6 x_{52}+6 x_{53}+7 x_{54} \\
\text { s.t. } \quad x_{12}+x_{13}+x_{14}+x_{15}-x_{21}-x_{31}-x_{41}-x_{51}=2 \\
& x_{21}+x_{23}+x_{24}+x_{25}-x_{12}-x_{32}-x_{42}-x_{52}=3 \\
& x_{31}+x_{32}+x_{34}+x_{35}-x_{13}-x_{23}-x_{43}-x_{53}=5 \\
& x_{41}+x_{42}+x_{43}+x_{45}-x_{14}-x_{24}-x_{34}-x_{54}=-4 \\
& x_{51}+x_{52}+x_{53}+x_{54}-x_{15}-x_{25}-x_{35}-x_{45}=-6 \\
& x_{12} \leq 10 y_{12}, \quad x_{13} \leq 10 y_{13}, \quad x_{14} \leq 10 y_{14}, \quad x_{15} \leq 10 y_{15} \\
& x_{21} \leq 10 y_{21}, \quad x_{23} \leq 10 y_{23}, \quad x_{24} \leq 10 y_{24}, \quad x_{25} \leq 10 y_{25} \\
& x_{31} \leq 10 y_{31}, \quad x_{32} \leq 10 y_{32}, \quad x_{34} \leq 10 y_{34}, \quad x_{35} \leq 10 y_{35} \\
& x_{41} \leq 10 y_{41}, \quad x_{42} \leq 10 y_{42}, \quad x_{43} \leq 10 y_{43}, \quad x_{45} \leq 10 y_{45} \\
x_{51} \leq 10 y_{51}, \quad x_{52} \leq 10 y_{52}, \quad x_{53} \leq 10 y_{53}, \quad x_{54} \leq 10 y_{54} \\
x_{12}, x_{13}, x_{14}, x_{15}, x_{21}, x_{23}, x_{24}, x_{25}, x_{31}, x_{32}, x_{34}, x_{35}, x_{41}, x_{42}, x_{43}, x_{45}, x_{51}, x_{52}, x_{53}, x_{54} \geq 0 \\
y_{12}, y_{13}, y_{14}, y_{15}, y_{21}, y_{23}, y_{24}, y_{25}, y_{31}, y_{32}, y_{34}, y_{35}, y_{41}, y_{42}, y_{43}, y_{45}, y_{51}, y_{52}, y_{53}, y_{54} \in\{0,1\}
\end{array}
$$

Answer to Exercise 4b

- First, enter the data:
$\diamond M=\sum_{i \in D} D_{i}=10$

(Fixed) Arc Opening Costs						(Variable) Transportation Costs						Arc Capacities								
	1	2	3	4	5		1	2	3	4	5		1	2	3	4	5		Demand	Supply
1	-	20	20	20	20	1	-	3	11	5	8	1	-	10	10	10	10	1	-	2
2	20	-	20	20	20	2	3	-	8	3	6	2	10	-	10	10	10	2	-	5
3	20	20	-	20	20	3	11	8	-	6	6	3	10	10	-	10	10	3	-	3
4	20	20	20	-	20	4	5	3	6	-	7	4	10	10	10	-	10	4	4	-
5	20	20	20	20	-	5	8	6	6	7	-	5	10	10	10	10	-	5	6	-

- Set up the decision variables:

$y_{i j}$						$\boldsymbol{x}_{i j}$					
	1	2	3	4	5		1	2	3	4	5
1	0	0	0	0	1	1	0	0	0	0	2
2	0	0	0	1	1	2	0	0	0	4	1
3	0	0	0	0	1	3	0	0	0	0	3
4	0	0	0	0	0	4	0	0	0	0	0
5	0	0	0	0	0	5	0	0	0	0	0

Answer to Exercise 4b

university of groningen

- Set up the objective:

Objective
=SUMPRODUCT(B3:F7, B11:F15) + SUMPRODUCT(I3:M7, I11:M15)

- Set up the balance constraints:

Balance Constraints			
Node	LHS	Sign	RHS
1	=SUM(111:M11) - SUM(111:I15)	=	=x3
2	=SUM(I12:M12) - SUM(J11:J15)	=	=x4
3	=SUM(113:M13) - SUM(K11:K15)	=	=x5
4	=SUM(I14:M14) - SUM(L11:L15)	=	=-W6
5	=SUM(I15:M15) - SUM(M11:M15)	=	=-W7

- Set up the capacity constraints:

Capacity Constraints												
LHS						Sign	RHS					
	1	2	3	4	5			1	2	3	4	5
1	0	=J11	=K11	= L11	=M11	<	1	0	=Q3 * C11	=R3 * D11	=S3 * E11	=T3*F11
2	= 112	0	=K12	=L12	=M12	<=	2	=P4 * B12	0	=R4* D12	=S4*E12	=T4*F12
3	= 113	=J13	0	=L13	=M13	<	3	=P5 * B13	=Q5 * C13	0	=S5 * E13	=T5 * F13
4	= 114	=J14	=K14	0	=M14	<	4	=P6 * B14	=Q6 * C14	=R6 * D14	0	=T6 * F14
5	$=115$	= J15	=K15	= L15	0	<	5	=P7* B15	=Q7 * C15	=R7* D15	=S7*E15	0

Answer to Exercise 4b

- Build the LP in Excel Solver:

Set Objective:			SCS17			黿
	\bigcirc Max	() Min	\bigcirc value of:	0		
By Changing Variable Cells:						
SBS11:SFS 15,SIS11:SMS15						㰓
Subject to the Constraints:						
$\begin{aligned} & \text { SBS11:SFS15 = binary } \\ & \text { SBS21:SBS25 = SDS21:SDS25 } \\ & \text { SBS30:SFS34 < = SIS30:SMS34 } \end{aligned}$				\wedge	Add	
					Change	
					Delete	
					Reset All	
				\checkmark	Load/Save	
\square Make Unconstrained Variables Non-Negative						
Select a Solving Method:		Simplex LP			Options	

Solving Method
Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP
Select the GRG Nonlinear engine for Solver Problems the are smooth noninear. Select Simplex engine for linear Solver
problems that are non-smooth.

- See Excel file "Tutorial 2 Calculations.xlsx" for more details.

Excel Solver Reminder

- Use "Simplex LP" solving method first. You can try the other methods to check/compare.
- In "Options" dialog box:
\diamond If you're using integer variables,
- Make sure the "Ignore Integer Constraint" box is unchecked.
- Make sure "Integer Optimality (\%)" is set to 0 .
- See the Excel Solver video for the potential errors you can encounter here.

Answer to Exercise 4c

- The open arcs in the optimal solution

- The transported quantities in the optimal solution

- Total cost in the optimal solution $=132$
\diamond Fixed cost $=4 \times 20=80$
\diamond Transportation cost $=2 \times 8+4 \times 3+1 \times 6+3 \times 6=52$

Exercise 5

Information on Exercise 5

- Consider the given network

(7)
(2)

(8)
(3)
(6)
(9)
\diamond Each demand node has a demand of 1 unit, to be met from any of the facilities.
\diamond Facility opening cost, F_{j}, is 5 for each candidate location.
\diamond Link opening cost, $f_{i j}$, is equal to $d_{i j}$.
- $d_{i j}$ is the Euclidean distance.
\diamond Routing (transportation) cost per 1 unit transported, $c_{i j}$, is 0 .
- Calculate the total cost of 5 given solutions, and decide which one is best.

Answer to Exercise 5

- Solution S1

\diamond Facility opening cost $=5$
\diamond Link opening cost $=1 \times 6+2 \times 2=10$
\diamond Routing (transportation) cost $=0$
\diamond TOTAL $=15$

Solution S1

- Solution S2
\diamond Facility opening cost $=5$
\diamond Link opening cost $=4 \times \sqrt{2^{2}+1^{2}}+2 \times 2+2 \times 1=14.94$
\diamond Routing cost $=0$
\diamond TOTAL $=19.94$

Answer to Exercise 5

- Solution S3
\diamond Facility opening cost $=3 \times 5=15$
\diamond Link opening cost $=6 \times 1=6$
\diamond Routing cost $=0$
\diamond TOTAL $=21$

- Solution S4
\diamond Facility opening cost $=2 \times 5=10$
\diamond Link opening cost $=4 \times \sqrt{2^{2}+1^{2}}+2 \times \sqrt{4^{2}+1^{2}}+2 \times 2+4 \times 1=25.19$
\diamond Routing cost $=0$
\diamond TOTAL $=35.19$

Answer to Exercise 5

- Solution S5

\diamond Facility opening cost $=3 \times 5=15$
\diamond Link opening cost $=8 \times \sqrt{2^{2}+1^{2}}+2 \times 2+6 \times 1=27.89$
\diamond Routing cost $=0$
\diamond TOTAL $=42.89$

- Solution S1 has the lowest cost, and therefore is the most preferable.

Exercise 6

Information on Exercise 6

- Consider the given network

(7)
(2)
(5)
(8)
(3)
(6)
(9)
\diamond Each demand node has a demand of 1 unit, to be met from any of the facilities.
\diamond Facility opening cost, F_{j}, is 5 for each candidate location.
\diamond Link opening cost, $f_{i j}$, is 0 .
\diamond Routing (transportation) cost per 1 unit transported, $c_{i j}$, is equal to $d_{i j}$.
- $d_{i j}$ is the Euclidean distance.
- Calculate the total cost of 5 given solutions, and decide which one is best.

Answer to Exercise 6

- Solution S1

\diamond Facility opening cost $=5$
\diamond Link opening cost $=0$
\diamond Routing (transportation) cost $=18$

- Node 1 (Route $5 \rightarrow 2 \rightarrow 1)=2+1=3$
- Node 2 (Route $5 \rightarrow 2$) $=2$
- Node 3 (Route $5 \rightarrow 2 \rightarrow 3)=2+1=3$
- Node 4 (Route $5 \rightarrow 4$) $=1$
- Node 5 = 0

- Node 6 (Route $5 \rightarrow 6$) $=1$
- Node 7 (Route $5 \rightarrow 8 \rightarrow 7$) $=2+1=3$
- Node 8 (Route $5 \rightarrow 8$) $=2$
- Node 9 (Route $5 \rightarrow 8 \rightarrow 9)=2+1=3$
\diamond TOTAL $=23$

Answer to Exercise 6

- Solution S2

\diamond Facility opening cost $=5$
\diamond Link opening cost $=0$
\diamond Routing (transportation) cost $=14.96$

- Node 1 (Route $5 \rightarrow 1$) = 2.24
- Node 2 (Route $5 \rightarrow 2$) $=2$
- Node 3 (Route $5 \rightarrow 3$) $=2.24$
- Node 4 (Route $5 \rightarrow 4$) $=1$
- Node 5 = 0

- Node 6 (Route $5 \rightarrow 6$) $=1$
- Node 7 (Route $5 \rightarrow 7$) $=2.24$
- Node 8 (Route $5 \rightarrow 8$) $=2$
- Node 9 (Route $5 \rightarrow 9$) $=2.24$
\diamond TOTAL $=19.96$

Answer to Exercise 6

- Solution S3
\diamond Facility opening cost $=3 \times 5=15$
\diamond Link opening cost $=0$
\diamond Routing (transportation) cost $=6$
- Node 1 (Route $2 \rightarrow 1$) = 1
- Node 2 = 0
- Node 3 (Route $2 \rightarrow 3$) = 1
- Node 4 (Route $5 \rightarrow 4$) = 1
- Node $5=0$
- Node 6 (Route $5 \rightarrow 6$) $=1$

- Node 7 (Route $8 \rightarrow 7$) $=1$
- Node $8=0$
- Node 9 (Route $8 \rightarrow 9)=1$
\diamond TOTAL $=21$

Answer to Exercise 6

- Solution S4
\diamond Facility opening cost $=2 \times 5=10$
\diamond Link opening cost $=0$
\diamond Routing (transportation) cost $=10.48$
- Node 1 (Route $2 \rightarrow 1$) = 1
- Node 2 = 0
- Node 3 (Route $2 \rightarrow 3$) = 1
- Node 4 (Route $5 \rightarrow 4$) = 1
- Node $5=0$
- Node 6 (Route $5 \rightarrow 6$) $=1$

- Node 7 (Route $5 \rightarrow 7$) $=2.24$
- Node 8 (Route $5 \rightarrow 8$) $=2$
- Node 9 (Route $5 \rightarrow 9$) $=2.24$
\diamond TOTAL $=20.48$

Answer to Exercise 6

- Solution S5

\diamond Facility opening cost $=3 \times 5=15$
\diamond Link opening cost $=0$
\diamond Routing (transportation) cost $=6$

- Node 1 (Route $2 \rightarrow 1$) = 1
- Node 2 = 0
- Node 3 (Route $2 \rightarrow 3$) = 1
- Node 4 (Route $5 \rightarrow 4$) = 1
- Node $5=0$
- Node 6 (Route $5 \rightarrow 6$) $=1$

- Node 7 (Route $8 \rightarrow 7$) $=1$
- Node $8=0$
- Node 9 (Route $8 \rightarrow 9)=1$
\diamond TOTAL $=21$

Answer to Exercise 6

- S1 = 23
- $\mathrm{S} 2=19.96$
- S3 = 21
- $\mathrm{S} 4=20.48$
- $\mathrm{S} 5=21$
- Solution S2 has the lowest cost, and therefore is the most preferable.

Exercise 7

Information on Exercise 7

- Consider the given network

\diamond Each demand node has a demand of 1 unit, to be met from any of the facilities.
\diamond Facility opening cost, F_{j}, is 5 for each candidate location.
\diamond Link opening cost, $f_{i j}$, is 3 for each link.
\diamond Routing (transportation) cost per 1 unit transported, $c_{i j}$, is equal to $d_{i j}$.
- Consider solutions S1, S2, S3, S4, and S5
\diamond Are there redundant open links? If so, how would you improve the solution (and how much would the proposed improvement reduce total cost)?

Answer to Exercise 7

 groningen- Solution S1, S2, and S3
\diamond There are no redundant links, all links are used for transportation!

Answer to Exercise 7

- Solution S4

\diamond Routes:

- Node 1 (Route $2 \rightarrow 1$)
- Node 2
- Node 3 (Route $2 \rightarrow 3$)
- Node 4 (Route 5 $\rightarrow 4$)
- Node 5
- Node 6 (Route $5 \rightarrow 6$)
- Node 7 (Route $5 \rightarrow 7$)
- Node 8 (Route $5 \rightarrow 8$)

- Node 9 (Route $5 \rightarrow 9$)
\diamond Links $(2,4),(2,5),(2,6),(2,7),(2,9)$ are redundant!
\diamond Closing them would save $5 \times 3=15$, in link opening costs.

Answer to Exercise 7

- Solution S5

\diamond Routes:

- Node 1 (Route $2 \rightarrow 1$)
- Node 2
- Node 3 (Route $2 \rightarrow 3$)
- Node 4 (Route $5 \rightarrow 4$)
- Node 5
- Node 6 (Route $5 \rightarrow 6$)
- Node 7 (Route $8 \rightarrow 7$)
- Node 8

- Node 9 (Route $8 \rightarrow 9$)
\diamond Links $(2,4),(2,5),(2,6),(1,5),(3,5),(4,8),(6,8),(5,7),(5,8),(5,9)$ are redundant!
\diamond Closing them would save $10 \times 3=30$, in link opening costs.

Exercise 8

Information on Exercise 8

- Consider the given network

\diamond Each demand node has a demand of 1 unit, to be met from any of the facilities.
- Consider solutions S1, S2, S3, S4, S5, and S6.
\diamond Each link has a capacity of 1 unit.
\diamond Are all solutions S1, ... , S6 feasible with respect to link capacities?

Answer to Exercise 8

- The number of units transported on each link are given in red.

\diamond Solutions S2 and S3 are feasible, since no link exceeds its capacity.
\diamond Solution S1 is infeasible, since links $(5,2)$ and $(5,8)$ exceed their capacity.

Answer to Exercise 8

- The number of units transported on each link are given in red.
\diamond Some links in solutions S4 and S5 has no red number on them, because these links are not being used for transportation (they are redundant).

\diamond Solutions S4 and S5 are feasible, since no link exceeds its capacity.
\diamond Solution S6 is infeasible, since link capacity of link $(5,7)$ is exceeded.

