ELEC-E8412

Power Electronics

Exercise No 04
02.11.2023

Solution
Problem 1:
A single-phase full wave rectifier with resistive load of 12Ω and AC source of $120 \mathrm{~V}_{\mathrm{rms}}, 60$ Hz. Determine,
a) The average, peak, and rms currents in the load and in each diode.
$i_{o(a v g)}=2 * \frac{V_{m}}{\pi * R}$
$i_{o(a v g)}=\frac{2 * 120 * \sqrt{2}}{3.14 * 12}=9 A$
$i_{D(a v g)}=\frac{i_{o(a v g)}}{2}$
$i_{D(\text { avg })}=\frac{9}{2}=4.5 \mathrm{~A}$

Peak load and diode current
$i_{o(\text { peak })}=i_{D(\text { peak })}=\frac{V_{m}}{R}=\frac{120 * \sqrt{2}}{R}=14.14 \mathrm{~A}$
RMS load current
$i_{o(r m s)}=\frac{V_{r m s}}{R}=\frac{120}{12}=10 \mathrm{~A}$
RMS diode current
$i_{D(r m s)}=\frac{i_{o(r m s)}}{\sqrt{2}}=\frac{10}{\sqrt{2}}=7.07 \mathrm{~A}$
b) Determine the peak reverse voltage across each of the diodes.

When the diode is reverse biased the voltage across it is equal to the supply voltage, i.e.

$$
V_{D}=V_{m}=V_{r m s} * \sqrt{2}=169.7 \mathrm{~V}
$$

Problem 2:

A single-phase full-wave rectifier with an ac source of $200 \operatorname{Sin}(\omega \mathrm{t}) \mathrm{V}$ has a resistive load of $20 \Omega . \omega=377$.
Determine
a) Average current in the load and in each diode.

$$
\begin{gathered}
i_{o(a v g)}=2 * \frac{V_{m}}{\pi * R}=\frac{2 * 200}{3.14 * 20}=6.366 \mathrm{~A} \\
i_{D(a v g)}=\frac{i_{o(a v g)}}{2}=\frac{6.366}{2}=3.18 \mathrm{~A}
\end{gathered}
$$

b) Peak reverse voltage across each of the diodes.

When the diode is reverse biased the voltage across it is equal to the supply voltage
c) Power factor
$p f=\frac{P}{S}=\frac{i_{o(r m s)}^{2} * R}{V_{\text {in }(r m s)} i_{i n(r m s)}}$

$$
i_{o(r m s)}=\frac{V_{r m s}}{R}=\frac{200}{\sqrt{2} * 20}=7.07 \mathrm{~A}
$$

$p f=\frac{i_{o r m s}^{2} * R}{V_{\text {in }(r m s)} * i_{i n}(r m s)}=\frac{(7.07)^{2} * 20}{\frac{200}{\sqrt{2}} * 7.07}=0.999 \cong 1$

Problem 3:

For the controlled single-phase bridge rectifier has an 18Ω resistive load and has a $120 \mathrm{~V}_{\text {rms }}$ at 60 Hz source. The delay angle α is 45 .

Determine
a) average load current

$$
i_{o(a v g)}=\frac{V_{o(a v g)}}{R}=\frac{V_{m} *(1+\cos \alpha)}{\pi * R}=\frac{120 * \sqrt{2} *(1+\cos 45)}{3.14 * 18}=5.12 \mathrm{~A}
$$

b) rms load current
$i_{o(r m s)}=\frac{V_{m}}{R} * \sqrt{\frac{1}{2}-\frac{\alpha}{2 \pi}+\frac{\sin 2 \alpha}{4 \pi}}=\frac{120 * \sqrt{2}}{18} * \sqrt{\frac{1}{2}-\frac{0.785}{2 \pi}+\frac{\sin 90}{4 \pi}}=6.35 \mathrm{~A}$
c) rms source current

The input and output RMS currents are same.
d) power factor

$$
p f=\sqrt{\frac{1}{2}-\frac{\alpha}{2 \pi}+\frac{\sin 2 \alpha}{4 \pi}}=\sqrt{\frac{1}{2}-\frac{0.785}{2 \pi}+\frac{\sin 90}{4 \pi}}=0.953
$$

Or

$$
p f=\frac{i_{o(r m s)}^{2} * R}{V_{i n(r m s)} * i_{\text {in }(r m s)}}=\frac{(6.35)^{2} * 18}{120 * 6.35}=0.953
$$

Problem 4:

A load of 50Ω is connected to an AC source of $60 \mathrm{~Hz}, 230 \mathrm{~V}_{\mathrm{rms}}$. Full wave-controlled rectifiers has a delay angle of 45 degrees.
Determine
a) Average load current

$$
i_{o(a v g)}=\frac{V_{o(a v g)}}{R}=\frac{V_{m} *(1+\cos \alpha)}{\pi * R}=\frac{230 * \sqrt{2} *(1+\cos 45)}{3.14 * 50}=3.53 \mathrm{~A}
$$

b) Power absorbed by the load

$$
\begin{gathered}
P=i_{o(r m s)}^{2} * R \\
i_{o(r m s)}=\frac{V_{m}}{R} * \sqrt{\frac{1}{2}-\frac{\alpha}{2 \pi}+\frac{\sin 2 \alpha}{4 \pi}}=\frac{230 * \sqrt{2}}{50} * \sqrt{\frac{1}{2}-\frac{0.785}{2 \pi}+\frac{\sin 90}{4 \pi}}=3.99 \mathrm{~A}
\end{gathered}
$$

c) Source VA.

$$
\boldsymbol{S}=V_{i n(r m s)} * i_{i n(r m s)}=230 * 3.99=917.7 V A
$$

Problem 5:

For an ideal full-wave rectifier with a $60-\mathrm{Hz}$ ac source and maximum voltage of 100 V .
It is to supply a load that requires a dc voltage of 100 V and will draw 0.4 A .
Determine the filter capacitance required to limit the peak-to-peak output voltage ripple to 1 percent of the dc output.

$$
\Delta V=\frac{V_{m}}{2 * f * R * C}
$$

$V=I * R, \quad R=\frac{100}{0.4}=250 \Omega$

$$
C=\frac{V_{m}}{2 * f * R * \Delta V}=\frac{100}{2 * 60 * 250 * 0.01 * 100}=3333 \mu F
$$

