ELEC-E8412

Exercise No 01

Power Electronics

28.09.2023

Problem 1:

A sinusoidal voltage source of $v(t)=40 \cos (2 \pi 50 t) \mathrm{V}$ is applied to a nonlinear load, resulting in a non-sinusoidal current which is expressed in Fourier series as;
$i(t)=3+7 \cos \left(2 \pi 50 t+20^{\circ}\right)+4 \cos \left(6 \pi 50 t+15^{\circ}\right)+3 \cos \left(8 \pi 50 t+25^{\circ}\right) \mathrm{A}$.
Determine
a) power absorbed by the load,
b) power factor of the load
c) total harmonic distortion of the load current.

Problem 2:

The voltage and current for a circuit element are;
$v(t)=3+5 \cos \left(2 \pi 60 t+15^{\circ}\right)+2 \cos (4 \pi 60 t) \mathbf{V}$
$i(t)=2+7 \cos \left(2 \pi 60 t+45^{\circ}\right)+3 \cos \left(6 \pi 60 t+25^{\circ}\right) \mathbf{A}$.

Determine

a) rms values of voltage and current.
b) power absorbed by the element.
c) total harmonic distortion of the load current.

Problem 3:

The voltage across a 10Ω resistor is $\quad v(t)=170 \operatorname{Sin}(377 t)$
Determine
a) instantaneous power.
b) average power.
c) peak power.

Problem 4:

The voltage and current of a circuit is given by;
$v(t)=3+5 \operatorname{Cos}\left(2 \pi 60 t+15^{\circ}\right)+2 \operatorname{Cos}(4 \pi 60 t)$
$i(t)=2+7 \operatorname{Cos}\left(2 \pi 60 t+45^{\circ}\right)+3 \operatorname{Cos}\left(6 \pi 60 t+25^{\circ}\right)$
Determine
a) rms values of voltage and current.
b) power absorbed by the element.
c) power factor of the load.

